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Abstract: The behavior of ice under extreme conditions undergoes the change of intermolecular
binding patterns and leads to the structural phase transitions, which are needed for modeling the
convection and internal structure of the giant planets and moons of the solar system as well as
H2O-rich exoplanets. Such extreme conditions limit the structural explorations in laboratory but
open a door for the theoretical study. The ice phases IX and XIII are located in the high pressure and
low temperature region of the phase diagram. However, to the best of our knowledge, the phase
transition boundary between these two phases is still not clear. In this work, based on the second-order
Møller–Plesset perturbation (MP2) theory, we theoretically investigate the ice phases IX and XIII and
predict their structures, vibrational spectra and Gibbs free energies at various extreme conditions,
and for the first time confirm that the phase transition from ice IX to XIII can occur around 0.30 GPa
and 154 K. The proposed work, taking into account the many-body electrostatic effect and the
dispersion interactions from the first principles, opens up the possibility of completing the ice phase
diagram and provides an efficient method to explore new phases of molecular crystals.

Keywords: ice phase transition; ice IX; ice XIII; MP2 theory; Raman spectra

1. Introduction

Water is the most studied material on earth and consists of two hydrogen atoms that are attached
to a single oxygen atom. The ice phase diagram shows the preferred physical state under different
thermodynamic variables, with the small changes in temperature or pressure causing the structural
change from one physical state to another [1–3]. It is well-known that more than 18 crystal ice phases
from ice I to ice XVII and superionic phase (XVIII) [4–6]. At least three amorphous ice forms have been
observed in laboratory at gigapascal pressures and the temperature range below 0 degrees Celsius.
However, there are still some undetermined phase transition boundaries in the areas of high pressure
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and low temperature, such as that between ice IX and ice XIII. Ice IX was first observed, and it was
converted from ice III through cooling [7]. Some experiments have found that ice V can be converted to
ice XIII under certain conditions [8]. Other studies also found that ice IX and ice V have a relationship
of mutual transformation under certain circumstances [9]. By analyzing the phase diagrams, this
connection reminds us of conversion between Ice IX and Ice XIII, but the relationship between them
has not yet been determined. In addition, from the experiments, the researchers have measured the
crystal structures of ices IX and XIII and their respective vibrational spectra, but the phase boundary
between ices IX and XIII is still undetermined in the phase diagram [4,7–9]. Therefore, the structural
characteristics of ices IX and XIII at high pressure and ultralow temperature are extremely important.

Exploring molecular structures in extreme environments have many limitations in laboratory,
such as the weak of experimental signal, the harsh conditions of high-pressure equipment, etc., but
effective theoretical predictions provide an alternative approach to study the detailed crystal structures.
Based on the second-order Møller–Plesset perturbation (MP2) theory, the present work proposes an ab
initio method to investigate the structures, equation of state, Raman spectra and Gibbs free energies
of ices IX and XIII, and predicts their phase transition at high pressure and low temperature, which
provides opportunities to advance the development of high pressure structural determination through
computation [10].

With the continuous increase of computer power, molecular simulation becomes a powerful tool
to predict different molecular characteristics. The ability of predictive computer simulation depends on
the accuracy of the potential energy calculation [11]. Both classical and quantum simulation methods
have been previously performed on the calculations of ice structures and phase transitions [12,13].
The classical methods rely on the empirical force fields, such as TIP3P, TIP4P, TIP5P, and SPC/E [13–18],
which have the transferability restrictions owing to the lack of electronic polarization [19] and
ultimately lead to the inaccurate prediction. The quantum mechanical (QM) methods, include the
density-functional theory (DFT), which overestimated the phase transition boundary [20,21], and other
high-level wavefunction theories, such as the MP2 method [22–25]. When calculating the phase
transition at high pressures, the dispersion energy is not well described by the DFT method, which
tends to overestimate the hydrogen bonding interactions and substantially decreases the prediction
accuracy [26]. For example, the ice XV was predicted to be a ferroelectric structure with Cc space group
symmetry based on the DFT method [27,28], while the experimental measurement determined that the
crystal structure of ice XV was antiferroelectric with a P

