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University, 4A Chodźki Street, 20-093 Lublin, Poland
* Correspondence: malgorzata.sztanke@umlub.pl (M.S.); krzysztof.sztanke@umlub.pl (K.S.);

Tel.: +48-814486195 (M.S. & K.S.)

Received: 23 November 2019; Accepted: 21 January 2020; Published: 23 January 2020
����������
�������

Abstract: The permeation of the blood-brain barrier is a very important consideration for new drug
candidate molecules. In this research, the reversed-phase liquid chromatography with different
columns (Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester) was used to predict the
penetration of the blood-brain barrier by 65 newly-synthesized drug-like compounds. The linear
free energy relationships (LFERs) model (log BB = c + eE + sS + aA + bB + vV) was established for a
training set of 23 congeneric biologically active azole compounds with known experimental log BB
(BB = Cblood/Cbrain) values (R2 = 0.9039). The reliability and predictive potency of the model were
confirmed by leave-one-out cross validation as well as leave-50%-out cross validation. Multiple linear
regression (MLR) was used to develop the quantitative structure-activity relationships (QSARs) to
predict the log BB values of compounds that were tested, taking into account the chromatographic
lipophilicity (log kw), polarizability and topological polar surface area. The excellent statistics of
the developed MLR equations (R2 > 0.8 for all columns) showed that it is possible to use the HPLC
technique and retention data to produce reliable blood-brain barrier permeability models and to
predict the log BB values of our pharmaceutically important molecules.

Keywords: HPLC; blood-brain barrier permeability; IAM column; Cholester column; ODS column;
QSARs; LFERs

1. Introduction

The biological activity of drugs depends primarily on their pharmacokinetics. The expected
pharmacological effect of a given drug can be observed if the pharmacokinetic processes provide its high
concentration within the range of the receptor. The amount of drug in tissue and the time that remains
an effective concentration depend on the fundamental processes that make up the pharmacokinetic
phase of the drug’s action, i.e., liberation (L), absorption (A), distribution (D), metabolism (M) and
excretion (E). It is extremely difficult to predict the processes mentioned above because all of them
are concentration-dependent and connected with the chemical structure of the agent. Since most
drugs must pass through at least one cell membrane to provide the desired effect, for the rational
design of drugs, it is vitally important to understand and to be able to predict the solute partitioning
in the biomembranes. Drugs can cross membranes by passive or active transport [1–3]. While active
transport is determined by compounds’ affinities for specific transporters and it uses energy, the most
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common mode for the passage of xenobiotics is passive transport, which depends on physicochemical
properties of the compound, such as lipophilicity, size of the molecule, ionization state, as well as the
diffusion coefficient through the membrane and the concentration gradient of the compound [4,5].

One of the most important properties of a potential drug is the ability of its molecule to penetrate
the blood-brain barrier (BBB). Potential effective agents that are intended to interact with the central
nervous system must be able to cross the BBB and satisfactory transport through the blood-brain
barrier is an essential prerequisite for a potential drug to affect the central nervous system. However,
the agents that act peripherally should not cross the BBB in order to avoid side effects. In both cases,
the permeability of the BBB must be known and it should be evaluated at the earliest possible stage of
testing. Doing so allows scientists to choose drug candidates that have more selective pharmacologic
properties with fewer side effects and lower toxicities [6].

The common measure of the extent permeation of the blood-brain barrier is the ratio of the
concentration of the drug in the brain (Cbrain) to the concentration of the drug in the blood (Cblood) or in
the plasma (Cplasma), which is expressed as the log BB (BB = Cblood/Cbrain) [7–9]. Although measurement
of the blood-brain barrier penetration in vivo is essential, the procedure is time-consuming, expensive
and difficult. In addition, in recent years, an emphasis has been placed on modelling the log BB
permeation to avoid unethical animal testing. Over the past three decades, various models have been
proposed for predicting the BBB permeation and they have suggested different descriptors of the
physicochemical properties of substances. Research shows that the penetration of the blood-brain
barrier of the compound depends on its hydrogen bonding potential, lipophilicity and size. The BBB
penetration is promoted by a weak potential for hydrogen bonding and high lipophilicity [4,5,7–9].

As noted, lipophilicity is one of the most important features affecting the biological activity.
Octanol-water partition coefficients (logs P) are the most extensively used measure of lipophilicity in
modelling the biological partition/distribution. This value can be determined by the classical shake-flask
method, which is a time-consuming and tedious procedure. Contrarily, the liquid chromatography is
a convenient, reliable and efficient method for assessing the partition parameters that describe the
lipophilic properties of organic compounds. The background to this is that the same basic molecular
interactions determine the behaviour of the solute in both biological and chromatographic systems.
Moreover, there is an increasing evidence of the convenience for modelling pharmacokinetic processes
chromatographically, especially by reversed-phase liquid chromatography using biomimetic stationary
phases. The octadecylsilyl (ODS) stationary phase provides a fast approach, but immobilized artificial
membranes (IAMs) are more similar to the membranes of eukaryotic cells and therefore better mimic
biological systems [10–12]. Artificial membranes are more similar to biological systems because they
anchor synthetic phosphatidylcholine analogues to silica [13–18]. Cholesterol is one of the major
components of many eukaryotic membranes and it seems highly likely that cholesterol immobilized on
silica would offer similar possibilities. Currently, the stationary phases with immobilized cholesterol
are becoming more and more popular and therefore they are increasingly used to study biological
properties of different organic compounds [19,20].

