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Abstract: Recent progress in reducing malaria cases and ensuing deaths is threatened by factors
like mutations that induce resistance to artemisinin derivatives. Multiple drugs are currently in
clinical trials for malaria treatment, including some with novel mechanisms of action. One of these,
MMV390048, is a plasmodial kinase inhibitor. This review lists the recently developed molecules
which target plasmodial kinases. A systematic review of the literature was performed using CAPLUS
and MEDLINE databases from 2005 to 2020. It covers a total of 60 articles and describes about one
hundred compounds targeting 22 plasmodial kinases. This work highlights the strong potential of
compounds targeting plasmodial kinases for future drug therapies. However, the majority of the
Plasmodium kinome remains to be explored.
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1. Introduction

Malaria is the deadliest parasitic disease with an estimated 405,000 deaths and 213 million cases in
2018 [1], mainly in Africa. Of the estimated victims, 67% are children below five years old. The disease
is caused by five Plasmodium species: P. falciparum (responsible for most of the deaths), P. vivax and three
less important species, P. ovale, P. malariae and P. knowlesi. With the use of artemisinin-based combined
therapies (ACT), combining an artemisinin derivate and another antimalarial drug, and vector control
measures, the Word Health Organization hoped that 2020 would see a 40% reduction in malaria cases
and deaths compared to 2015 [2]. However, this objective is not going to be achieved.

The vector, mosquitoes from the Anopheles genus, is becoming resistant to pyrethroid insecticides
(used in long-lasting insecticide nets) in Africa [3]. Moreover, mutations on the Pf kelch13 protein,
plasmodial protein recently described to be involved in hemoglobin endocytosis mechanisms [4],
mediate resistance to artemisinin and its derivates. Pf kelch13 mutations are linked [5]:

• In vitro to a decreased susceptibility during a ring stage assay,
• In vivo to a delayed parasitic clearance.

Increased prevalence of these mutations in South-East Asia is leading to clinical failures of ACT
treatments [6]. Millions of people in Africa are threatened: recent researches indicate the appearance of
in vitro artemisinin resistance in Rwanda [7], and the spread of city-dwelling A. stephensi in Africa [8].
Thus, research and development aimed at finding new drug therapies with novel mechanisms of
action is a priority. Medicines for Malaria Venture, a non-profit organization, aims to develop new
antimalarial drug therapies. To guide drug discovery, target candidate profiles (TCP) have been defined
for antimalarial molecules setting clear goals for new therapy [9]. There are five TCP: blood-stage killer,
hypnozoites killer, hepatic schizonts killer (chemoprotection), gametocytes killer, and transmission
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blocker. The best compounds are the one following multiple or every TCP. One of these drug candidates,
MMV390048, currently in phase II clinical trial, is the first plasmodial kinase inhibitor to reach this
stage, opening the way for antimarial drugs targeting this type of protein.

Kinases are proteins catalyzing the addition of a phosphate group on a substrate, like a simple
molecule or a protein. In the latter, the kinase, designed under the term of “protein kinase”, will modified
the activity of the targeted protein after addition of the phosphate group. The complete set of encoded
protein kinases in the genome of an organism is defined as a kinome. The human kinome consists of
518 encoded kinases [10] that play a role in the regulation of cellular processes, and whose dysregulation
is involved in numerous cancers [11]. The two first human kinase inhibitors approved by the Food and
Drug Administration (FDA) were rapamycin in 1999 (indicated for immunosuppression) and imatinib
in 2001. Importantly, the small molecule imatinib inhibits the BCR-Abl chimeric protein, found mainly
in chronic myeloid leukemia. This finding accelerated research on human kinase inhibitors and as
of 1 March 2019, 48 small molecules designed as human kinase inhibitors were approved by the
FDA [12], the majority of them used in oncology. According to PKIDB (a website tracking human
kinase inhibitors in clinical trials), as of July 2020, 253 human kinase inhibitors were currently in clinical
trials [13].