_
1 space group symmetry [28–30]. The proton

ordering in phase XV has been extensively studied by high-level wavefunction theories, such as MP2
and coupled cluster theory (CCSD(T)), which explains the structure of ice XV [29–31]. It is worth
noting that the previous studies [30,31] using the MP2 method give different conclusions on the ground
state of ice XV (ref. 30 agrees with the experimental results; whereas ref. 31 agrees with prior DFT
results and discusses a possible boundary condition resolution). Therefore, the prediction of the small
energy differences between various phases of ice usually require accurate computational approaches.
The high-precision calculation method has prompted us to study the transformation between different
phases of ice from high-level wavefunction theories, and to predict the ice structure and phase diagram
under extreme conditions.

In this work, we demonstrate the practicability of MP2 theory by applying it to the structure
simulation of ice phases IX and XIII, along with the electrostatically embedded generalized molecular
fractionation (EE-GMF) method [32,33]. Due to the limitation of computation time, the high-level
quantum chemistry methods, such as the MP2 theory, cannot be directly applied for calculations of
macromolecules. The EE-GMF is a fragment-based quantum mechanical (QM) method [24,34–37],
which divides the internal energy per unit cell of the crystal into a proper combination of the energies
of monomers and overlapping dimers, and therefore can treat the molecular crystals at the QM level
efficiently. The fragmented monomers and dimers are embedded in the electrostatic field of the
rest of the crystalline environment [22–24,35,36,38]. The embedding field is essential and, in our
method, consists of self-consistently determined atomic charges at the Hartree–Fock level. In addition,
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the interaction energy between two fragments within a distance threshold is calculated by QM, while
the interaction between two long-range interacting fragments is treated by charge-charge Coulomb
interaction. Based on the EE-GMF-MP2 method, the predicted structures, and vibrational spectra of ice
phases IX and XIII are in good agreement with the experiment. The predicted transition from ice IX to
ice XIII occurs at 0.30 GPa and 154 K, with the transition pressure decreasing slightly as the increase
of temperature.

2. Results and Discussion

2.1. Crystal Structures

Ice phase IX is an ultralow temperature solid structure, which is stable at temperatures below
140 Kand pressures between 0.2 and 0.4 GPa. It has a square lattice with a density of 1.16 g/cm3,
and can be converted to ice II by warming. Ice phase IX has a similar structure with ice III, except that
ice IX is a proton ordered structure while ice III is a proton disordered structure [39,40]. Furthermore,
ice phase XIII is a monoclinic, metastable, and proton ordered structure, which is formed by doping ice
V below 130 Kand at 0.5 GPa to facilitate the phase transition [8,41]. Therefore, ice phase XIII structure
has a lower temperature range than ice IX. The selected lattice parameters for ice IX are a = b = 6.692 Å,
c = 6.715 Å; α = β = γ = 90◦ [29], while the lattice parameters for ice XIII are a = 9.2417 Å b = 7.4724 Å,
c = 10.2970 Å, β = 109.6873◦ [7].

