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Abstract: Pyrazole, a member of the structural class of azoles, exhibits molecular properties of
interest in pharmaceuticals and materials chemistry, owing to the two adjacent nitrogen atoms
in the five-membered ring system. The weakly basic nitrogen atoms of deprotonated pyrazoles
have been applied in coordination chemistry, particularly to access coordination polymers and
metal-organic frameworks, and homocoupling reactions can in principle provide facile access to
bipyrazole ligands. In this context, we summarize recent advances in homocoupling reactions of
pyrazoles and other types of azoles (imidazoles, triazoles and tetrazoles) to highlight the utility of
homocoupling reactions in synthesizing symmetric bi-heteroaryl systems compared with traditional
synthesis. Metal-free reactions and transition-metal catalyzed homocoupling reactions are discussed
with reaction mechanisms in detail.
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1. Introduction

Heterocyclic compounds containing two or more nitrogen atoms display unique molecular
properties, which can be extended to macroscale properties in materials chemistry [1]. Furthermore,
symmetric, multiply-functionalized organic ligands are required to construct ordered materials,
preferably in high crystallinity [2]. Homocoupling reactions of aromatic compounds are often
utilized to form carbon–carbon bonds in the presence of (over)stoichiometric or catalytic amounts
of transition metal species [3]. For example, Ullmann coupling reactions can enable facile access
to symmetric biaryl compounds using copper reagents with or without ligands at high reaction
temperatures [4,5]. Based on this method, a plethora of reports was dedicated to the homocoupling of
aromatic compounds, accessing symmetric molecules starting from simple aryl halides and derivatives.
However, the reported procedures are often limited in terms of substrate scopes, particularly with
heterocyclic compounds. Therefore, milder and more practical reaction conditions are required.
To this end, this review summarizes recent development in (catalytic)homocoupling reactions of
5-membererd ring heterocycles, particularly focusing on pyrazoles due to their importance in materials
chemistry as symmetric bipyrazoles. First, we will discuss traditional syntheses of bipyrazoles without
homocoupling reaction methods, to highlight the advantages of (catalytic)homocoupling reactions.
The following sub-chapters are organized by metal-catalyzed and metal-free reactions to illustrate the
developed synthetic methods. The utility of bipyrazole materials in materials chemistry is discussed in
Section 3.3, where we provide ample information on constructing metal–organic frameworks based on
bipyrazole ligands.
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2. Traditional Syntheses of Bipyrazoles

Condensation reactions of 1,4-dicarbonyl compounds with heteroatom nucleophiles can provide
various 5-membered heterocycles: furans, thiophenes, pyrroles and their derivatives (Scheme 1A) [6,7].
To access pyrazoles with the same manner, 1,3-dicarbonyl compounds and hydrazine are required
(Scheme 1B). However, the lack of a general method of “dimerization” of pyrazole substrates was a
major bottleneck for the synthesis of symmetric bipyrazoles. Alternatively, diamino substrates can be
prepared to access pyrazoles via oxidation reactions [8]. In 1964, Trofimenko reported the synthesis of
1,1,2,2-ethanetetracarbaldeyde, which was converted to bipyrazole by a condensation reaction with
hydrazine (Scheme 1C) [9]. There are a few synthesis methods to access bipyrazoles via lengthy
synthetic steps starting from diethyl succinate via a 3,4-carbonyl furan intermediate (1) [9–11].
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Scheme 1. A comparison of syntheses of 5-membered heterocyclic compounds and pyrazoles.

Starting from succinic ester, a repeated formylation and acetal protection sequence afforded
the 3,4-dicarboxylic furan intermediate 2 after treating with concentrated sulfuric acid in 66–68%
yield (Scheme 2A). The reaction employed sodium metal and orthoformate for formylation
reactions. The author reported that the reaction was amenable to characterize bipyrazole via
acetylation, carbamoylation, bromination, dihydrochloride and dinitrate salt. The preparation of
3,4-dicarbonylated furan was further subjected to formylation reactions, and subsequent condensation
reactions with hydrazine afforded bipyrazole. For example, the synthesis of furan, thiophene and
pyrrole-3,4-dicarboxylic esters was reported, which can allow one to access an intermediate 3 for
bipyrazole synthesis [10].
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Scheme 2. Syntheses of 3,4-dicarbaldehyde furan 3.

