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Abstract: The influence of steric repulsion between the NMe2 group and a second ortho-(peri-)
substituent in the series of 1-dimethylaminonaphthalene and N,N-dimethylanilene ortho-oximes on
the ease of the NMe2 group’s intramolecular nucleophilic substitution is studied. Possible reaction
intermediates for three mechanisms are calculated (ωB97xd/def-2-TZVP), and their free Gibbs energies
are compared to model reaction profiles. Supporting experiments have proved the absence of studied
reactivity in the case of simple 2-dimethylaminobenzaldoxime, which allowed us to establish reactivity
limits. The significant facilitation of NMe2 group displacement in the presence of bulky substituents
is demonstrated. The possibility of fused isoxazoles synthesis via the intramolecular nucleophilic
substitution of a protonated NMe2 group in the aniline and naphthalene series is predicted.
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1. Introduction

The dimethylamino group is generally considered as one of the worst leaving groups in organic
chemistry. That is why there are only a few examples of its substitution in aromatic substrates. Known cases
mostly involve the activation by quaternization of an NMe2 group [1–4], or the introduction of strong
electron withdrawing groups in the aromatic core [5–9]. The substitution of an unactivated NMe2 group
is much less known and occurs under metal [10,11] or acidic catalysis [12]. The latter, published in
2011, was demonstrated for the ortho-substituted 1,8-bis(dimethylamino)naphthalenes (hydrazones,
imines and oximes), which in acidic media undergo intramolecular nucleophilic NMe2 group substitution,
leading to the formation of the following nitrogen heterocycles: benzo[g]indazoles, benzo[g]quinazolines,
and naphtho[2,1-d]isoxazoles (Scheme 1) [12]. It was shown that, unlike hydrazones, oximes do not require
an external acidic catalyst to initiate the reaction. The authors attributed this phenomenon to the high
basicity of 1,8-bis(dimethylamino)naphthalene (DMAN; pKa = 12.1 in H2O [13], 18.62 in MeCN [14], 7.5 in
DMSO [15]), which facilitated the proton transfer from the oxime to the DMAN moiety, thus providing the
necessary acidic catalysis (Scheme 2). Indeed, much less basic N,N-dimethylaniline (DMA) derivatives
(pKa of DMA = 5.1 in H2O [16]) showed no reactivity under similar conditions.
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Scheme 1. Substitution of the NMe2 group promoted by acidic catalysis. 

 
Scheme 2. Tentative mechanism of NMe2 group substitution in ortho-oximes of DMAN. 

In recent years, it was demonstrated that the unique reactivity features of 1,8-
bis(dimethylamino)naphthalene derivatives originate from the strong repulsion of NMe2 groups and 
their stable in,in-conformation. Thus, ortho-alkynyl-DMANs undergo a palladium-catalyzed 
transformation into less strained benzo[g]indoles [17]. The treatment of ortho-trifluoromethyl-DMAN 
with organolithiums also leads to the loss of a steric strain via the formation of 
dihydrobenzo[g]indoles [18,19]; the ortho-ketimines of DMAN react with nitriles in the presence of a 
strong base, giving less strained benzo[h]quinazolines [11]. However, none of the mentioned 
reactions require the high basicity feature of DMAN. 

In this work, through means of quantum–chemical calculations, we aimed to answer the 
question of whether steric repulsion is a reason for the surprisingly easy substitution of the NMe2 
group in DMAN ortho-oximes, if it is possible to facilitate NMe2 group displacement in N,N-
dimethylaniline derivatives via the introduction of a bulky substituent to the ortho-position, and if 
this approach could serve as a method for the synthesis of fused isoxazoles—an important class of 
five-membered aromatic heterocycles, which molecules are present as a pharmacophore essential for 
the biological activity in many drugs and bioactive natural products [20]. 

2. Results 

It is widely known that aromatic nucleophilic substitution can be described by three possible 
mechanisms: addition–elimination SNAr(AE), elimination–addition SNAr(EA) and benzyne SNAr(B). 
The latter requires hydrogen in the ortho-position of the leaving group, which is not the case here, so 
this mechanism was out of consideration. Keeping in mind that SNAr(EA) is commonly associated 
with diazonium salts, when the elimination of N2 leads to the formation of aromatic carbocations, we 
mainly focused on the SNAr(AE) mechanism in our calculations. 