Figure 1 shows the predicted volumes of ice phases IX (a) and XIII (b), where the black dots denote
the observed data while the blue curves are the calculated volumes by the EE-GMF-MP2/aug-cc-pVDZ
method. Comparing with the first principles calculation of ice structures at the HF level, which
predicted too short O-H bond and too long O···H distance owing to the underestimation of hydrogen
bond energy [42–45], the MP2 theory eliminates this drawback through inclusion of the electronic
correlation and predicts reasonable results. As shown in Figure 1, the predicted volumes for phases
IX and XIII experience volume decreases with the increase of pressure, with no discontinuities or
any other anomalies within 0–0.5 GPa. For ice phases IX and XIII, the MP2 theory is accurate in
predicting the lattice constants a and b, but has an error of 0.03 to 0.1 Å when predicting c due to
the strong hydrogen bonding interaction along c direction. Such errors lead to the slight volume
difference between the calculated results and observed data, as shown in Figure 1. The comparison of
calculated and observed lattice constants of ice phases IX and XIII are plotted in Figures S2 and S6 of
the Supplementary Materials (SM).
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Figure 1. The calculated volumes of ice phases IX (a) and XIII (b) as a function of pressure, along with 
the experimental data which are taken from Ref. [7] (phase IX) and Ref. [8] (phase XIII). 
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material, which can be used to quickly identify or distinguish structures. Figures 2 and 3 show the 
calculated Raman spectra of ice phases IX and XIII using the EE-GMF-MP2/aug-cc-pVDZ method, 
along with the experimental data. In Figure 2, the MP2 theory predicted 7 Raman bands in the low 
frequency region, which are assigned to 7 observed Raman peaks from 50 to 350 cm−1. From the 
results of experiment and theory, the numbers of Raman peaks from theoretical simulation and 
experiment are the same. For the three Raman peaks below 150 cm−1, the deviations between the 
experimental values and theoretical results are relatively small, and the maximum deviation of the 
theoretical prediction is about 30 cm−1 with reference to the experimental observation for the third 
peak. There are three experimental Raman peaks within the frequency region between 150 and 350 
cm−1. Among these three peaks, the deviations of theoretical predictions are between 50 to 70 cm−1 as 
compared to the experimental results. Therefore, our theoretical calculations qualitatively 
reproduced the experimental Raman spectrum of ice phase IX in the low frequency region. 
Furthermore, for the high frequency region, the predicted 2 discernible Raman bands of ice phase IX 
are assigned to 2 observed Raman peaks from 2800 to 3600 cm−1. Figure 3 shows the calculated and 
observed Raman bands of ice phase XIII at 10 MPa, with 3 and 4 Raman bands at low frequency and 
high frequency regions, respectively. The half-widths at half-maximum (HWHM) for Lorentz 
broadening were set to 20 and 8 cm−1 in the high frequency region and low frequency region, 
respectively. The consistency of Raman peak positions between the MP2 theory and experiment is 
quantitative and consistent, indicating that the MP2 method can provide accurate prediction of the 
ice structures at high pressures. 

Figure 1. The calculated volumes of ice phases IX (a) and XIII (b) as a function of pressure, along with
the experimental data which are taken from Ref. [7] (phase IX) and Ref. [8] (phase XIII).

2.2. Vibrational Spectra

The vibrational spectrum is regarded as a chemical recognition of a particular molecule or material,
which can be used to quickly identify or distinguish structures. Figures 2 and 3 show the calculated
Raman spectra of ice phases IX and XIII using the EE-GMF-MP2/aug-cc-pVDZ method, along with the
experimental data. In Figure 2, the MP2 theory predicted 7 Raman bands in the low frequency region,
which are assigned to 7 observed Raman peaks from 50 to 350 cm−1. From the results of experiment
and theory, the numbers of Raman peaks from theoretical simulation and experiment are the same. For
the three Raman peaks below 150 cm−1, the deviations between the experimental values and theoretical
results are relatively small, and the maximum deviation of the theoretical prediction is about 30 cm−1