All pharmaceutically relevant compounds [19,21–35] were resynthesized in our laboratory for the
current research purposes and their structures, belonging to particular groups, are listed in Table 1.
They have been shown to possess mainly promising anticancer [19,21–30,32], analgesic [19,21,31,33],
antiviral and antihaemolytic [27] activities. Small molecules 1–6 (group I) and 61–65 (group VII) are of
particular importance as possible anticancer drug candidates for the treatment of human tumours of
lung, cervix, breast and ovary [22–24]. In addition, the most promising structures 1–6 (i.e., showing
the minimum embryotoxic concentration higher or comparable to that of aciclovir as well as protective
effects on oxidatively-stressed erythrocytes) revealed significant anticancer activities in human tumour
cells of pharynx and tongue. The majority of them proved to be more selective than a clinically
useful anticancer agent—hydroxycarbamide. Besides, the compound 6 has been shown to possess the
remarkable concentration-dependent potency against Herpes simplex virus type 1, while revealing a low
toxicity to normal Vero cells and inhibiting the oxidatively-induced haemolysis of erythrocytes [27].
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In turn, the confirmed remarkable antiproliferative effects of compounds 12–17 (group III) may be
of benefit in the treatment of human multiple myeloma cells that are susceptible and resistant to
thalidomide as well as in human tumour cells of cervix and breast [25,26]. Molecules 1, 2, 4, 5, 6, 15,
19, 21, 22, 24, 28, 39, 63 and 64 have been reported as promising anticancer drug candidates, due to
not only their proven significant antiproliferative activities in some human cancer cells but also less
toxic effects for normal cells [22–27]. Furthermore, test compounds proved to be in vivo active when
investigated in the central nervous system. Among analgesic active and relatively low toxic molecules
(8–11, 32, 34, 39, 42, 48, 51 and 53), the structures 8, 42 and 51 have been shown to produce the strongest
antinociceptive effect in mice [19,21,31,33].

Table 1. Compounds tested.

Group Compound No.; R, R’ Chemical Name References

Group I
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Group II 

 

7: R = H 

8: R = 4-CH3 

9: R = 4-OCH3 

10: R = 4-OC2H5 

11: R = 4-Cl 

Methyl [4-oxo-8-(R-phenyl)-

4,6,7,8-tetrahydroimidazo[2,1-
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Group III 

 

12: R = H 

13: R = 4-CH3 

14: R = 4-OCH3 

15: R = 3-Cl 

16: R = 4-Cl 

17: R = 3,4-Cl2 

Ethyl [4-oxo-8-(R-phenyl)-4,6,7,8-
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Group IV 
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19: R = 2-CH3 

20: R = 4-CH3 
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23: R = 4-OCH3 
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8-(R-phenyl)-3-(2-furanyl)-7,8-

dihydroimidazo[2,1-
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[19,28–30] 

1: R = H
2: R = 4-CH3
3: R = 2-Cl
4: R = 3-Cl
5: R = 4-Cl
6: R = 3,4-Cl2

8-(R-phenyl)-3-ethyl-7,8-
dihydroimidazo[2,1-
c][1,2,4]triazin-4(6H)-ones
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2. Results

2.1. Chromatographic Results

Retention parameters reported as the log k values were calculated by the expression:

log k = log
(tR − t0)

t0
(1)

where tR and t0 are the retention times of the solute and a non-retained compound (citric acid),
respectively. They were used to calculate the log kw values, i.e., logarithms of retention parameter
in the buffer as the mobile phase. For this purpose the Soczewiński-Wachtmeister’s equation was
used [36]:

log k = log kw − sϕ (2)

where ϕ is the volume fraction of organic modifier in the mobile phase; k and kw are retention
parameters corresponding to mixed effluent and buffer as the mobile phase, respectively. The slope s
is characteristic of a given solute and chromatographic system. Strong linear relationships between
log k and ϕ values were found for all the compounds in the range of effluent composition examined
(R2 > 0.9). The log kw and s values obtained from particular chromatographic systems are presented
in Table 2. The log kw values determined for the ODS (log kw, ODS), IAM (log kw, IAM) and Cholester
(log kw, Cholester) columns were intercorrelated and the following linear relationships with a very good
statistical quality were obtained:

log kw, ODS = 0.691(± 0.094) + 0.982(± 0.044) log kw, IAM (3)

SD = 0.257; R2 = 0.8880; N = 65

log kw, ODS = 0.911(± 0.062) + 0.765(± 0.025) log kw, Cholester (4)

SD = 0.192; R2 = 0.9371; N = 65

log kw, IAM = 0.356(± 0.073) + 0.721(± 0.029) log kw, Cholester (5)

SD = 0.224; R2 = 0.9068; N = 65

Table 2. Parameters of the Soczewiński-Wachtmeister’s equation obtained for various columns.