This procedure started with butyronitril undergoing a Claisen condensation reaction to afford
sodium or potassium enolates 4, which were then treated with SOCl2 to afford 3,4-dicyano-2,5-
furandicarboxylate 5. This compound was further subjected to decarboxylation reaction conditions
with copper powder and heated to 160 ◦C, yielding 61–63% of the product (6) [12]. Using this
dicyanofuran (6), Weis pursued reduction using DIBAL-H to access the dialdehyde compound (3).
The author found that the compound is stable under acidic conditions; however, it was converted
to the ring-opened form under basic conditions, resulting in the formation of the anionic form of
tetraaldehyde. This procedure represents a classic synthesis of bipyrazole using a condensation reaction,
but Domasevitch and co-workers reported that the procedure was not amenable for the synthesis of
bipyrazole [13]. The alternative synthetic approach was started from a dialdehyde, acetylene and
formaldehyde to generate an intermediate bis-trimethinium salt (Figure 1) [14]. The synthesis consists
of a similar approach as the above-mentioned pathway: a formylation reaction to access tetraaldehyde
compounds, which are masked as enamine and iminium functionalities. This sequence requires the
use of phosgene and additional steps to finally synthesize bipyrazole.
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Figure 1. bis-trimethinium salt.

Despite the high application potential of symmetric nitrogen-containing compounds in materials
chemistry and coordination chemistry as tunable ligands, the synthetic procedures have been limited
to traditional condensation reactions with low atom economy and redox efficiency. Not only are
double condensation reactions difficult to control, but the lack of 1,3-dicarbonyl compounds has also
hampered the development of facile preparation of pyrazole-based compounds. Therefore, many
catalytic systems based on transition-metal catalysts have been investigated owing to the development
of cross-coupling reactions, which will be discussed in this review.

3. Recent Advancement of Bipyrazole Syntheses

3.1. Transition Metal-Catalyzed Homocoupling of Azoles

Transition metal catalysts play an important role in the functionalization of C–H bonds of
aromatic compounds and heteroaromatics and in the formation of new C–C bonds in the synthesis
of homocoupled biaryl compounds [3]. The development in homocoupling reactions of pyrazoles,
imidazoles and triazoles showed a broad range of catalytic activities in transition metals, including Cu,
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Fe, Ni, Pd, Rh and Ru, which were summarized in a review in 2012 [15]. This review will therefore
summarize more recent examples (2010–2020) of homocoupling reactions of pyrazoles and azoles
(imidazoles, triazoles, tetrazoles) and related compounds.

3.1.1. Cu-Catalyzed Homocoupling of Various Azoles

The (oxidative) Glaser–Hay coupling reaction utilizes Cu(I) species as catalysts in the presence
of a base under air to afford homo-coupled alkyne products [16]. An adaptation of the Glaser–Hay
coupling reaction conditions to N-substituted 1,2,4-triazoles was realized starting from easily accessible
triazole compounds. In 2009, Do and Daugulis developed Cu(II)-catalyzed homocoupling reactions
of imidazoles using molecular oxygen as a terminal oxidant (Scheme 3) [17]. The method developed
proved useful in the coupling of various heterocycles, including examples of a N-butyl-substituted
imidazole and triazole, providing the desired products in up to 73% yield. The mechanism of the
reaction was suggested to proceed via deprotonation of heteroarenes (pKa < 35–37 for C2-H), followed
by the complexation with metal additives, such as Li+. The trans-metalation step with the copper
catalyst and subsequent oxidation yields the intermolecular homocoupling products between two
arenes (Scheme 3).
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catalyzed homocoupling.

Li et al. reported Cu(II)-mediated homocoupling reactions using a similar system at elevated
temperatures (Scheme 4) [18]. This method utilizes an efficient and convenient approach to form
C2-C2 bonds via a Cu(OAc)2 and O2-mediated oxidative intermolecular homocoupling reaction
between two azoles. Once again, the oxidative coupling could be used to achieve high yields of
homocoupled products.
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3.1.2. Pd-Catalyzed Homocoupling Reactions of Pyrazoles and Triazoles

Pd-catalyzed cross-coupling reactions are currently classified as some of the most flexible and
valuable tools in organic synthesis [19,20]. A common observation is that Pd-catalyzed coupling
reactions provide low but significant amounts of homocoupled by-products during cross-coupling
reactions [21]. This is likely because the main focus of Pd-catalyzed coupling reactions is to form
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bonds between two different coupling partners, enabling highly productive homocoupling reactions.
A handful of papers [22,23] have used the tactical placement of heteroatoms for the coordination
of metals in the activation of specific C–H bonds. Other papers [24,25] utilize the possibility of the
oxidative addition of Pd into a carbon halogen bond to form di-azole Pd complexes, which can undergo
reductive elimination to form desired intermolecular homocoupled products.