with reference to the experimental observation for the third peak. There are three experimental Raman
peaks within the frequency region between 150 and 350 cm−1. Among these three peaks, the deviations
of theoretical predictions are between 50 to 70 cm−1 as compared to the experimental results. Therefore,
our theoretical calculations qualitatively reproduced the experimental Raman spectrum of ice phase IX
in the low frequency region. Furthermore, for the high frequency region, the predicted 2 discernible
Raman bands of ice phase IX are assigned to 2 observed Raman peaks from 2800 to 3600 cm−1. Figure 3
shows the calculated and observed Raman bands of ice phase XIII at 10 MPa, with 3 and 4 Raman
bands at low frequency and high frequency regions, respectively. The half-widths at half-maximum
(HWHM) for Lorentz broadening were set to 20 and 8 cm−1 in the high frequency region and low
frequency region, respectively. The consistency of Raman peak positions between the MP2 theory
and experiment is quantitative and consistent, indicating that the MP2 method can provide accurate
prediction of the ice structures at high pressures.
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for ice phase IX, with a half-width at half-maximum (HWHM) of 8 cm−1 for each band. The agreement 
of IR spectra between the experiment and theory further confirms the accuracy of the proposed ab 
initio method and provides an approach to identify the structural phases for molecular crystal. So 
far, no experimental IR work has been carried out and reported for ice phase XIII, and thus the present 
work only reports the IR comparison for ice IX. We hope to carry out further Raman and IR spectral 
experiments in the future to verify the proposed spectral prediction. More Raman and IR spectra 
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Figure 3. The calculated and observed [50] Raman spectra of ice phase XIII at 10 MPa. The calculated
spectra are performed using the EE-GMF-MP2/aug-cc-pVDZ method.
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The proposed ab initio method allows us to further calculate the vibrational IR spectra of ice
phases IX and XIII. Figure 4 shows the IR spectra comparison between the experiment and calculated
results by EE-GMF-MP2/aug-cc-pVDZ. As one can see from Figure 4, there are six predicted IR peaks
for ice phase IX, with a half-width at half-maximum (HWHM) of 8 cm−1 for each band. The agreement
of IR spectra between the experiment and theory further confirms the accuracy of the proposed ab
initio method and provides an approach to identify the structural phases for molecular crystal. So far,
no experimental IR work has been carried out and reported for ice phase XIII, and thus the present
work only reports the IR comparison for ice IX. We hope to carry out further Raman and IR spectral
experiments in the future to verify the proposed spectral prediction. More Raman and IR spectra
analysis for ice phases IX and XIII can be found in the Supplementary Materials.Molecules 2020, 25, 486 7 of 15 
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Figure 4. The calculated infrared (IR) spectrum of ice IX at 0.28 GPa, along with the experimental data
taken from Ref. [46].

2.3. Phase Transition

The Gibbs free energies of ice phases IX and XIII are further calculated by the EE-GMF method.
Figure 5 plots the free energy surfaces of phases IX and XIII as functions of temperature and pressure.
Figure 6 shows the temperature dependence of the Gibbs free energy difference between phases IX
and XIII at different pressures. As shown in Figure 5, in the low temperature region, the phase XIII
(red) has a lower free energy and its structure is more stable than phase IX. At high temperatures,
the structure of phase IX is more stable under high pressure. The ice phase diagram can be obtained by
calculating the Gibbs free energy.
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between phase XIII and phase IX, calculated by EE-GMF-MP2/aug-cc-pVDZ.
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Figure 6 shows the Gibbs free energy difference between ice phases IX and XIII, where the zero
difference experiences temperature decrease with the increasing of pressure [51]. For example, at the
pressures of 0.30, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, and 0.46 GPa, the zero differences of Gibbs free
energies between phases IX and XIII occur at the temperatures of 154, 136, 126, 118, 109, 88, 76, and 74 K,
respectively. The effect of transition temperature decreasing as the increase of pressure can be traced
back to the hardening of acoustic phonons under high pressures.

Figure 7 shows the ice phase transition with various temperatures and pressures. The blue curve
is the predicted phase boundary by EE-GMF-MP2/aug-cc-pVDZ, indicating that the phase transition
between phases IX and XIII occurs at 0.46 GPa and 74 K, and slightly decreases to 0.44 GPa at 76 K,
0.42 GPa at 88 K, 0.40 GPa at 109 K, 0.38 GPa at 118 K, 0.36 GPa at 126 K, 0.34 GPa at 136 Kand 0.30 GPa
at 154 K, respectively. Ice phases IX and XIII are the least studied structures in laboratory compared to
other phases, owing to their ultralow temperatures. The predicted phase transition between IX and
XIII by MP2 has not been verified in laboratory, but pioneers speculated that such phase transition
would take place around temperature of 113 Kand pressure range of 0.43–0.63 GPa (the gray line in
Figure 7) [8,9,52,53]. Therefore, the proposed theoretical prediction of phase transition between phases
IX and XIII is in good agreement with the experiment and close to the temperature and pressure range
of the experimental speculation.
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Figure 7. The phase diagram of ice. The black curves represent experimental data [7–9,29,39,54–59],
while the blue and gray curves denote the calculated and speculated experimental [8,9,29] phase
boundary between ice phase IX and phase XIII. The solid lines drawn here do not explicitly indicate
regions of stability of all the ice phases. Several of these boundaries correspond to extrapolated
equilibrium lines from experiments.