Compound
Tested

ODS IAM Cholester

log kw, ODS sODS log kw, IAM sIAM log kw, Cholester sCholester

1 0.97 2.70 0.55 2.10 0.20 1.25
2 1.30 3.12 1.00 2.88 0.57 1.84
3 1.22 3.02 0.80 2.51 0.46 1.70
4 1.33 3.15 0.84 2.60 0.62 1.82
5 1.78 3.56 1.24 3.25 1.18 2.61
6 2.53 4.49 1.85 4.11 2.05 3.61
7 1.28 3.09 0.81 2.38 0.58 1.92
8 1.90 3.82 1.33 3.33 1.29 2.75
9 1.30 3.02 0.81 2.45 0.57 1.82

10 1.95 3.91 1.42 3.39 1.36 2.81
11 2.36 4.44 1.82 4.39 1.82 3.55
12 1.75 3.61 1.21 3.11 1.11 2.55
13 2.37 4.36 1.70 3.85 1.92 3.58
14 1.37 3.15 0.91 2.58 0.65 1.92
15 2.85 4.90 2.05 4.45 2.41 4.15
16 2.80 4.88 2.11 4.51 2.37 4.19
17 3.16 5.33 2.42 5.01 2.77 4.61
18 2.12 4.06 1.29 3.23 1.43 3.12
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Table 2. Cont.

Compound
Tested

ODS IAM Cholester

log kw, ODS sODS log kw, IAM sIAM log kw, Cholester sCholester

19 1.74 3.48 0.96 2.72 1.20 2.78
20 2.43 4.39 1.69 3.90 2.03 3.68
21 2.26 4.20 1.42 3.51 1.66 3.33
22 1.67 3.48 1.11 3.02 1.22 2.68
23 1.91 3.82 1.19 3.13 1.53 3.05
24 2.25 4.22 1.27 3.25 1.34 2.95
25 2.75 4.85 2.08 4.55 2.36 4.05
26 2.65 4.59 2.02 4.44 2.29 4.15
27 3.46 5.68 3.23 6.30 2.92 4.85
28 2.53 4.45 1.70 3.90 2.05 3.66
29 2.49 4.51 1.91 4.22 2.34 4.02
30 2.12 4.01 1.53 3.52 1.88 3.50
31 2.93 5.02 2.26 4.68 2.77 4.42
32 2.93 5.06 2.22 4.81 2.86 4.65
33 1.98 3.99 1.47 3.62 1.69 2.94
34 2.59 4.62 1.71 3.91 2.27 3.80
35 3.09 5.33 2.14 4.48 2.80 4.61
36 2.74 4.85 1.85 4.05 2.34 3.60
37 2.43 4.60 1.73 3.84 1.96 3.65
38 3.29 5.70 2.64 5.41 3.20 5.20
39 3.41 5.20 2.57 5.32 3.19 5.30
40 3.48 5.90 3.26 6.40 3.86 6.02
41 2.90 5.02 3.26 6.45 2.23 3.75
42 3.28 5.10 2.34 4.78 2.83 4.71
43 3.59 5.85 2.48 5.18 2.90 4.80
44 3.60 5.62 2.39 4.81 3.01 4.70
45 3.35 5.55 2.15 4.69 2.74 4.59
46 3.04 5.30 2.51 5.22 3.15 5.05
47 3.09 5.24 2.59 5.14 3.09 5.06
48 3.12 5.11 2.65 5.21 3.24 4.90
49 3.31 5.41 2.78 5.50 3.40 5.33
50 3.22 5.55 2.81 5.62 3.39 5.34
51 3.28 5.61 2.11 4.51 2.68 4.55
52 3.14 5.36 2.43 5.02 3.07 5.02
53 2.93 5.02 2.51 5.17 3.21 5.15
54 3.35 5.55 2.73 5.61 3.31 5.22
55 3.32 5.66 2.72 5.44 3.36 5.35
56 3.01 4.95 2.02 4.31 2.34 4.05
57 3.11 5.05 2.52 5.06 2.98 4.85
58 3.55 5.65 3.22 6.32 3.74 5.62
59 3.61 5.85 3.15 6.01 3.67 5.75
60 4.02 6.45 3.17 6.18 3.68 5.82
61 2.80 4.92 2.07 4.45 2.33 4.02
62 3.23 5.44 2.41 5.01 2.84 4.70
63 2.46 4.44 1.81 4.08 1.94 3.66
64 3.56 5.81 2.68 5.44 3.22 5.12
65 4.29 6.66 3.40 6.55 4.12 6.20