We started our work with the search for the most optimal pathway of the transformation of 
proton sponge aldoxime 1a into isoxazole 4a. Since aldoxime 1a exists solely as a E-isomer, [12] which 
is not preorganized for intramolecular nucleophilic attack, the reaction mechanism should include 
the E→Z isomerization step. Keeping the possibility of proton transfer from oxime to the proton 
sponge moiety in mind, it is possible to suggest “neutral” (A), “zwitterionic” (B) and “acidic” (C) 
reasonable reaction pathways (Scheme 3). 

“Neutral” pathway A starts with the E→Z isomerization of 1a, followed by an intramolecular 
nucleophilic attack of oxygen on C-NMe2 carbon and the formation of 2a. The further proton transfer 
from isoxazole oxygen to the NMe2 group facilitates the displacement of the latter in 3a. 

The second “zwitterionic” pathway B is initiated by a proton transfer from the OH group to the 
NMe2 group, with the formation of zwitterion E-5a. The isomerization of E-5a into Z-5a allows an 
intramolecular attack with the formation of 3a and finally 4a after displacement of dimethylamine. 
Alternatively, the isoxazole ring closure and displacement of the NMe2 group in Z-5a could occur as 
a concert process via intermediate 6a. 

Scheme 1. Substitution of the NMe2 group promoted by acidic catalysis.
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In recent years, it was demonstrated that the unique reactivity features of 1,8-bis(dimethylamino)
naphthalene derivatives originate from the strong repulsion of NMe2 groups and their stable
in,in-conformation. Thus, ortho-alkynyl-DMANs undergo a palladium-catalyzed transformation into
less strained benzo[g]indoles [17]. The treatment of ortho-trifluoromethyl-DMAN with organolithiums
also leads to the loss of a steric strain via the formation of dihydrobenzo[g]indoles [18,19]; the ortho-
ketimines of DMAN react with nitriles in the presence of a strong base, giving less strained
benzo[h]quinazolines [11]. However, none of the mentioned reactions require the high basicity
feature of DMAN.

In this work, through means of quantum–chemical calculations, we aimed to answer the question
of whether steric repulsion is a reason for the surprisingly easy substitution of the NMe2 group in
DMAN ortho-oximes, if it is possible to facilitate NMe2 group displacement in N,N-dimethylaniline
derivatives via the introduction of a bulky substituent to the ortho-position, and if this approach could
serve as a method for the synthesis of fused isoxazoles—an important class of five-membered aromatic
heterocycles, which molecules are present as a pharmacophore essential for the biological activity in
many drugs and bioactive natural products [20].

2. Results

It is widely known that aromatic nucleophilic substitution can be described by three possible
mechanisms: addition–elimination SNAr(AE), elimination–addition SNAr(EA) and benzyne SNAr(B).
The latter requires hydrogen in the ortho-position of the leaving group, which is not the case here,
so this mechanism was out of consideration. Keeping in mind that SNAr(EA) is commonly associated
with diazonium salts, when the elimination of N2 leads to the formation of aromatic carbocations,
we mainly focused on the SNAr(AE) mechanism in our calculations.

We started our work with the search for the most optimal pathway of the transformation of proton
sponge aldoxime 1a into isoxazole 4a. Since aldoxime 1a exists solely as a E-isomer, [12] which is not
preorganized for intramolecular nucleophilic attack, the reaction mechanism should include the E→ Z
isomerization step. Keeping the possibility of proton transfer from oxime to the proton sponge moiety
in mind, it is possible to suggest “neutral” (A), “zwitterionic” (B) and “acidic” (C) reasonable reaction
pathways (Scheme 3).

“Neutral” pathway A starts with the E→ Z isomerization of 1a, followed by an intramolecular
nucleophilic attack of oxygen on C-NMe2 carbon and the formation of 2a. The further proton transfer
from isoxazole oxygen to the NMe2 group facilitates the displacement of the latter in 3a.