In this study, we mainly focused on the Gibbs free energy differences between Ices IX and XIII in
the high pressure and low temperature region. This work demonstrates the relative stability between
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Ices IX and XIII in terms of Gibbs free energy. In the future study, the other phases, such as Ices II, Ih and
XV, under low temperatures may also be considered and thus we could provide a more comprehensive
comparison of relative stabilities of those phases in the high pressure and low temperature region.
The researches along these lines are underway in our laboratory.

2.4. Implementation

The distance threshold was set to 5.0 Å for determining fragment pairs used in quantum
mechanical calculations. The interactions beyond the distance threshold were treated by classical
Coulomb interactions. All QM calculations were carried out using the Gaussian09 program [60].

2.5. Limitations

The current EE-GMF-MP2/aug-cc-pVDZ calculations may have errors arising from the
incompleteness of the base set [61,62]. The harmonic approximation in phonon calculations is
more appropriate for Gibbs free energy predictions of molecular crystals at low temperatures [63].
The EE-GMF scheme for molecular crystals is truncated at the two-body QM interactions, while the
three-body and higher-order many-body QM interactions are implicitly incorporated in the electrostatic
embedding scheme. For accurate description of the intermolecular QM interaction in molecular
crystals, three-body QM interactions sometimes have non-negligible contributions, and thus need to
be treated explicitly.

3. Methods

The crystal structures, vibrational spectra, Gibbs free energies and phase transition of ice phases
IX and XIII were calculated at the MP2 level with the aug-cc-pVDZ basis set [25,63,64]. The EE-GMF
method was used to calculate the internal energies, where the effects of pressure were included in the
geometric optimization. Based on the EE-GMF method, the monomers and dimers in the 3 × 3 × 3 unit
cells were treated quantum mechanically in the embedding electrostatic field of 11 × 11 × 11 unit cells,
while the long-range electrostatic contribution was treated in a 41 × 41 × 41 supercell. Figure 8 shows
the unit cells of ice phases IX and XIII, where the unit cell of ice IX contains 12 molecules with a space
group of P41212, and the ice XIII has 28 molecules in the unit cell with a symmetry of P21/a.
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The electronic enthalpy per unit cell (Hu_cell) of a three dimensional, periodic molecular crystal is
approximated accurately by

Hu_cell =
∑

k

Ek(0) +
1
2

∑
i

∑
k,l

{
Ek(0)l(i)− Ek(0)− El(i)

}
+ ELR + PV (1)
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where the energy of the kth monomer in the central unit cell (0th) is Ek(0), and the energy of the dimer
composed of the kth monomer in the central unit cell and the lth monomer in the ith unit cell is Ek(0)l(i).
The three integers of the specified cell are represented by i. The remote electrostatic energy correction is
ELR (i.e., the long-range part of the Madelung constant), the pressure is P, and the unit cell volume is V.
It should be noted that being excluded from the second sum is k = l and i = 0. Although the truncation
of multibody expansion after the two-body terms (dimers) achieves an excellent cost-accuracy balance,
the series can also be truncated after a three-body or higher-order term.

The first and second derivatives of enthalpy in Equation (1) for atomic coordinates are related to
atomic force and force constant, respectively. Derivatives relating to lattice constants give lattice forces
as follows,

∂Hu_cell

∂x
=

∑
i

∂Ei(0)

∂x
+

1
2

∑
n

∑
i, j

{
∂Ei(0) j(n)

∂x
−

∂Ei(0)

∂x
−

∂E j(n)

∂x

}
+
∂ELR

∂x
(2)

∂2Hu_cell

∂x∂y
=

∑
i

∂2Ei(0)

∂x∂y
+

1
2

∑
n

∑
i, j

∂2Ei(0) j(n)

∂x∂y
−

∂2Ei(0)

∂x∂y
−

∂2E j(n)

∂x∂y

+
∂2ELR

∂x∂y
(3)

∂Hu_cell

∂a
=

1
2

∑
n

∑
i, j

{
∂Ei(0) j(n)

∂a
−

∂E j(n)

∂a

}
+
∂ELR

∂a
+ P

∂V
∂a

(4)

where a is a lattice constant, x and y can be collective in-phase coordinates (for balanced geometric
determination) or single atomic coordinates. It should be noted that these equations ignore the
derivative of the embedded electrostatic field. The geometric derivatives of dipole moment and
polarizability can also be calculated using the fragmentation approach and provide information of
infrared (IR) and Raman intensity.