Moreover highly significant linear relationships were obtained between log kw and s values
(intercepts and slopes of Equation (2)):

for the ODS column:

log kw, ODS = −1.214(± 0.062) + 0.823(± 0.013) sODS (6)

SD = 0.094; R2 = 0.9850; N = 65

for the IAM column:

log kw, IAM = −0.779(± 0.026) + 0.638(± 0.006) sIAM (7)
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SD = 0.052; R2 = 0.9950; N = 65

and for the Cholester column:

log kw, Cholester = −0.892(± 0.040) + 0. 798(± 0.010) sCholester (8)

SD = 0.092; R2 = 0.9910; N = 65

2.2. Establishment of the LFER Model

The property of the substance can be predicted on the basis of the linear free-energy relationships
(LFER), but to do so, the relationship between the chemical structure and the desired property should
be identified [37]. A symbolic representation of LFERs model is the equation originally employed by
Abraham et al. [38–42]:

SP = c + eE + sS + aA + bB + vV (9)

Here SP is a set of solute properties in a given system, e.g., log BB values. The independent values
are solute descriptors: E is an excess molar refraction, S is the dipolarity/polarizability, A and B are the
hydrogen bond acidity (donating ability) and basicity (accepting ability), respectively and V is the
solute McGowan volume (cm3

·mol−1/100). Coefficients c, e, s, a, b and v are characteristic for a given
biphasic system and solute.

In this study, this equation was established for a training set of 23 azole compounds that were
congeneric with those tested in our investigations. For these compounds, we obtained from the
literature [43] the experimental log BB (BB = Cbrain/Cplasma) values for rats (Table 3). The actual values
of log BB ranged from −0.82 to 0.58. The following MLR equation was obtained:

log BBexp. = 0.934(± 0.166) + 0.191(± 0.107) E − 0.605(± 0.134) S − 0.743(± 0.137) A −
0.768(± 0.177) B + 0.545(± 0.104) V

(10)

N = 23; SD = 0.134; R2 = 0.9039; F = 32; p < 10−5

Table 3. Experimental log BB values [43] and molecular descriptors (A, B, S, E, V) calculated using
ACD Percepta for a training set of compounds.

No. CAS # A B S E V log BBexp.

1 23830-88-8 0.45 0.90 1.22 1.560 1.5317 0.16
2 21571-08-4 0.45 0.86 1.30 1.690 1.6541 0.47
3 38941-33-2 0.45 0.86 1.54 2.240 1.8119 0.58
4 4205-93-0 0.39 0.90 1.36 1.920 1.6369 0.33
5 40065-09-6 0.45 0.86 1.38 1.870 1.7067 0.41
6 4205-90-7 0.55 1.16 1.34 1.600 1.5317 0.19
7 73590-58-6 0.35 2.05 3.18 2.670 2.5161 −0.82
8 28981-97-7 0 1.55 2.50 2.896 2.2041 −0.04
9 84379-13-5 0 1.55 2.84 2.520 2.7008 −0.09

10 78755-81-4 0 1.50 2.63 1.910 2.0884 −0.29
11 59467-70-8 0 1.38 2.01 2.570 2.2628 0.32
12 99632-94-7 0 1.48 2.52 1.920 2.2773 −0.25
13 2507-81-5 0.75 0.94 1.52 1.906 1.6051 −0.18
14 112598-30-8 0.40 1.69 2.16 2.070 2.0043 −0.66
15 7120-01-6 0.75 0.80 1.00 1.305 1.1382 −0.04
16 104076-38-2 0.40 1.38 2.64 2.689 2.9946 0.14
17 104076-32-6 0.40 1.40 2.69 2.694 2.8898 0.22
18 133099-04-4 0.49 1.58 2.82 2.800 2.2978 −0.62
19 142494-12-0 0.00 1.73 1.83 1.490 2.6577 0.16
20 486-56-6 0.00 1.38 1.49 1.049 1.3867 0.04
21 54-11-5 0.00 1.08 0.92 0.865 1.3710 0.56
22 494-97-3 0.13 0.85 1.02 0.990 1.2301 0.32
23 58-08-2 0.05 1.28 1.72 1.500 1.3632 0.01
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Irrelevant cross correlations between the descriptors were observed; the values of R2 between pairs
of descriptors were E/S 0.66, E/A 0.01, E/B 0.25, E/V 0.60, S/A 0.06, S/B 0.69, S/V 0.72, A/B 0.20, A/V 0.05
and B/V 0.49. This is an important information indicating that there are no significant inter-correlations
of structural descriptors, i.e., E, S, A, B and V. On this basis, we can conclude that non-physical
factors do not affect the parameters of Equation (10). The reliability and predictive potency of the
model expressed by Equation (10) were estimated by leave-one-out (LOO) cross validation and the
parameters that were obtained are presented in Table 4. Figure 1 shows the standardized coefficients
for particular descriptors and it confirms the well-known qualitative relationships: compound polarity,
i.e., dipolarity/polarizability, hydrogen bond acidity and hydrogen bond basicity expressed by S, A
and B values, respectively, decreases the BBB permeation, while the compound size measured by the
McGovan volume (V) as well as the excess molar refraction E (in a minor degree) contribute to increase
of log BB values [41]. The PLS response plot is presented in Figure 2, which shows the linear regression
between the predicted (calculated response) and experimental log BB values of the 23 compounds
from Table 3. The residual versus leverage plot in Figure 3 proves that the model that was obtained is
valid for the domain in which it was developed [44]. The warning leverage limit (h*) was calculated
according to:

h∗ =
3m
n

(11)

where m is the number of descriptors and n is the number of observations (compounds) in the dataset.

Table 4. Statistical parameters of cross-validation of MLR models described by Equations (10), (12),
(13) and (14); MSE—mean square error, MSEcv*—mean square error of leave-one-out cross validation,
MSEcv**—mean square error of leave-50%-out cross validation, PRESS*—predicted residual sum of
squares of leave-one-out cross validation, PRESS**—predicted residual sum of squares of leave-50%-out
cross validation.

MLR Model Statistical Parameters Values

Equation (10)

N 23
R2 0.9039
Q2 0.8756
MSE 0.01784
PRESS* 0.55198
MSEcv* 0.01784

Equation (12)

N 65
R2 0.8474
Q2 0.8398
MSE 0.00481
PRESS* 0.3272
PRESS** 0.3076
MSEcv* 0.004799
MSEcv** 0.004799

Equation (13)

N 65
R2 0.8469
Q2 0.8394
MSE 0.00482
PRESS* 0.3293
PRESS** 0.3100
MSEcv* 0.004841
MSEcv** 0.004841

Equation (14)

N 65
R2 0.8471
Q2 0.8396
MSE 0.00482
PRESS* 0.3270
PRESS** 0.3067
MSEcv* 0.004817
MSEcv** 0.004817
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Equation (10) was used to calculate the log BB values for our 65 pharmaceutically relevant
compounds (Table 5).

Table 5. Values of A, B, S, E, V, topological polar surface area (TPSA), polarizability (α), molecular
weight (MW) and log BB of tested compounds.
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(10)

Equation
(12)

Equation
(13)

Equation
(14)
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24 0 1.45 2.15 2.36 2.0827 61.41 32.64 314.75 0.11 0.07 0.08 0.10
25 0 1.40 2.13 2.36 2.0827 61.41 32.64 314.75 0.16 0.08 0.09 0.11
26 0 1.45 2.18 2.39 2.0827 61.41 32.64 314.75 0.09 0.08 0.09 0.11
27 0 1.38 2.25 2.50 2.2051 61.41 34.47 349.20 0.19 0.10 0.11 0.13
28 0 1.38 2.22 2.48 2.2051 61.41 34.47 349.20 0.21 0.09 0.10 0.12
29 0 1.42 2.19 2.46 2.1404 48.27 33.92 290.32 0.15 0.26 0.27 0.29
30 0 1.43 2.13 2.48 2.2813 48.27 35.68 304.35 0.26 0.27 0.28 0.30
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Table 5. Cont.

Comp.
Tested

A B S E V
TPSA
[A2]

α
[A3]

MW
[g/mol]

log BB calculated

Equation
(10)

Equation
(12)

Equation
(13)

Equation
(14)