The second “zwitterionic” pathway B is initiated by a proton transfer from the OH group to the
NMe2 group, with the formation of zwitterion E-5a. The isomerization of E-5a into Z-5a allows an
intramolecular attack with the formation of 3a and finally 4a after displacement of dimethylamine.
Alternatively, the isoxazole ring closure and displacement of the NMe2 group in Z-5a could occur as a
concert process via intermediate 6a.
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Scheme 3. Proposed pathways for the SNAr(AE) mechanism of 1a → 4a transformation. 

The third “acidic” path C starts with the dissociation of the OH bond (pKa of oximes is generally 
≈20 in DMSO [21]), thus providing a catalytic amount of protons. Being released to the media, these 
protons are abstracted by oxime E-1a to form E-1a·H+. Further E→Z isomerization is followed by the 
nucleophilic attack and displacement of the NMe2 group, either as a step-by-step (via 3a) or concert 
(via 6a) process. 

For all intermediate forms of the three mechanisms, we calculated equilibrium geometries and 
harmonic vibrational frequencies. Based on IR frequencies, it was found that the structures E-1a, E-
1a·H+, Z-1a, Z-1a·H+, E-5a, Z-5a and 4a correspond to the local minima, while the structures 2a, 3a, 
and 6a·H+ are saddle points (i.e., transition states). The transfers E-1a → Z-1a and E-1a·H+ → Z-1a·H+ 
occur through the transition states, which are labeled as 1’a and 1’a·H+, respectively; the transition 
states located between E-5a and Z-5a, and E-1a and E-5a are labeled as 5’a and 7a, respectively (Figure 
1). Since the studied reaction is carried out without any solvent (in neat melt of 1a) or in aprotic 
DMSO, the transition of E-1a → E-5a is bound to be a concert process of a proton transfer from one 
oxime molecule to another one (Scheme 4). However, the calculation of the transition state for this 
transformation (7a)—even in the form of cyclic trimer—is computationally costly. In order to reduce 
the calculation time, we performed the modeling of the proton transfer in a simplified form using a 
DMSOH+ molecule as a proton donor for the dimethylamino group and a DMSO molecule as a proton 
acceptor for the C(H)NOH moiety (Scheme 5). 

 
Figure 1. Optimized geometries of studied reaction intermediates for 1a → 4a transformation. 

Scheme 3. Proposed pathways for the SNAr(AE) mechanism of 1a→ 4a transformation.

The third “acidic” path C starts with the dissociation of the OH bond (pKa of oximes is generally
≈20 in DMSO [21]), thus providing a catalytic amount of protons. Being released to the media,
these protons are abstracted by oxime E-1a to form E-1a·H+. Further E→ Z isomerization is followed
by the nucleophilic attack and displacement of the NMe2 group, either as a step-by-step (via 3a) or
concert (via 6a) process.

For all intermediate forms of the three mechanisms, we calculated equilibrium geometries and
harmonic vibrational frequencies. Based on IR frequencies, it was found that the structures E-1a,
E-1a·H+, Z-1a, Z-1a·H+, E-5a, Z-5a and 4a correspond to the local minima, while the structures 2a, 3a,
and 6a·H+ are saddle points (i.e., transition states). The transfers E-1a→ Z-1a and E-1a·H+

→ Z-1a·H+

occur through the transition states, which are labeled as 1’a and 1’a·H+, respectively; the transition
states located between E-5a and Z-5a, and E-1a and E-5a are labeled as 5’a and 7a, respectively
(Figure 1). Since the studied reaction is carried out without any solvent (in neat melt of 1a) or in aprotic
DMSO, the transition of E-1a→ E-5a is bound to be a concert process of a proton transfer from one
oxime molecule to another one (Scheme 4). However, the calculation of the transition state for this
transformation (7a)—even in the form of cyclic trimer—is computationally costly. In order to reduce
the calculation time, we performed the modeling of the proton transfer in a simplified form using a
DMSOH+ molecule as a proton donor for the dimethylamino group and a DMSO molecule as a proton
acceptor for the C(H)NOH moiety (Scheme 5).
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remains unchanged (Scheme 6) [12]. In the present work, we performed an additional experiment to 
ensure that the similar DMA-based aldoxime 1b undergoes no NMe2 group substitution under the 
selected conditions. Indeed, after heating at 140 °C for 84 h, 1b quantitively converts into nitrile 9 
(according to NMR spectra of the reaction mixture), thus selectively undergoing the thermal 
dehydration typical for aldoximes [22,23] with no signs of NMe2 group displacement. This 
experimental finding allowed us to compare the reaction profiles for reactive (towards the NMe2 
group displacement) 1a and inert 1b in order to determine the most reasonable reaction mechanism 
and explain the difference in reactivity of these substrates. According to a NOESY experiment, 
aldoxime 1b, similarly to 1a, exists solely as an E-isomer (see Supplementary Materials). This allowed 
us to model the intermediates of the E-1b → 4b transformation in a similar way as for E-1a → 4a 
(Figure 2). 

