Supporting Information

A fast-response near-infrared fluorescent probe for detection of H₂S in living cells

Ismail Ismail ¹, Zhuoyue Chen ², Xiuru Ji ³, Lu Sun ³, Long Yi ^{2,4,*} and Zhen Xi ^{1,4,*}

- ¹ State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071; China. Email: zhenxi@nankai.edu.cn
- ² Beijing Key Laboratory of Bioprocess and College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029 PR China; Email: <u>yilong@mail.buct.edu.cn</u>
- ³ Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
- ⁴ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- * Correspondence: (Professor Long Yi) yilong@mail.buct.edu.cn; (Professor Zhen Xi) zhenxi@nankai.edu.cn; Fax: +86 022-23500952; Tel: +86 022-23504782

Table of content

1.	Probe 1 solubility test	S2
2.	HRMS spectrum of probe 1 in the presence of H ₂ S	S2
3.	Time-dependent fluorescence intensities change of probe 1	S 3
4.	HPLC analysis for thiolysis of NBD amines	S 3
5.	pH sensitivity test	S4
6.	Cell viability assay	S 4
7.	Real time ¹ HNMR spectral test	S5
8.	Comparison of properties of our probe with other probes operating	S6-S7
9.	Supporting NMR and MS spectra	S8-S13
10.	Supporting reference	S13-S14

Figure S1. Probe **1** solubility test shows linearity from abs at 620 nm vs concentration (1-20 μM).

Figure S2. HRMS spectrum of probe 1 (1 mM) in the presence of H₂S (5 mM).

Figure S3. Time-dependent fluorescence intensities change of probe **1** (2 μ M) at 660 nm, when treated with different concentrations of Na₂S (100 μ M; 150 μ M; 200 μ M; 250 μ M; 300 μ M) in PBS buffer.

Figure S4. Time-dependent HPLC traces of the reaction of **1** (200 μ M) with Na₂S (2 mM) to give 4. Conditions: Venusil MP C18 column with 4.6 mm x 250 mm; wavelength: 274 nm; flow 1 mL / min; buffer A: 0.1% (v / v) trifluoroacetic acid in water; buffer B: Methanol; elution condition: 0-3

Figure S5. The emission intensity at 660 nm of **1** (2 μ M) at the indicated pH values in the absence or presence of H₂S (200 μ M).

Figure S6. Concentration-dependent normalized cell viability in the presence of probe 1 (5-25 μ M) for 24 h.

8.493 8.470 8.167 8.167 8.167 8.167 8.167 8.175 7.7.75 7.7.747 7.7.740 7.7.740 7.7.740 7.7.740 7.7.740 7.7.740 7.7.709 7.7.091 7.7.091 7.7.095 7.7.095 7.7.095 7.7.095 7.7.095 7.7.095 7.7.055 6.6903 6.6903 6.6569 6.5569

Figure S7. Real time ¹HNMR spectra, showing thiolysis reaction by the formation of NBD-SH.

Probe	λex/λem (nm)	Fluorescence enhancement	ф	LOD/µ M	Rate/K ₂	Ref
	620/660	~10	0.29	0.27	29.8 M ⁻¹ s ⁻¹	This work
$ \begin{array}{c} NO_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	730/796	~87	ND	0.04	14.9 M ⁻¹ s ⁻¹	1
	565/585	~19	0.77	0.36	27.8 M ⁻¹ s ⁻¹	2
	567/589	~4.5	0.36	0.58	113 M ⁻¹ s ⁻¹	3
$HO \longrightarrow O \longrightarrow O$	502/530	~65	0.64	0.057	28 M ⁻¹ s ⁻¹	3
	449/496	~200	0.81	0.9	7.6 M ⁻¹ s ⁻¹	4
	394/532	~68	ND	2.46	20.4 M ⁻¹ s ⁻¹	5

Table S1 comparison of properties of our probe with other probes operating

\mathbf{r}_{0}^{0}	415/560	~273	ND	0.43	6.8 M ⁻¹ s ⁻¹	6
$ \begin{array}{c} & & \\ & & $	480/510	~150	ND	2.6	ND	7
N N N N N N N N N N N N N N N N N N N	330/468	~29	ND	0.024	ND	8

Varian QFT-ESI File: Ismail-411_ESI.trans
 Mode:
 Positive
 Date:
 17-OCT-2019

 Scans:
 1
 Time:
 08:42:08

 Scale:
 16.8418

Date: 17-OCT-2019 Time: 08:35:53 Scale: 10.2697

Supporting reference

- 1. Zhang, K.; Zhang, J.; Xi, Z.; Li, L.Y.; Gu, X.; Zhang, Q.Z.; Yi, L. A new H₂S-specific near-infrared fluorescence-enhanced probe that can visualize the H₂S level in colorectal cancer cells in mice. *Chem. Sci.* **2017**, *8*, 2776-2781.
- 2. Ismail, I.; Wang, D.; Wang, D.; Niu, C.; Huang, H.; Yi, L.; Xi, Z. A mitochondria-targeted redemitting probe for imaging hydrogen sulfide in living cells and zebrafish. *Org. Biomol. Chem.* **2019**, *17*, 3389-3395.
- 3. Wang, R.; Li, Z.; Zhang, C.; Li, Y.; Gu, X.; Zhang, Q.Z.; Li, L.Y.; Yi, L.; Xi, Z. Fast-Response turn-on fluorescent probes based on thiolysis of NBD amine for H₂S bioimaging. *Chembiochem.* **2016**, *17*, 962-968.
- 4. Ismail, I.; Wang, D.; Wang, Z.; Wang, D.; Zhang, C.; Yi, L.; Xi, Z. A julolidine-fused coumarin-NBD dyad for highly selective and sensitive detection of H₂S in biological samples. *Dyes Pigments* **2019**, *163*, 700-706.
- 5. Pak, Y.L.; Li, J.; Ko, K.C.; Kim, G.; Lee, J.Y.; Yoon, J. Mitochondria-Targeted Reaction-Based Fluorescent Probe for Hydrogen Sulfide. *Anal. Chem.* **2016**, *88*, 5476-5481.
- 6. Zhang, J.; Wang, R.Y.; Zhu Z.T.; Yi, L.; Xi, Z. A FRET-based ratiometric fluorescent

probe for visualizing H₂S in lysosomes. *Tetrahedron*. 2015, 71, 8572-8576.

- Wang, J.; Yu, H.; Li, Q.; Shao, S. A bodipy-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in solution and in cells. *Talanta.*, 2015, 144, 763-768.
- 8. Tang, Y.; Jiang, G. F. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan-nbd amine dyad based on fret process with high selectivity and sensitivity. *New J. Chem.* **2017**, *41*, 6769-6774.