31 0 1.43 2.13 2.48 2.2813 48.27 35.68 304.35 0.26 0.28 0.29 0.31
32 0 1.43 2.13 2.48 2.2813 48.27 35.68 304.35 0.26 0.28 0.29 0.31
33 0 1.63 2.29 2.50 2.3400 57.50 36.23 320.35 0.05 0.15 0.17 0.19
34 0 1.63 2.32 2.52 2.3400 57.50 36.23 320.35 0.04 0.16 0.17 0.19
35 0 1.63 2.32 2.52 2.4809 57.50 38.05 334.41 0.11 0.18 0.19 0.21
36 0 1.43 2.07 2.50 2.4222 48.27 37.43 318.37 0.38 0.29 0.30 0.32
37 0 1.41 2.27 2.58 2.2628 48.27 35.75 324.76 0.20 0.27 0.28 0.30
38 0 1.37 2.25 2.58 2.2628 48.27 35.75 324.76 0.25 0.28 0.29 0.31
39 0 1.41 2.30 2.61 2.2628 48.27 35.75 324.76 0.19 0.28 0.29 0.31
40 0 1.34 2.37 2.71 2.3852 48.27 37.57 359.21 0.29 0.30 0.31 0.34
41 0 1.43 2.19 2.45 2.2813 48.27 35.75 304.35 0.22 0.28 0.30 0.31
42 0 1.42 2.27 2.60 2.4037 48.27 37.57 338.82 0.28 0.30 0.31 0.33
43 0 1.42 2.27 2.60 2.4037 48.27 37.57 338.82 0.28 0.30 0.31 0.33
44 0 1.42 2.27 2.60 2.4037 48.27 37.57 338.82 0.28 0.30 0.31 0.33
45 0 1.43 2.14 2.48 2.4222 48.27 37.50 318.41 0.33 0.30 0.30 0.33
46 0 1.43 2.08 2.50 2.5631 48.27 39.26 332.44 0.45 0.31 0.32 0.35
47 0 1.43 2.08 2.50 2.5631 48.27 39.26 332.44 0.45 0.31 0.32 0.35
48 0 1.43 2.22 2.63 2.5446 48.27 39.26 352.85 0.38 0.31 0.32 0.35
49 0 1.43 2.22 2.63 2.5446 48.27 39.33 352.85 0.38 0.31 0.32 0.35
50 0 1.43 2.22 2.63 2.5446 48.27 39.33 352.85 0.38 0.31 0.32 0.35
51 0 1.63 2.32 2.52 2.6218 57.50 39.88 348.44 0.19 0.19 0.20 0.23
52 0 1.64 2.27 2.54 2.9036 57.50 41.63 362.47 0.37 0.21 0.22 0.25
53 0 1.63 2.41 2.67 2.7442 57.50 41.70 382.88 0.23 0.21 0.22 0.25
54 0 1.63 2.41 2.67 2.7442 57.50 41.70 382.88 0.23 0.21 0.22 0.25
55 0 1.63 2.41 2.61 2.7442 57.50 41.70 382.88 0.22 0.21 0.22 0.25
56 0 1.43 2.22 2.63 2.5446 48.27 39.33 352.85 0.38 0.31 0.32 0.34
57 0 1.41 2.30 2.60 2.4037 48.27 37.57 338.82 0.27 0.29 0.31 0.33
58 0 1.41 2.38 2.75 2.5261 48.27 39.40 373.27 0.31 0.31 0.33 0.35
59 0 1.41 2.38 2.75 2.5261 48.27 39.40 373.27 0.31 0.31 0.33 0.35
60 0 1.41 2.38 2.75 2.5261 48.27 39.40 373.27 0.31 0.32 0.33 0.35
61 0 1.43 2.20 2.45 2.4222 48.27 37.58 318.37 0.29 0.29 0.30 0.32
62 0 1.43 2.14 2.48 2.5631 48.27 39.33 332.40 0.41 0.31 0.32 0.34
63 0 1.42 2.28 2.58 2.5446 48.27 39.40 352.82 0.34 0.30 0.32 0.34
64 0 1.42 2.31 2.60 2.5446 48.27 39.40 352.82 0.33 0.31 0.32 0.35
65 0 1.35 2.38 2.71 2.6670 48.27 41.22 387.26 0.43 0.34 0.35 0.37

2.3. Establishment of QSARs Models

Efforts to predict the biological activity (including the BBB permeation) based on the properties
of substances led to the development of Quantitative Structure Activity Relationships (QSARs) and
Quantitative Retention Activity Relationships (QRARs) methodology [37,44–48]. Various models and
approaches have been developed to predict the penetration of the blood-brain barrier based on various
physicochemical properties of molecules, including the lipophilicity, molecular size, polarizability,
polar surface area and the number of groups that can establish potential hydrogen bonds [49–63]. It is
reasonable to assume that the combination of theoretical and experimental data increases the reliability
of the anticipated transport of the drug across the blood-brain barrier [64–66]. The chromatographic
retention parameter is one of the most popular experimental values used to characterize the properties
(lipophilicity/hydrophobicity) of compounds used in QRAR and QSAR studies. The solute retention
depends on the changes in free energy that are associated with the distribution of the solute between
the mobile and stationary phases in a given chromatographic system. Thus, it is possible to use
the values obtained on HPLC columns that imitate biomembranes for modelling the blood-brain
barrier permeation.

In our investigations in which we modelled the blood-brain permeation of 65 biologically active
molecules, the chromatographic lipophilicity (log kw) (Table 2), polarizability (α) and topological polar
surface area (TPSA) (Table 5) were considered. The following MLR equations corresponding to various
stationary phases were obtained:

for ODS column:

log BB = 0.587(± 0.127) + 0.011(± 0.020) log kw. ODS − 0.013(± 0.001) TPSA + 0.008(± 0.004) α (12)
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N = 65; SD = 0.069; R2 = 0.8474; F = 113; p < 10−6; VIF < 3.1

for IAM column:

log BB = 0.578(± 0.127) + 0.007(± 0.019) log kw, IAM − 0.013(± 0.001) TPSA + 0.009(± 0.004) α (13)

N = 65; SD = 0.069; R2 = 0.8469; F = 113; p < 10−6; VIF < 2.7

and for Cholester column:

log BB = 0.595(± 0.139) + 0.008(± 0.017) log kw, Cholester − 0.013(± 0.001) TPSA +

0.009(± 0.004) α
(14)

N = 65; SD = 0.069; R2 = 0.8471; F = 113; p < 10−6; VIF < 3.7

The statistics of Equations (12)–(14) were very good, i.e., R2 > 0.8 for all chromatographic systems
and all variance inflation factors (VIF < 5) indicated that the variables were correlated moderately.
The reliability of the MLR models, as expressed by Equations (12)–(14), were estimated by leave-one-out
as well as leave-50%-out cross validation (Table 4). In each case, the log kw and α values provided
positive inputs to the log BB, while TPSA decreased the permeation of the blood-brain barrier (Figure 4).
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Figure 4. PLS standardized coefficient plots obtained for Equation (12) (A), Equation (13) (B) and
Equation (14) (C).