 
Scheme 6. Thermolysis of DMA-based oximes 1b and 8. 

Based on the calculation of the free Gibbs energy difference between optimized structures, we 
have modeled the reaction profiles for the transformations 1a → 4a and 1b → 4b via the pathways A, 
B and C (Figures 3–5). Since the dielectric constants of melted oximes 1a and 1b are unknown, all 
calculations were performed using DMSO as a solvent in the framework of a conductor-like 
polarizable continuum model (CPCM). It was found that regardless of the pathway, the process in 
total is thermodynamically favorable for both substrates: the energy gain for E-1a → 4a and E-1b → 
4b is 28.6 and 19.1 kcal/mol, respectively. The formation of 1’a (1’b) and 5’a (5’b) requires 64.7 (66.4) 
and 32.9 (38.0) kcal/mol, respectively, which is in agreement with the activation barrier for the E → Z 
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Scheme 5. Simplified means of proton transfer upon transformation E-1a →E-5a. Equilibrium geometry
of transition state 7a is shown.

As was briefly mentioned in the introduction, unlike proton sponge-based aldoximes and
ketoximes, 2-(dimethylamino)benzophenone oxime 8 under prolonged heating at 120–130 ◦C remains
unchanged (Scheme 6) [12]. In the present work, we performed an additional experiment to ensure
that the similar DMA-based aldoxime 1b undergoes no NMe2 group substitution under the selected
conditions. Indeed, after heating at 140 ◦C for 84 h, 1b quantitively converts into nitrile 9 (according to
NMR spectra of the reaction mixture), thus selectively undergoing the thermal dehydration typical for
aldoximes [22,23] with no signs of NMe2 group displacement. This experimental finding allowed us to
compare the reaction profiles for reactive (towards the NMe2 group displacement) 1a and inert 1b in
order to determine the most reasonable reaction mechanism and explain the difference in reactivity of
these substrates. According to a NOESY experiment, aldoxime 1b, similarly to 1a, exists solely as an
E-isomer (see Supplementary Materials). This allowed us to model the intermediates of the E-1b→ 4b
transformation in a similar way as for E-1a→ 4a (Figure 2).

Based on the calculation of the free Gibbs energy difference between optimized structures, we have
modeled the reaction profiles for the transformations 1a → 4a and 1b → 4b via the pathways A,
B and C (Figures 3–5). Since the dielectric constants of melted oximes 1a and 1b are unknown,
all calculations were performed using DMSO as a solvent in the framework of a conductor-like
polarizable continuum model (CPCM). It was found that regardless of the pathway, the process in
total is thermodynamically favorable for both substrates: the energy gain for E-1a→ 4a and E-1b→
4b is 28.6 and 19.1 kcal/mol, respectively. The formation of 1’a (1’b) and 5’a (5’b) requires 64.7 (66.4)
and 32.9 (38.0) kcal/mol, respectively, which is in agreement with the activation barrier for the E→ Z
isomerization of aldoximes (~30–60 kcal/mol [24–26]). The protonation of both substrates significantly
decreases E→ Z isomerization barriers to 28.1 and 35.0 kcal/mol for 1a·H+ and 1b·H+, respectively.
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The analysis of the “neutral” path A demonstrates almost no differences in the free Gibbs energy
changes in stage Z-1 → 2—76.6 vs. 78.6 kcal/mol for 1a and 1b, respectively (Figure 3). However,
further proton transfer reveals the higher stability of 3a in comparison with 3b. We attribute this
difference to the stronger hydrogen bonding in 3a.