In 2012, the unexpected discovery of the intermolecular homocoupling between two pyrazoles
was made by Salanouve et al. (Scheme 5) [22]. In an effort to study the reaction products obtained under
different Suzuki–Miyaura conditions, this group discovered the formation of a C3–C3 intermolecular
homocoupled product, resulting from C–H activation. The discovered bipyrazole compound
was found to originate from a bis(3-ethoxy-1-(pyridin-2-yl)-1H-pyrazol-5-yl) palladium complex.
Through oxidation with NCS, this species forms a PdIV complex, which then allows for reductive
elimination of the homocoupled product in a yield of up to 34 % (Scheme 5b).
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Afanas’ev et al. reported a method for the homocoupling of 4-bromo-1,2,3-triazoles to access
the corresponding 4,4′-bistriazoles in quantitative yields [24]. The intermolecular homocoupling was
achieved by mixing 4-brominated triazoles with 1.0 mol% Pd(OAc)2, in the presence of additives
(pinB)2, SPhos and KOH. This method is practical due to the use of readily available starting compounds
and a simple experimental procedure, without inert atmosphere or solvent. The reaction possibly
occurs through the formation of a 4-Bpin-substituted 1,2,3-triazole. Then, in a Suzuki–Miyaura fashion,
the homocoupling of the boronic acid can occur (Scheme 6b).
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A palladium-catalyzed, pyrazole-directed C(sp2)−H functionalization of the N-phenyl ring in
N-phenylpyrazoles to afford a biaryl bis-pyrazole (via dehydrogenative homocoupling) was reported
by Batchu et al. [23]. Multiple factors were shown to have significant influences on the outcome of the
reaction. For example, it was discovered that if the reaction was performed under ca. 10 times dilution,
then no homocoupling product was observed, and N-(o-hydroxyphenyl)pyrazoles were the major or
the sole products. The reaction mechanism is suggested in Scheme 7b. After the first C–H activation,
the PdII-center is oxidized to PdIV, which undergoes a second C–H activation followed by a reductive
elimination to yield the homocoupled bipyrazole.Molecules 2020, 25, x FOR PEER REVIEW 9 of 32 
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Scheme 7. (a) Homocoupling of N-phenylpyrazoles through PdII catalyzed C–H activation of phenyl
protons. (b) The mechanism for the homocoupling is suggested to go through C–H activation on the
phenyl ring followed by formation of a PdIV specie and then subsequent C–H activation which allows
for the reductive elimination of the homocoupled product (c) Substrate scope for the homocoupling of
various N-phenylpyrazole.
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The homocoupling reaction between 1,2,3-triazole N-oxides by C–H activation at the C4 position
was explored by Zhu et al. (Scheme 8) [26]. The reaction was designed to couple 1,2,3-triazole N-oxides
with sodium arenesulfinates via palladium-catalyzed desulfitative cross-coupling, but it showed the
possibility of homocoupling between 1,2,3-triazole N-oxides. Under unoptimized reaction conditions,
the homocoupled N-oxide bistriazoles were generated with yields of up to 22%. The reaction likely
occurs via deprotonation followed by exchange of OAc− for the deprotonated 1,2,3-triazole N-oxides.
The di-triazole N-oxide PdII complex then undergoes reductive elimination to yield the homocoupled
bistriazole N-oxide product and Pd0, which can be oxidized by Ag2CO3.
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through C–H activations using PdII as the catalyst. (b) Suggested mechanism for the homocoupling of
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Later, the full scope of the homocoupling reaction between pyrazole-N-oxides was investigated
by Peng et al. (Scheme 9) [27]. The method showed high regioselectivity towards C–H homocoupling
of 1,2,3-triazole N-oxides, using a PdII catalyst (5 mol%), Ag2CO3 and 1,10-phenanthroline under
air. Following their previous work, it was found that the addition of the base t-BuOK and a catalytic
amount of 1,10-phenanthroline allowed for yields of up to 93%.
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The homocoupling reaction between trisubstituted 4-iodo pyrazoles in the C4 position was
investigated by Jansa et al. (Scheme 10) [25]. The pyrazoles contain two to three pyridinyl substituents,
which are synthesized from the reaction of 1,3-dipyridinyl-1,3-propanediones with 2-hydrazinopyridine
or phenylhydrazine, affording the corresponding 1,3,5-trisubstituted pyrazoles. Iodination at the
4-position of the pyrazoles was achieved by treatment with I2/HIO3. The coupling of two pyrazole
rings was achieved under Negishi cross-coupling reaction conditions by employing organozinc halides
in combination with a PdII catalyst.