The relationships showed that molecular polarizability and lipophilicity promote increases in the
log BB, while polar surface area decreased the ability of a substance to cross the BBB. The correlations
between the log BB values calculated according to the LFER model (Equation (10)) and the optimized
QSARs models, i.e., by Equations (12)–(14) are presented in Figures 5–7, which shows the response
plots obtained by PLS for particular stationary phases.
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Figure 5. PLS response plots obtained for Equation (12).
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Figure 7. PLS response plots obtained for Equation (14).

To assess the significance of chromatographic parameters, the lipophilicity descriptors, log kw

were compared with partition coefficients in the n-octanol-water system, i.e., the log P values.
The relationships between log P values calculated from molecular structures of the tested compounds
and obtained by use of Alog Ps algorithm [67,68] and their chromatographic factors (i.e., log kw, ODS,
log kw, IAM and log kw, Cholester, respectively) were established. Good linear correlations between these
descriptors (R > 0.8), that are observed in Figure 8, confirmed that chromatographic parameters can be
used as lipophilicity descriptors in case of the studied compounds (Figure 8).

Moreover the following QSAR equation including Alog Ps, TPSA andαdescriptors was established:

log BB = 0.627(± 0.115) + 0.077(± 0.028) Alog Ps − 0.012(± 0.001) TPSA + 0.001(± 0.004) α (15)

N = 65; SD = 0.065; R2 = 0.8639; F = 130; p < 10−6; VIF < 4.3; Q2 = 0.8572; MSE =

0.004287; MSEcv* = 0.004218; MSEcv** = 0.004218; PRESS* = 0.2900; PRESS** = 0.2698.

The statistics of Equation (15) proved to be very good and similar to those obtained for Equations
(12)–(14), which confirms their ability in predicting the blood brain barrier permeation.
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Figure 8. Alog Ps vs. log kw relationships obtained for ODS, IAM and Cholester columns.

3. Materials and Methods

3.1. Reagents

Acetonitrile (HPLC grade) was purchased from Merck (Lublin, Poland). Citric acid and Na2HPO4

(both pure) were supplied from POCh (Lublin, Poland). Distilled water was obtained from Direct-Q3
UV apparatus (Millipore, Warsaw, Poland).

3.2. Instrumental

Shimadzu Vp (Shimadzu, Izabelin, Poland) liquid chromatographic system equipped with LC
10AT pump, SPD 10A UV-Vis detector, SCL 10A system controller, CTO-10 AS chromatographic oven
and Rheodyne injector valve with a 20 µL loop was applied in HPLC measurements. Three stationary
phases were employed:

• Purosphere RP-18e (ODS), 125 × 4 mm i.d., 5 µm (Merck);
• IAM.PC.DD2 100 × 4.6 mm i.d., 10 µm (Regis Chemicals Company, Morton Grove, IL, USA);
• Cosmosil Cholester, 75 × 2 mm i.d., 2.5 µm (Genore, Warsaw, Poland).

3.3. Chromatographic Conditions and Test Substances

As mobile phases buffer-acetonitrile mixtures were used. The buffer was prepared from
0.01 mol L−1 solutions of Na2HPO4 and citric acid and the pH 7.4 value was fixed before mixing
with organic modifier. With the ODS column acetonitrile concentration in the effluent, expressed as a
volume fraction (ϕ, v/v), was changed in the range 0.3–0.6, with the constant step of 0.1. The flow rate
was 1 mL min−1. With the IAM column acetonitrile concentration was changed in the range 0.2–0.5,
also with the constant step of 0.1 and the flow rate was 1.3 mL min−1. With the Cosmosil Cholester
column acetonitrile concentration was changed in the range 0.4–0.6, with the constant step of 0.05
and the flow rate was 0.4 mL min−1. Samples of test compounds were dissolved in acetonitrile—c.a.
0.005 mg mL−1. All the compounds proved to be in the neutral form in solution under experimental
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conditions and had values of peak asymmetry factor in the acceptable range. They were detected
under UV light at 210 and 254 nm. All measurements were carried out at 25 ◦C. The dead time values
were measured from non-retained compound (citric acid) peaks. All reported log kw values are the
average of at least three independent measurements. The extrapolated retention coefficients (logs kw)
achieved by HPLC on ODS, IAM and Cholester stationary phases were used for modelling the log BB
permeation of 65 drug-like compounds employed as a whole test set (Table 1).