The “zwitterionic” path B is characterized by the noticeable difference in the formation of
intermediates 3, 5, 6 and (especially dramatically) 7 for the substrates 1a and 1b (Figure 4). Thus,
the stage of proton transfer (1→ 5) is significantly facilitated for 1a—the formation of transition states
7a and 7b requires 40.9 and 99.6 kcal/mol, respectively. We believe that this difference originated from
the abnormally high basicity of the DMAN derivatives. At the same time, the transformation Z-5a
→ 3a becomes noticeably more favorable than Z-5b→ 6b (27.4 vs. 32 kcal/mol) in contrast to Z-1→
2. The concert ring closure and NMe2 group displacement appear preferable (≈10 kcal/mol) to the
step-by-step process for both substrates, with the Z-5a→ 6a transition being slightly more facilitated
than Z-5b→ 6b (17.6 vs. 20.9 kcal/mol).

The obtained data make it very tempting to conclude that the formation of transition state 7 is
a limiting stage of the reaction. However, according to our experiments, the usage of protonated
1b·MsOH and 8·MsOH as starting materials still leads to the same outcome: after 24 h of heating
in DMSO, 1b·MsOH undergoes a simple dehydration into cyanide 9, while ketoxime 8·MsOH stays
unchanged (Scheme 7). In contrast, it is known that the substitution of the NMe2 group in a proton
sponge series still occurs (is even facilitated) in acidic media [12]. That brings us to the conclusion that
the protonation of an NMe2 group indeed promotes the reaction, while the deprotonation of an oxime
moiety is not mandatory. Indeed, the comparison of possible reaction profiles for the E-1a·H+

→ 4a
and E-1b·H+

→ 4b transformations via the “acidic” path C reveals the major difference in free Gibbs
energy at the stage when transition state 3 is formed—the transformation Z-1a·H+

→ 3a is significantly
(62.7 vs. 70.0 kcal/mol) more favorable than Z-1b·H+

→ 6b (Figure 5).
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Considering all the obtained data, we assume that the steric pressure of the 8-NMe2 group
facilitates an intramolecular nucleophilic attack for all studied mechanisms A–C. Thus, the formation
of intermediates 2, 3 and 6 is always to some extent preferable for sterically more strained 1a
than for 1b. In order to prove this assumption, we performed calculations of the barriers for the
formation of the intermediates 3, 6 and 6·H+ via all cyclization mechanisms A, B and C for a series
of N,N-dimethylaniline based aldoximes (1c–1p), together with 1-dimethylaminonaphthalene-based
aldoximes 1r and 1s (Figure 6). Indeed, the introduction of bulky substituents into the ortho-position
(or peri-position) of the NMe2 group decreases the activation barrier for the transformations Z-1→ 2
→ 4, Z-5→ 3 (6)→ 4 and Z-1·H+

→ 3 (6)→ 4 (Table 1). One can see that regardless of the mechanism,
the tendencies in the changes of the activation barrier for the NMe2 group displacement are similar. It is
noticeable that the NMe2 (1k) and OMe (1l) groups, despite their bulkiness, suppress an intramolecular
nucleophilic attack due to their strong +M-effect destabilizing the negative charge in intermediate
3. In contrast, the less bulky, strongly electron-withdrawing CF3 (1o), NO2 (1p) and CN (1n) groups
significantly facilitate the reaction in comparison to 1a. To our satisfaction, the DMA-based oximes
1c and 1s, containing bulky SiMe3 substituents, generally have the lowest barriers for the NMe2

substitution stage for all studied mechanisms.
Even though the calculated barriers for substrates that are reactive and unreactive towards

the NMe2 substitution do not dramatically differ, the tendency in their change appears to be very
convincing, depending on the introduced substituent.

It should be specially noted that we used the conductor-like polarizable continuum model
(CPCM) with dimethylsulfoxide as a solvent in order to take non-specific solvation effects into
account. Test calculations for the Z-1·H+

→3 activation barrier in vacuum, in DMSO and in artificial
solvent with rather high dielectric permittivity (ε = 100) show that the ∆G values vary significantly
(Figure 7). However, the overall tendency remains the same—for oxime 1b, the activation barrier is
higher than that for sterically strained 1a. Thus, the results of the calculations of activation barriers
should be mostly perceived in a qualitative sense. In order to obtain more dramatic differences in
barriers (as was expected from the experimental data), one should also take specific solvent effects
(solvent–solute interactions) into account, as well as the macroscopic reaction field, which, of course,
involves additional computational cost [27].