Molecules 2020, 25, 5950 11 of 30
Molecules 2020, 25, x FOR PEER REVIEW 12 of 32 

 

 
Scheme 10. (a) Negishi reaction conditions allows for the homocoupling of 4-iodopyrazoles in the C4 
position. (b) Suggested reaction mechanism for the Negishi cross-coupling. (c) Substrate scope of the 
homocoupling of 4-iodopyrazoles. 

A more recent example of intermolecular homocoupling between two pyrazoles was discovered 
by Mercedes et al. (Scheme 11): through the palladium-catalyzed homocoupling of pyrazole boronic 
esters in the presence of air and water, 4,4-bipyrazole (H2bpz) and other symmetric bipyrazoles could 
be achieved [28]. The mechanism of the reaction is likely through a Suzuki–Miyaura-type cross-
coupling between the boronic acids (Scheme 11b), with O2 being the oxidant for the Pd0 formed 
during the reductive elimination.  
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A more recent example of intermolecular homocoupling between two pyrazoles was discovered
by Mercedes et al. (Scheme 11): through the palladium-catalyzed homocoupling of pyrazole boronic
esters in the presence of air and water, 4,4-bipyrazole (H2bpz) and other symmetric bipyrazoles could be
achieved [28]. The mechanism of the reaction is likely through a Suzuki–Miyaura-type cross-coupling
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between the boronic acids (Scheme 11b), with O2 being the oxidant for the Pd0 formed during the
reductive elimination.Molecules 2020, 25, x FOR PEER REVIEW 13 of 32 
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Scheme 11. (a) Symmetric bipyrazoles are achieved via the palladium-catalyzed homocoupling of a
pyrazole boronic ester in the presence of air and water. (b) Suggested mechanism for the homocoupling.

3.1.3. Ru-Catalyzed Homocoupling Reactions

Ackermann et al. demonstrated the chemoselective ruthenium-catalyzed C(sp2)–H bond arylations
on triazol-4-yl and pyrazol-2-yl substituted arenes (Scheme 12) [29]. The authors discovered that
ortho-substituted arenes favored oxidative intermolecular homocoupling reactions to afford dimerized
products in high (or moderate) yields. The suggested reaction mechanism follows a double C–H bond
activation with carboxylate assistance, followed by reductive elimination.
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a RuII catalyst.

3.1.4. Ni-Catalyzed Reactions

Nickel is an Earth-abundant alternative to Pd and can access various reaction mechanisms, giving a
distinct reactivity due to the facile oxidative addition reaction and readily accessible multiple oxidation
states [30,31].

In 2000, Fanni et al. reported a new synthetic procedure for the efficient preparation of binuclear
Ru(II) polypyridyl complexes, by performing intermolecular homocoupling between two 1,2,4-triazole
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bromide in the C3 position (Scheme 13) [32]. The halide functional group is necessary to mediate the
Ni-catalyzed reaction in the presence of triphenylphosphine and a zinc reducing reagent.Molecules 2020, 25, x FOR PEER REVIEW 15 of 32 

 

 

Scheme 13. (a) The formation of either ruthenium(II) or osmium(II) complex in water could undergo 
Ni0 catalyzed homocoupling from in situ generated Ni0. (b) The mechanism of the homocoupling is 
suggested to go through double oxidative addition of the 1,2,4-triazole bromides followed by 
reductive elimination resulting in the homocoupled product. (c) Substrate scope for the 
homocoupling of 1,2,4-triazole bromides in the C3 position.  

The homocoupling between 4-bromotriazoles has been reported by Afanas´ev et al. using in situ 
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Scheme 13. (a) The formation of either ruthenium(II) or osmium(II) complex in water could undergo
Ni0 catalyzed homocoupling from in situ generated Ni0. (b) The mechanism of the homocoupling is
suggested to go through double oxidative addition of the 1,2,4-triazole bromides followed by reductive
elimination resulting in the homocoupled product. (c) Substrate scope for the homocoupling of
1,2,4-triazole bromides in the C3 position.

The homocoupling between 4-bromotriazoles has been reported by Afanas’ev et al. using
in situ generated Ni0 as a catalyst (Scheme 14) [24]. The homocoupling functions via an in situ
formation of Ni0(PPh3)4 from NiCl2 and Zn0, which undergoes oxidative addition of two equivalents
of 4-bromotriazoles, followed by a reductive elimination to form the desired homocoupled products
(Scheme 14b).
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Scheme 14. (a) In situ generated Ni0 used as the catalyst allows for the homocoupling of 4-bromopyrazoles
through oxidative addition. (b) The mechanism is suggested to go through double oxidative addition
of the bromine followed by reductive elimination, resulting in the homocoupled products.