3.4. In silico Calculations

Molecular descriptors (E, S, A, B and V), molecular weight (MW), topological polar surface area
(TPSA) and polarizability (α) of compounds were evaluated by ACD/Percepta software (Łodź, Poland).

3.5. Statistical Analysis

Linear regression, multiple linear regression (MLR), partial last square (PLS), leave-one-out (LOO)
and leave-50%-out cross validation were performed using Minitab 16 software (Minitab Inc., State
College, PA, USA).

4. Discussion

The usefulness of HPLC with three different reverse-phase columns (including two imitating
biosystems) for predicting the blood-brain barrier (BBB) permeability of 65 structurally related drug-like
molecules was highlighted in our investigations. QSAR models predicting the BBB permeation were
built on the basis of experimentally accessible log kw values of the test molecules together with their
important in silico molecular descriptors. The obtained results confirmed that all three stationary
phases, i.e., octadecylsilane, immobilized artificial membrane and cholesterol immobilized on silica gel
analogously described the lipophilic properties of the studied solutes (Equations (3)–(5)).

In our studies the extrapolated retention parameters (logs kw) were used as they are preferred
in QSARs instead of the isocratic log k values and usually employed in correlation studies with in
silico molecular descriptors and drug-likeness properties in case of pharmaceutics and drug-like
molecules. It should be noted that chromatographically derived retention parameters are very useful
descriptors in QSAR modelling as the partitioning process between the stationary and mobile phase of
a solute investigated mimics a membrane penetration process of a pharmaceutic or potential drug
candidate [19,21,33,37].

Highly significant linear relationships were obtained between intercepts and slopes of Equation (2),
i.e., the log kw and s values, for particular reversed-phase stationary phases. These correlations
confirmed not only the congenereity between compounds that were investigated, but also suggested
that the log kw and s values may be considered as alternative lipophilicity descriptors [19,21,37] in
case of structurally related small molecules that were tested. In our studies compounds bearing more
hydrophobic substituents revealed the greater s values. This observation is consistent with other
research findings showing that more hydrophobic molecules reveal greater slopes [21]. According to the
background retention theory the s values are related to the solute/mobile phase and the solvent/stationary
phase net interactions [21,36,37].

The obtained results showed that the chromatographic retention parameters obtained using three
stationary phases recruited as well as important in silico molecular descriptors can be recommended
to derive the reliable QSAR models for predicting the blood-brain barrier permeability in case of our
structurally related small molecules, considered as a test set of potential drug candidates.

The calculated log P values were obtained by using Alog Ps algorithm and compared with the
experimental log kw, ODS, log kw, IAM and log kw, Cholester values, respectively. This estimation was
essential to check the validity of the obtained results through correlation with the log BB values.
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5. Conclusions

Experimental literature data of the log BB (for rats) for a training set of 23 biologically active
compounds (including drugs) were correlated against five solute descriptors (E, S, A, B and V)
and the established equation (Equation (10)) was validated. The standardized coefficients obtained
for particular descriptors confirmed that the compound polarity, i.e., dipolarity/polarizability (S),
hydrogen bond acidity (A) and hydrogen bond basicity (B) decreases the blood-brain barrier (BBB)
permeation while the compound size measured by the McGovan volume (V) and the excess molar
refraction (E) contribute to increase in the log BB values. The Equation (10) was used to calculate the
log BB values for 65 newly synthesized compounds being considered as potential drugs.

The blood-brain barrier permeability of the compounds that were tested was modelled by three
descriptors, i.e., the chromatographic lipophilicity (log kw), polarizability (α) and topological polar
surface area (TPSA). Using a simple statistical model (i.e., MLR), three structure-activity relationships
were obtained for each chromatographic system on endcapped octadecylsilyl, immobilized artificial
membrane and cholesteryl stationary phases (Equations (12)–(14)). The log BB values calculated
according to Equation (10) and predicted from Equations (12)–(14) were compared and highly significant
relationships were obtained between them. The relationships were confirmed by leave-one-out as
well as leave-50%-out cross validation, implying that the models are robust and reliable. The results
that were obtained showed that, in the case of the compounds that were studied (65 weak organic
bases), each of the stationary phases used in the chromatographic measurements was equally useful.
From practical and economic perspectives, the Cholester microcolumn is recommended because it
allows the acquisition of more data in a shorter time with lower costs.

We showed that it is possible to use the HPLC technique to build a reliable model for predicting
which our organic compounds (congeneric in structure to the training set of azole molecules) can
penetrate the blood-brain barrier in rats. The investigations highlighted the key role of chromatographic
techniques and QSARs methods in reducing unethical animal testing.

The presented results will be particularly useful in further more extensive in vivo research,
which is planned to be carried out on our small molecules considered as potential drugs.
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