Mapping of the P. falciparum kinome, depending on the literature source, indicates 85 (65 for
eukaryotic protein kinases (ePKs) and 20 for ePKs-related proteins) [14] or 99 [15] encoding genes,
and a significant number of these proteins do not possess a human ortholog [16]. These kinases
are highly conserved among the different Plasmodium species. Moreover, 36 plasmodial kinases
(in P. falciparum) are identified as likely to be essential for the asexual blood-stage [17], and 15 kinases
are known to be involved in P. berghei development in mosquitoes [18]. Thus, developing selective
plasmodial kinase inhibitors could lead to multiple new antimalarial drugs with new mechanisms
of action.

This review of the literature lists molecules proven to be inhibitors of plasmodial kinases and
describes their properties.

2. Methods

This systematic review complies with the PRISMA statement defining the PRISMA checklist and
PRISMA flowchart [19].

2.1. Data Sources and Search Parameters

Two databases were used: Scifinder (http://scifinder.cas.org, CAPLUS and MEDLINE database)
and Pubmed (https://pubmed.ncbi.nlm.nih.gov/, MEDLINE database). In both databases, the keywords
and Boolean operator “kinase inhibitor AND malaria” were used. The advanced search options were
set to “journal” for document type and English or French for language. The research was conducted
on articles published from 1 January 2005 to 1 August 2020.

2.2. Article Selection

Articles were selected by one reviewer, with two rounds of selection. During the first round,
for each database set, articles’ titles and abstracts were assessed to eliminate irrelevant material (outside
medicinal chemistry or biological fields, non-malaria related, non-filtered reviews, duplicates). To be
discussed in the following review, articles had to follow the inclusion and exclusion criteria listed in
Table 1.

http://scifinder.cas.org
https://pubmed.ncbi.nlm.nih.gov/
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Table 1. Inclusion and exclusion criteria used.

Parameter Inclusion Exclusion

Compound’s target A plasmodial kinase clearly
defined as target

Target is not a plasmodial kinase or target is
undefined

Study type

Medicinal chemistry studies
Biology studies listing

properties of one or more
chemical compounds

In silico studies without biological tests
Natural extract studies without active

compounds determined
Biological studies on protein

pathways/phenotypic changes using only
genes disruption or polypeptides

3. Results

Four hundred and fifty-six articles from Scifinder (after applying the “remove duplicates” tool)
and 366 articles from Pubmed were obtained. During the first round of selection, 348 Scifinder articles
and 286 Pubmed articles were excluded.

The two sets were combined, and duplicates removed, leaving 121 articles. During the second
round of selection, 64 articles were excluded leading to 57 selected articles; three additional articles
were added in the dataset while searching for further protein information.

This process is summarized in Scheme 1 in accordance with the PRISMA flow diagram [19].
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4. Discussion

4.1. Molecules Targeting P. falciparum Calcium-Dependant Protein Kinases (PfCDPKs)

CDPKs can be found in plants and alveolate protists including Apicomplexan parasites like T. gondii
and Plasmodium spp [20]. They belong to the calmodulin-dependent kinases (CaMK) family [14].
The CDPK proteins, possessing seven members (CDPK1 to CDPK7), are involved in multiple parasitic
stages [21], and constitute interesting targets as they are not found in humans. Only inhibitors for
Pf CDPK1 and Pf CDPK4 have been described in the literature.

4.1.1. Molecules Targeting P. falciparum Calcium-Dependent Protein Kinase 1 (Pf CDPK1)

As discovered by Zhao et al. [22], Pf CDPK1 is involved in the invasion of red blood cells (RBC) by
merozoites and their egress through activation of a protein motor complex [23,24]. More recent studies



Molecules 2020, 25, 5949 4 of 35

indicate the role of Pf CDPK1 in gametogenesis, mosquito infection [25], and regulation of Pf PKA
(P. falciparum (cAMP)-dependent protein kinase) [26]. Pf CDPK1 was assumed to be an essential protein
for Plasmodium since knocking out the gene during blood-stages was impossible [24]. Bansal et al.,
starting from a P. falciparum strain with a mutant Pf CDPK1 having reduced activity, recently managed
to knock out completely Pf CDPK1 [25].