3.1.5. Rh-Catalyzed Homocoupling Reaction

Rhodium-catalyzed reactions have shown fruitful successes in organic reactions [33], particularly
in C–H activation and C–C bond formation reactions [34,35]. heterocycle formation reactions [36,37],
C–X bond formation reactions [38] and asymmetric synthesis [39].

Yue et al. explored the homocoupling of pyrazole silanes using RhI as a catalyst [40]. A suggested
reaction mechanism includes a double trans-metalation reaction between vinylsilane and a rhodium
intermediate in a single catalytic cycle (Scheme 15). While investigating an oxidant, the authors found
out hexachloroacetone afforded higher yields of the desired product compared to conventional oxidants
such as CuII, TEMPO and chloranil.
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In 2010, Luque et al. achieved the homocoupling of two pyrazole boronic acids utilizing nano-
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3.1.6. Fe-Catalyzed Homocoupling Reactions

Iron is one of the most Earth-abundant metals, and many iron complexes are commercially
available. Surprisingly, despite its many advantages, iron has been relatively underrepresented in the
catalysis of organic compounds until recently, compared to other transition metals.

In 2010, Luque et al. achieved the homocoupling of two pyrazole boronic acids utilizing
nano-ferrite glutathione in a microwave (MW)-assisted aqueous reaction, providing an alternative to
the palladium-catalyzed Suzuki coupling reaction (Scheme 16) [41].
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3.2. Metal-Free Homocouplings of Azoles

In addition to the many transition metal-catalyzed routes described above, azole substrates have
also been shown to undergo homocoupling reactions in the absence of a metal catalyst. Hypervalent
iodine reagents can induce aryl–aryl bond formation in a wide variety of substrates, including pyrroles,
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pyrazoles, imidazoles and triazoles, as has been recently reviewed [42]. Other approaches to metal-free
couplings rely on oxidants or photocatalysis to enact radical-mediated dimerizations. Some recent
examples are presented below.

There is precedent for the metal-free homocoupling of pyrazolones through the use of oxidants
like phenoxy radicals [43] or O2 [44]. A recent example extends this approach to a switchable
aerobic oxidation, in which a pyrazol-5-one starting material undergoes either hydroxylation or a
homocoupling, using O2 as an oxidant (Scheme 17a) [45]. Simple changes in reaction conditions
control the outcome of this reaction; oxidation in dioxane in the presence of base favors hydroxylation,
whereas a base-free reaction in acetonitrile favors the homocoupling. The homocoupling reaction
was successful for 19 different substrates containing various substituents at positions R1 and R2,
in yields up to 77% (Scheme 17b). Most reactions led to a mixture of diastereomers, with diastereomeric
ratios ranging from 3.1:1 to 5.7:1, although three substrates led to a single diastereomeric product.
The authors hypothesize that the homocoupling reaction proceeds through a radical intermediate,
although mechanistic studies were not undertaken for this reaction.
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Another homocoupling reaction was recently shown to yield a structurally similar bipyrazolone,
but through remarkably different conditions: By refluxing a substituted pyrazole in excess thionyl
chloride, the bipyrazolone was produced in high yields (Scheme 18a) [46]. This reaction was successful
for nine substrates in yields from 62–89%. (The authors do not provide diastereomeric ratios of
meso compounds and racemate for each substrate, but they report that dimeric pyrazolone (R1 = Ph)
appeared to be a racemic mixture by 1H-NMR spectroscopy and X-ray crystallography). The reaction
was shown to proceed under an atmosphere of N2 and under air, ruling out oxidation by air as the
mechanism, and the authors propose a hypothetical mechanism via a di(pyrazolyl) sulfite intermediate
(Scheme 18b).
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Scheme 18. (a) Reaction conditions and substrate scope for the thionyl chloride-mediated
homocoupling of substituted pyrazolones. (b) The reaction is proposed to proceed via a di(pyrazolyl)
sulfite intermediate.

Two recent reports describe the oxidative homocoupling of 4-amino-1,2,4-triazoles, yielding
the corresponding symmetrical bis(triazoles). Yang and coworkers used the oxidant α-hydroxy-α-
methylthioacetophenone to accomplish the homocoupling of five substituted 4-amino-1,2,4-triazoles
in yields of 59–73% (Scheme 19a) [47]. Likewise, Zhao and coworkers accomplished the homocoupling
of the unsubstituted 4-amino-1,2,4-triazole in 90% yield using sodium dichloroisocyanurate (SDCI) as
the oxidant (Scheme 19b) [48].