Thus, we expect that the reactivity of sterically strained oximes 1c and 1s will be comparable (if not
superior) to 1a in real experimental conditions. Keeping in mind that SiMe3 can be easily introduced
to the NMe2 group in the ortho- or peri-position via organometallic reagents [28], we believe that the
presented findings will open up a simple way for the synthesis of novel polynuclear isoxazoles.
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Table 1. Calculated activation barriers for the transformation of aldoximes 1a–1s into isoxazoles 4a–4s.
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3. Materials and Methods

The geometry optimization and calculations of vibrational harmonic frequencies were performed
using the Gaussian16 software package [29]. Optimized geometries were calculated at theωB97xd/def-
2-TZVP level of theory. The chosen functional and basis set provide a reasonable combination of
accuracy and computing efficiency in the calculations of both the geometries and the thermodynamic
parameters [30]. The calculations were performed using the Polarizable Continuum Model (CPCM)
and dimethyl sulfoxide as a solvent.

All the obtained structures were verified via their correspondence to a real local minimum by
checking the absence of imaginary frequencies. Transition states were located as maxima points on 1D
relaxed scans along the reaction coordinate. Saddle points were optimized using the Berny algorithm
and verified by frequency calculations (i.e., existence of a single imaginary frequency).
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Free Gibbs energies were estimated by virtue of thermochemistry data obtained from vibrational
harmonic frequencies calculations. Thermochemical values were calculated at 400 K and atmospheric
pressure (the reaction conditions for compound 1a) in order to obtain the appropriate activation
energies of the investigated processes. The change in free Gibbs energy was calculated as the difference
between the two forms of interest while taking possible reagents and products into account.

Liquid-state NMR experiments were performed at the Centre for Magnetic Resonance, St. Petersburg
State University. Chemical shifts are referred to as TMS.

3.1. Synthesis of 1b

As was previously described, N,N-dimethylaniline (1 mL, 7.9 mmol), freshly distilled over
sodium-benzophenone hexane (15.0 mL), freshly distilled over KOH TMEDA (0.18 mL, 1.185 mmol),
and a 1.6 M solution of n-BuLi in hexanes (5 mL, 8 mmol) were added to a dry round-bottom flask
equipped with a stirring bar under argon atmosphere. The solution was stirred at 72 ◦C for 48 h
and cooled to −20 ◦C. Dry DMF (0.75 mL, 9.25 mmol) was added to the reaction mixture via syringe.
The reaction mixture was warmed up to room temperature, and stirred for 4 h, then treated with water
(50 mL). The products were extracted with diethyl ether (3 × 50 mL), the solvent was evaporated
to dryness and the residue was chromatographed on alumina with an EtOAc/petroleum ether 1:15
mixture as the eluent. A yellow fraction with Rf = 0.7 was collected to yield 940 mg (6.3 mmol, 80%) of
2-(Dimethylamino)benzaldehyde as yellow oil. The characterization data were consistent with those
reported in the literature [31]. δH (400 MHz, Chloroform-d): 10.25 (1H, s), 7.78 (1H, dd, J = 7.7, 1.8 Hz),
7.48 (1H, ddd, J = 8.7, 7.1, 1.8 Hz), 7.07 (1H, dd, J = 8.4, 1.0 Hz), 7.02 (1H, t, J = 7.5 Hz), 2.94 (6H, s).