In 2008, Green et al. [23] used compound K252a (Figure 1, compound 1) to study the motor
complex regulated by Pf CDPK1. This indolopyrrolocarbazole displayed an IC50 of 45 nM toward
Pf CDPK1 and was able to reduce RBC invasion by merozoites with an EC50 of 348 nM.
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Kato et al. screened a library of 20,000 compounds on Pf CDPK1 [24]. The most active class of
compounds was a series of 2,6,9-trisubstitued purines and the most potent molecule, called purfalcamine
(Figure 1, compound 2), showed an IC50 value of 17 nM on Pf CDPK1. EC50 in a parasitic proliferation
assay on multiple P. falciparum strains including a multi-resistant W2 strain was determined, as well as
cytotoxic values on multiple cell lines. However, the compound lacked activity in vivo in the four-day
Peter’s test [27]: only a delay in onset of parasitemia was observed. Other compounds from the
2,6,9-trisubstituted purine series lacked Pf CDPK1 affinity or P. falciparum in vitro activity when the
fluorine atom was replaced by a carboxylic acid or a tert-butoxy group. P. falciparum in vitro activity
was also suppressed when the 4-aminocyclohexyl was replaced by a 4-hydroxycyclohexyl group.

In 2009, Lemercier et al. identified two PfCDPK1 inhibitors after a screening of 54,000 compounds [28]:
the indolizine 3 and the imidazopyridazine 4 (Figure 2). 3 displayed a Ki of 262 nM on Pf CDPK1, while 4
possessed a Ki of 37 nM on Pf CDPK1 and an IC50 on P. falciparum of 5.7 µM. Out of 46 human kinases
tested, compound 3 inhibited two human kinases and compound 4, five (at 10 µM concentration).
Modulation work focusing on the phenolic hydroxyl group of 4 showed a tolerance on the Ki value
when this 3-hydroxyl was replaced with H-bond acceptors like 3,4-methylenedioxyl or 3-methoxyl,
but in the latter accompanied with a 4-hydroxyl substitution.Molecules 2020, 25, x FOR PEER REVIEW 5 of 35 
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Screening of 35,000 compounds by Chapman et al. [29] displayed imidazopyridazine as a promising
series, in line with the discovery of compound 4. An extensive Structure-Activity Relationship (SAR)
work started on this scaffold (Table 2). Chapman et al. [30] explored the side chains at positions 3 and 6
of the imidazopyridazine core. Work on the R1 substituent largely targeted the introduction of cyclic
amines, while work on R2 addressed para- or meta-functionalized phenyls, pyridines, or pyrimidines.
Compound 5 (Table 2) displayed interesting results with an IC50 on Pf CDPK1 of 13 nM, an IC50 on
Pf 3D7 of 400 nM, and the ability to reduce by 46% the parasitemia, in a P. berghei mouse model per os
during a four-day Peter’s test. Finally, 5 showed inhibition toward 12 human kinases (out of 73 tested)
ranging between 50% and 80% at 1 µM.

Table 2. Imidazopyridazine inhibitors of Pf CDPK1.
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Large et al. continued this work with the introduction of N-substituted imidazoles at position 3 of
the imidazopyridazine core while modulating position 6 with substituents like aminocyclohexyl or
N-methylpiperidine [31]. This resulted in the synthesis of compound 6 (Table 2) showing an improved
activity on Pf 3D7 compared to compound 5 and improved ligand-lipophilicity efficiency (LLE) with
a score of 6, compared to 4.5 for compound 5. Inhibition assays on human kinases were not performed
on compound 6, but other compounds from this series showed lower selectivity than compound 5.

The last work on this series was done by Chapman et al. [32] using docking studies on the T.
gondii CDPK1 ortholog structure to guide them. Starting from 5, they started by modulating R2

with N-substituted 2-aminopyrimidines, hoping for improved in vivo results. Compound 7 (Table 2)
emerged as the best compound with improved in vitro parameters. However, low PAMPA (parallel
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artificial membrane permeability assay) permeability (4 Papp/nms−1) led to poor results in vivo,
with only 4% reduction of parasitemia in the four-day Peter’s test [27]. Out of 66 human kinases
tested at 1 µM concentration, 7 inhibited nine human kinases by at least 80%. Additional work was
then done: the side chain at position 6 was modulated with different cyclic amines, and at position
3, the fluorine atom position on both cycles was explored along with the nature of the two cycles
(phenyls or pyridines). This led to compound 8 (Table 2) with slightly lower activity in vitro than 7.
The reduction of parasitaemia in P. berghei mouse model was slightly better at 51% than that of 5 at
46% (Table 2).