Photocatalysis represents an alternative metal-free approach to pyrazole homocouplings. An
early report of the photochemical oxidation of pyrazolidinones led to a homocoupled product [49].
More recently, Meng and coworkers used photocatalysis to accomplish the homocoupling of a
bromopyrazolone [50]. By irradiating a solution of 4-bromo-3-methyl-1-phenyl-4,5-dihydropyrazol-
5-one (PyHBr) and naphthalene in acetonitrile with a 300 W high-pressure mercury lamp, the authors
obtained the homocoupled product in 64% yield (Scheme 20a). Interestingly, the authors discovered
that by substituting phenathrene for naphthalene the dehydrogenated product was favored over the
hydrogenated product, and the use of other arenes such as anthracene, benzene, acenaphthylene or
indole did not lead to homocoupling at all. As the reaction relies on certain arenes and does not proceed
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under UV irradiation alone, the authors ruled out the homolytic bond cleavage of the carbon–bromine
bond as the mechanism and instead proposed the mechanism shown in Scheme 20b.Molecules 2020, 25, x FOR PEER REVIEW 20 of 32 
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Scheme 20. (a) Photochemical oxidation of pyrazolidinones leads to different products depending
on the identity of the auxiliary arene (naphthalene vs. phenanthrene). (b) The proposed reaction
mechanism reflects the fact that UV irradiation alone is not sufficient to catalyze the homocoupling [34].
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Finally, a recent report of the decarboxylative fluorination of various heterocycles using Selectfluor
contained the unexpected observation of homocoupling under certain conditions [51]. Specifically,
substituted pyrazole-5-carboxylic acids and indole-2-carboxylic acids underwent homocoupling
along with decarboxylative fluorination, yielding the corresponding fluorinated dimers (Scheme 21a).
The homocoupling occurred in high yields (70–82%) for the pyrazole-based substrates and in moderate
yields (38–58%) for the indole-based substrates (Scheme 21b). In the case of indole-2-carboxylic
acid, the biproducts 2-fluoroindole and oxindole were generated along with the dimer (Scheme 21c).
Mechanistic investigations indicated that neither of these biproducts is an intermediate in the dimer
formation process, but the mechanism of the homocoupling was not elucidated.Molecules 2020, 25, x FOR PEER REVIEW 22 of 32 
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the formation of byproducts and the dimer.

3.3. Applications in MOFs

The pyrazole functional group can coordinate with a transition metal as a ligand through
the lone pair on the non-protonated nitrogen atom (Figure 2a) [52,53]. When the other nitrogen



Molecules 2020, 25, 5950 21 of 30

atom in the ring is deprotonated (to yield the pyrazolate), both nitrogen atoms can coordinate with
metals, allowing pyrazolate to bridge metal centers and give rise to clusters, chains or coordination
polymers (Figure 2b) [54,55]. Bipyrazolate ligands can coordinate up to four different metal centers
(Figure 2c), making possible the construction of extended three-dimensional structures known as
metal–organic frameworks (MOFs) [56]. Due to their crystallinity and internal porosity, metal–organic
frameworks have shown promise in diverse applications, including gas separations [57], sensing [58],
conductivity [59], drug delivery [60] and energy storage [61]. Numerous metal–organic framework
structures have been designed and synthesized using poly(pyrazole) ligands as building blocks,
as was reviewed by Galli and coworkers in 2016 [62]. Here we give an overview of recent studies on
pyrazole-based metal–organic frameworks that have been published since the 2016 review, with an
emphasis on 4,4′-bipyrazole (H2bpz) and its derivatives.Molecules 2020, 25, x FOR PEER REVIEW 23 of 32 
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coworkers observed a similar flexibility in the H2bpz-based framework Co(bpz), which undergoes 
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H2Me4bpz to construct a series of Cu(I)-based coordination networks, including two novel metal–
organic frameworks (Figure 4) [65]. These two frameworks contain halide and cyanide anions that 
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The unsubstituted H2bpz ligand has recently been used to form two new metal–organic frameworks
(Figure 3). Volkmer and coworkers reacted H2bdp with a mixed-valent iron precursor to yield a
nonporous metal–organic framework with Fe(II) ions as the framework nodes (CFA-10-as), and the
authors were then able to convert the framework to a porous form upon thermal treatment (CFA-10) [63].
This single-crystal-to-single-crystal transformation was shown to result from the thermal decomposition
of formate ions in the pores of CFA-10-as, resulting in a final porous structure that could not be achieved
directly through solvothermal synthesis. A subset of these authors also described the synthesis of
another H2bpz-based metal–organic framework, this time with Mn(III) ions as the framework nodes [64].
The structure of this framework, named Mn-CFA-6, was shown to contain two crystallographically and
structurally distinct manganese centers, and the framework exhibited structural flexibility in response
to the removal of guest molecules. Recently, Lee and coworkers observed a similar flexibility in the
H2bpz-based framework Co(bpz), which undergoes reversible structural changes in response to gas
adsorption or temperature change [28].
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The tetramethylated bipyrazole ligand, 3,3′,5,5′-tetramethyl-4,4′-bipyrazole (H2Me4bpz),
is another popular building block for metal-organic frameworks. In 2015, Sun and coworkers
used H2Me4bpz to construct a series of Cu(I)-based coordination networks, including two novel
metal–organic frameworks (Figure 4) [65]. These two frameworks contain halide and cyanide anions
that coordinate with the Cu(I) nodes, along with the Me4bpz2− ligands. The authors investigated
these materials as heterogeneous catalysts for the azide–alkyne click reaction, because of the high
density of Cu(I) sites present in the frameworks, by reacting benzyl azide with phenylacetylene in
the presence of 1 mol % of a given metal–organic framework. The frameworks proved to be very
effective catalysts for the formation of the substituted triazole, with the framework [Cu6(Me4bpz)6