A solution of hydroxylamine hydrochloride (420 mg, 6 mmol) in 10 mL of ethanol was added to
the solution of 2-(Dimethylamino)benzaldehyde (600 mg, 4 mmol) in 20 mL of ethanol. The reaction
mixture was stirred under reflux for 2 h. The solvent was removed in vacuum and the resulting white
powder was mixed with 20 mL of aq. ammonia and 20 mL of dichloromethane. The organic layer was
separated, and the water layer was extracted with dichloromethane (3 × 20 mL). The combined organic
fraction was dried over sodium sulphate. The solvent was removed, and the residue was recrystallized
from hexane, yielding 837 mg (5.1 mmol, 85%) of 2-Dimethylamino-benzaldehyde-oxime as colorless
needle crystals. δH (400 MHz, Chloroform-d): 8.90 (1H, s), 8.50 (1H, s), 7.70 (1H, d, J = 7.6 Hz), 7.36 (1H,
t, J = 7.6 Hz), 7.10 (1H, d, J = 8.2 Hz), 7.06 (1H, t, J = 7.5 Hz), 2.78 (6H, s). δc (100 MHz, Chloroform-d):
153.07, 148.99, 130.60, 127.69, 125.39, 122.67, 118.56, 45.20.

3.2. Thermolysis of 1b

2-Dimethylamino-benzaldehyde-oxime (100 mg, 0.61 mmol) was placed in a test tube and heated
at 140 ◦C for 84 h. The residue was dissolved in 0.6 mL of CDCl3 and analyzed by NMR spectroscopy
to reveal cyanide 9 as a single product. The characterization data were consistent with those reported
in the literature [31].

3.3. Thermolysis of 1b·MsOH

2-Dimethylaminobenzaldehyde oxime 1b (300 mg, 1.83 mmol) was placed in a sample tube and
dissolved in 3 mL of diethyl ether. Then, 180 mg (1.88 mmol) of methanesulfonic acid dissolved in
3 mL of diethyl ether were added. The resulting suspension was centrifuged, and the precipitate
was washed with diethyl ether to yield 476 mg (1.83 mmol, 100%) of 1b·MsOH as colorless crystals.
δH (400 MHz, DMSO-d6): 12.07 (1H, s), 8.98 (1H, s), 8.43 (1H, s), 7.85 (1H, d, J = 7.7 Hz), 7.72 (1H, d,
J = 7.6 Hz), 7.58 (1H, t, J = 7.4 Hz), 7.49 (1H, t, J = 7.4 Hz), 3.16 (6H, s), 2.46 (3H, s).

Then, 350 mg (1.34 mmol) of 2-Dimethylamino-benzaldehyde-oxime methanesulfonate were
placed in a sample tube, dissolved in 3 mL of DMSO-d6 and heated at 120 ◦C for 24 h. The reaction
mixture was cooled to room temperature and mixed with 20 mL of aq. ammonia and 20 mL
of dichloromethane. The organic layer was separated, and the water layer was extracted with
dichloromethane (3 × 20 mL). The combined organic fraction was dried over sodium sulphate.
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The solvent was evaporated to dryness and the residue was chromatographed on an alumina with
EtOAc-petroleum ether 1:10 mixture as eluent. The pale yellow fraction with Rf = 0.9 was collected
to yield 9 as a pale yellow oil. The characterization data were consistent with those reported in the
literature [31].

4. Conclusions

Based on the obtained data, we can conclude that the steric pressure of the 8-NMe2 group
facilitates an intramolecular nucleophilic attack to C-1 carbon and serves as the major source of
reactivity for proton sponge ortho-oximes, while the protonation of the NMe2 group serves as a
supporting factor. We have demonstrated that a similar (and even lower) activation barrier can be
achieved in a dimethylaniline and dimethylaminonaphthalene series via the introduction of bulky
substituents to the ortho- or peri-position of NMe2 groups. Better reactivity is expected from substrates
containing trimethylsilyl groups, while the introduction of electron-withdrawing CF3, NO2 and CN
groups is less effective. The combination of NMe2 group protonation with the steric pressure of
the bulky substituent appears to be the most effective for the facile NMe2 group’s displacement.
The predicted reactivity could serve as a simple approach to the synthesis of fused isoxazoles from
sterically strained ortho-oximes of dimethylaniline and dimethylaminonaphthalene.

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectrum of oxime 1b (CDCl3,
400 MHz), Figure S2: 13C NMR spectrum of oxime 1b (CDCl3, 100 MHz), Figure S3: 1H-1H NOESY spectrum of
oxime 1b (CDCl3, 400 MHz), Figure S4: 1H NMR spectrum of oxime 1b·MsOH (DMSO-d6, 400 MHz).
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