In 2016, Crowther et al. screened 14,000 compounds on multiple plasmodial kinases including
Pf CDPK1 [33]. One hundred and eighty-one molecules showed a sub-micromolar IC50 on Pf CDPK1
and 12 compounds grouped in four chemical series displayed an IC50 equal to or below 20 nM. The best
compounds from each series are represented in Figure 3.
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4.1.2. Molecules Targeting Plasmodium falciparum Calcium-Dependent Protein Kinase 4 (Pf CDPK4)

Pf CDPK4 is a key enzyme for the exflagellation of gametocytes, a mechanism leading to the
formation of microgametocytes, the male gametocytes, in the mosquito midgut [34–36].

In 2012, Ojo et al. described the properties of BKI-1 (compound 13), a disubstituted
pyrazolo[3,4-d]pyrimidin-4-amine [36] (Figure 4). 13 displayed an IC50 on Pf CDPK4 of 4.1 nM,
an IC50 on Pf CDPK1 of 136 nM, an EC50 toward asexual stages of 2 µM (unsurprisingly since CDPK4 is
important in the sexual stage) and was able to inhibit P. falciparum exflagellation with an EC50 of 35 nM.
13′s selectivity was assessed with IC50 measures on HsABL and HsSRC, two human kinases, who were
superior to 50 and 20 µM, respectively. Lastly, on a P. berghei-infected mouse model, 13 was able to
completely inhibit the formation of oocysts in mosquitoes at the intraperitoneal dose of 10 mg/kg.

Ojo et al. then carried out minor pharmacomodulations on 13 [37] including the replacement
of the piperidine with a N-methylpiperidine, morpholine or pyrane heterocycle, replacement
of the naphthalene by a quinoline and replacement of the methoxy group by an ethoxy
group. Activities on the enzyme and the parasite were maintained for all molecules except the
quinoline analog without a methoxy group. Compound 14, the N-methypiperidine analog of 13
(Figure 4) showed similar in vitro activity parameters to 13 but clear improvements in in vitro and
in vivo absorption-distribution-metabolism-elimination-toxicology (ADMET) parameters (Table 3).
Selectivity against human kinases was conserved as only one protein out of the 80 assessed was
found to be inhibited. The only downside to 14 was its hERG channel activity, which was reduced,
from 0.767 µM to more than 10 µM, by replacing the N-methylpiperidine with a pyrane.
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Table 3. ADMET parameters of compound 13 and 14 [37].

In Vitro In Vivo

Compound
Solubility

(µM) in Buffer
pH 6.5

t1/2 (min)
Human Liver
Microsome

AUC 1

(µM·min) at
10 mg/kg per

os

AUC 1

(µM·min) at
10 mg/kg

Intraperitoneal

t1/2 (h) at
100 mg/kg

per os

13 47 - 57 317 -
14 82 >60 430 863 13.5

1 AUC = Area Under Curve.

This work was followed by a massive medicinal chemistry study by Vidadala et al. focused on the
modulation of the lateral chains of the pyrazolo[3,4-d]pyrimidin-4-amine core [38]. ATP binding sites of
both Pf CDPK1 and Pf CDPK4 are very similar to the one found in T. gondii CDPK1. Thus TgCDPK1 was
used for docking studies with previously described Pf CDPK4 inhibitors to guide pharmacomodulations.
The C3 side-chain was the first to be modulated while keeping an isopropyl or tert-butyl group as
N-substituent. The best C3 group was then used during the modulation of the N-substituent. A scaffold
hopping strategy was also carried out, changing the pyrazolopyrimidine to an imidazopyrazine core.
This led to compound 15 with an interesting dual activity on Pf CDPK1 and Pf CDPK4 (Figure 4) and
a conserved selectivity versus HsSRC (IC50 > 10 µM). The scaffold hopping strategy was successful,
as illustrated by compound 16. The authors stated that they are now seeking to enhance the metabolic
stability of their compounds in vivo, since they need to remain in the bloodstream for a period of three
to four weeks to have their effect on gametocytes.