(CH3CN)3(CN)3Br]•2OH•14CH3CN leading to a 99% yield within 2 h. The authors ascribed this
excellent catalytic performance to the framework’s high porosity and large pore diameter, which allow
the Cu(I) active sites to be accessible to the reactants. The substrate scope for compound [Cu6(Me4bpz)6

(CH3CN)3(CN)3Br]•2OH•14CH3CN was shown to include a variety of terminal azides and alkynes.
This work was the first investigation of Cu(I)-based metal–organic frameworks as catalysts for click
reactions, and the results indicate that this class of materials holds great promise in heterogeneous
azide–alkyne catalysis.
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from reference [65]. ©2015 ACS.

Chen and coworkers attempted to increase the hydrophobicity of the hallmark metal–organic
framework MOF-5 by substituting the traditional 1,4-benzenedicarboxylic acid (H2bdc) ligand with
combinations of H2Me4bpz, naphthalene-1,4-dicarboxylic acid (H2ndc) and biphenyl-4,4′-dicarboxylic
acid (H2bpdc) [66]. The authors synthesized one known framework (MAF-X10) and two new
frameworks (MAF-X12 and MAF-X13) from these building blocks (Figure 5). The three metal–organic
frameworks were investigated for fluorocarbon adsorption, using CHClF2 as a representative adsorbate,
and all three were shown to possess high adsorption capacities for CHClF2. Grand canonical Monte
Carlo simulations indicated that the strongest CHClF2 binding site in each framework was located in a
hydrophobic pocket formed by two methyl groups from Me4bpz2− ligands and the aromatic face of
an adjacent phenyl ring, bearing out the authors’ hypothesis that increased ligand hydrophobicity
would be beneficial for fluorocarbon adsorption. The compound MAF-X13 was shown to have the
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largest saturation uptake and the largest working capacity for CHClF2 adsorption, due to its type-IV
isotherm shape.Molecules 2020, 25, x FOR PEER REVIEW 25 of 32 
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Figure 5. (a) Linkers used to make hydrophobic MOF-5 analogues. (b) Crystal structures of MAF-X10,
MAF-X12 and MAF-X13 highlighting the pore surface. Adapted with permission from ref. [66].

Recently, Cao and workers took advantage of the differences in dative bond strength
between carboylate ligands and azolate ligands to partially deconstruct mixed-ligand metal–organic
frameworks [67]. The authors synthesized a metal–organic framework from a Zn(II) source and
a mixture of H2Me4bpz and 1,4-benzenedicarboxylate ligands, and then used a pH 13 ammonia
solution to dissolve the Zn–carboxylate bonds but not the Zn–pyrazolate bonds. This treatment led
to a delamination of the three-dimensional framework, yielding two-dimensional sheets composed
of Zn(II) nodes linked by Me4bpz2