We have included the background charges in the 11 × 11 × 11 supercell. The last term of
Equation (1), gives the long-range interaction in the 41 × 41 × 41 supercell through the charge-charge
Coulomb interaction,

ELR =
1
2

L∑
|n|>s

∑
k,l

∑
γ,η

qγ
k(0)

qη
l(n)

Rγη
k(0)l(n)

(5)

By calculating the enthalpy of the per unit cell, the effect of pressure is taken into account.
The following expressions can be used to calculate IR intensity and Raman intensity,

Ink ∝

∣∣∣∣∣∂µEE−GMF

∂Qnk

∣∣∣∣∣2 (6)

Rnk ∝
3
2


∑

i = x,y,z

∂αii
EE−GMF

∂Qnk


2

+
21
2

∑
i, j = x,y,z

∂α
i j
EE−GMF

∂Qnk


2

(7)

where Qnk is the corresponding normal mode. Only the zone-center (k = 0) vibrations have
nonzero intensities and thus are IR- or Raman-active. In this study, the frequency calculated using
MP2/aug-cc-pVDZ is scaled by 0.94. In addition, µEE−GMF is the dipole moment of the central unit,
and αi j

EE−GMF is its polarizability, which can be derived based on the EE-GMF method [63]. The Gibbs
free energy per unit cell, Gu_cell, at temperature T is obtained by

Gu_cell = Hu_cell + Uν − TSν (8)

where Uv is the zero-point vibration energy per unit cell at the temperature of T, and Sv is the vibration
entropy per unit cell. For molecular crystals with large band gaps, only temperature effects due to
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phonons need to be considered. Both Uv and Sv can be derived from the partition function of phonons,
Zv. In the harmonic approximation and atomic units, Zv can be written as,

Zν =
∏

n

∏
k

e−βωnk/2

1− e−βωnk
(9)

whereωnk is the frequency of the phonon with the wave vector k in the nth phonon branch. The product
on k must be taken over all K evenly spaced k grid points in the reciprocal unit cell. In this study,
the k-grid of 21 × 21 × 21 (K = 9261) is used. According to thermodynamics, we have

Uν =
T
βk
∂ ln Zν
∂T

=
1
k

∑
n

∑
k

ωnk(
1
2
+

1
eβωnk − 1

) (10)

Sν =
1
βTK

∑
n

∑
k

{
βωnk

eβωnk − 1
− ln(1− e−βωnk)

}
(11)

The right side of these equations can be easily evaluated with phonon dispersion ωnk.

4. Conclusions

From small molecules to macroscopic structures, the phase diagrams of molecular crystals have
always been the hot research of scientists. The proposed fragment-based QM calculation using the
MP2 method is different from the traditional methods such as the classical force field and DFT theory.
The difficulty in phase diagram prediction stems from the high cost of structural screening and the
low precision of the applicable method. The proposed MP2 theory combining with the fragmentation
approach enables high-precision and efficient calculations on complex systems at finite pressures
and temperatures, which can accurately describe all cohesive interactions and obtain reasonable
results when predicting structures and energies of molecular structures and produce convinced ice
phase diagram via ab initio calculation. Ice phases IX and XIII are two molecular crystals at the high
pressure and low temperature, that have rarely been studied by both experiment and theory. In the
present work, we quantitatively reproduce their respective structures, and vibrational spectra at the
MP2/aug-cc-pVDZ level. The predicted phase transition between the phase IX and phase XIII falls
within the temperature and pressure range of the experimental speculation. This work confirms for the
first time the positions of phases IX and XIII in ice phase diagram at high pressures and is consistent
with the experimental speculation, which can be used to assist in the high pressure exploration of
molecular phases with potentially important applications.
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Comparison of calculated and observed lattice constants of ice IX as a function of pressure, Figure S3: The Raman
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of the Raman bands of ice IX in the high frequency region as a function of pressure, Figure S5: The unit cell of ice
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bands of ice XIII in the low frequency region under different pressures, Figure S8: The Raman bands of ice phase
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