− ligands. The authors also applied this process to an analogous
Zn–triazolate–thiophenedicarboxylate MOF and used the resulting 2D Zn–triazolate sheets as building
blocks to construct a library of new 3D frameworks, by combining the 2D sheets with various
dicarboxylate linkers (Figure 6). This creative approach to metal–organic framework synthesis highlights
the advantages of the strong metal–ligand bonding inherent to bipyrazole ligands like H2Me4bpz.
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Figure 6. (a) A metal–organic framework composed of sheets of Zn–azolate bonds pillared by
Zn–carboxylate bonds undergoes alkaline treatment to break the Zn–carboxylate bonds only. (b) This
treatment leaves behind Zn-azolate sheets, which can be thought of as giant supramolecular building
layers (SBLs). (c) These layers can then be reassemble using different dicarboylate pillars to yield a
variety of metal–organic frameworks. Adapted with permission from reference [67]. ©2015 ACS.
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The sheer number of other recent examples of H2Me4bpz-based metal–organic frameworks
emphasizes the utility of this bipyrazole ligand. These frameworks combine H2Me4bpz with various
transition metals, including manganese [68], iron [69], cobalt [68,70,71], nickel [68], copper [72]
zinc [73], silver [74–76] and cadmium [68,77,78], yielding a diverse array of framework topologies
and functionalities. These frameworks were investigated for applications ranging from antibacterial
therapy [76] to the photocatalytic degradation of organic pollutants [71], and chemists are sure to push
the boundaries of H2Me4bpz-based metal–organic frameworks further in the coming years.

The dimethylated analogue of H2bpz is used in metal–organic framework synthesis less frequently
than the tetramethylated analogue, but two recent studies show that H2Me2bpz can be used to form a
variety of metal–organic frameworks. In 2017, Galli and workers reported two new metal–organic
frameworks based on the reaction of H2bpz with a cobalt source and with a zinc source, respectively
(Figure 7a). [79] The authors compared these two H2Me2bpz frameworks with the isostructural
frameworks M(bpz) (M = Co, Zn) through techniques including gas adsorption and ab initio simulation,
revealing that the methylated frameworks bound guest CO2 molecules more strongly than the
nonmethylated frameworks but accommodated fewer overall guests because of the increased steric
bulk of the H2Me2bpz ligand, relative to H2bpz. Additionally, in 2018 a subset of these authors reported
a 3D polymeric network composed of Hg(II) ions linked by Me2bpz2

− ligands (Figure 7b). [80]
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©2017 ACS. (b) The 3D polymeric network Hg(Me2bpz), with the void spaces highlighted. Adapted
with permission from reference [80].

Finally, Galli and coworkers recently demonstrated the power of introducing functional groups
onto the H2bpz scaffold, functionalizing this ligand with either NO2 or NH2 groups (Figure 8a) [81].
The authors incorporated these H2bpz derivatives into a series of Zn(II)-based metal–organic
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frameworks, each containing a different mixture of ligands. The authors found that frameworks
containing a mixture of H2bpz and H2bpzNH2 ligands had the best gas adsorption properties in
the context of N2/CO2 separations. The following year, Rossin and coworkers used the same three
ligands to construct a series of Co(II)-based metal–organic frameworks (Figure 8b) [82]. The authors
found that while the unfunctionalized Co(bpz) had higher O2 gas uptake relative to Co(bpzNO2) and
Co(bpzNH2), ligand functionalization could tune the catalytic selectivity and performance of these
materials when they were used for cumene oxidation and decomposition.
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4. Conclusions

Despite the utility of bipyrazoles and other symmetric heterocycles as building blocks in
coordination chemistry, traditional routes to these molecules were laborious, multi-step syntheses with
poor atom economy and redox efficiency. In recent years, a number of improved routes to bipyrazoles
have been published, employing an efficient homocoupling step that forms an aryl-aryl bond between
the two halves of the product. Some of the most promising pyrazole homocoupling reactions rely
on transition metal catalysts, especially palladium, as described above. We have also described
other unique homocoupling strategies that proceed in the absence of metal catalysts, relying on UV
irradiation, aerobic oxidation, or other diverse mechanisms.

We anticipate that the coupling strategies provided in this review will allow metal–organic
framework chemists to access a greater variety of bipyrazole-type ligands, beyond the small set
of H2bpz derivatives described herein. As is obvious from the above studies, bipyrazole-based
metal–organic frameworks are promising materials for a number of applications, especially gas
adsorption and heterogeneous catalysis. The ability to diversify and functionalize bipyrazole ligands
will afford chemists greater control over the resultant metal–organic framework properties, leading to
even better adsorbents and catalysts.
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