In 2016, Huang et al. used on 5-aminopyrazole-4-carboxamides, known to work on Toxoplasma
gondii and Cryptosporidium parvum CDPK1 (orthologs of Pf CDPK4), to obtain new Pf CDPK4
inhibitors [39]. They synthesized 28 compounds; most of which have IC50 toward Pf CDPK4 below
100 nM. The best compound regarding Pf CDPK4 inhibition was 17, while 18 was interesting with
a dual Pf CDPK1/4 inhibition (Figure 5). These two compounds did not possess any activity on hERG
channels. 17 was selective as it possessed an IC50 superior to 30 µM against HsSRC. Work on this series
is currently focused on C. parvum therapy [40].
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In the Crowther et al. screening [33], 55 compounds showed an activity below the micromolar
range against Pf CDPK4. The best compound (19) displayed an IC50 of 21 nM (Figure 5).

The only thing that prevents Pf CDPK4 inhibitors from entering more advanced pre-clinical
studies is the long-term bioavailability they would need to be active against gametocytes. Moreover,
finding from Vidadala et al. [38] and data from screening by Crowther et al. [33], identified compounds
providing dual inhibition of Pf CDPK1 and Pf CPDK4, offering the prospect of compounds with action
on two stages out of three of the Plasmodium cycle.

4.2. Molecules Targeting Plasmodium falciparum Choline Kinase (PfCK)

Choline kinase is an enzyme involved in the synthesis of phosphatidylcholine; phospholipid most
frequently found in P. falciparum. It transforms choline into phosphocholine, and is also involved in the
synthesis of phosphatidylethanolamine, the second most common phospholipid [41]. Inhibition of
Pf CK has been shown to reduce parasite growth in vitro [42,43]. The active sites of Pf CK have 69%
similarity with the human enzyme HsCKα1 [44].

In 2007, Choubey et al. [45] studied hexadecyltrimethylammonium bromide (compound 20,
Figure 6). It displayed in vitro, at 10 µM and 20 µM, parasitic growth inhibition of 62% and 81%,
and reduced phosphocholine synthesis by 57% at 10 µM. In a P. yoelii mouse model, it was able to
reduce parasitemia by almost 50% after four days of intravenous doses of 5 mg/kg.
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A screening by Crowther et al. on around 5000 commercially available small molecules led to the
discovery of three hits against Pf CK [46] (compounds 21, 22 and 23, Figure 7).

While studying Pf CK metabolic activities, Serrán-Aguilera et al. used two compounds (24 and
25, Table 4) to inhibit the enzyme [41], which possessed a Ki between 30 and 40 µM (when assessed
for choline conversion to phosphocholine). To explore the activity of these pyridinium salts on Pf CK,
Schiafino-Ortega et al. assessed 1,2-diphenoxyethane salts with a symmetrical structure [47] close to 24
and 25. Bisquinolinium bromide salts derivatives were the most potent with submicromolar activity
on P. falciparum. However, their activity on the Pf CK enzyme was found to be above 2 µM for all this
series, raising doubts about their real mechanism of action. The best compound of this series was
compound 26, with an improved Pf CKCho IC50 (formation of phosphocholine is measured) reduced
from 103 to 2.4 µM, but it no longer showed P. falciparum in vitro activity (Table 4). Compound 26 was
not selective as it also inhibited the human HsCKα1 enzyme.
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Most of the molecules presented above (from 21 to 25) probably target more than just Pf CK,
as enzyme IC50 values not in line IC50 on the parasite: 24 is the best example of such behavior.
Furthermore, the design of these compounds needs to take into account the human choline kinase.
Thus, Pf CK inhibitors are potentially valuable compounds, they are still in the early stages of
development and promising hits have yet to be discovered.

4.3. Molecules Targeting Plasmodium falciparum Casein Kinase 2 (PfCK2)

Casein kinases are serine/threonine protein kinases found in eukaryotic organisms. Two casein
kinases can be found in P. falciparum: CK1 and CK2. Pf CK2 is thought to be a key enzyme during the
asexual blood-stage of the parasite. It has been shown that many proteins are possibly phosphorylated,
and thus have their activity regulated, via Pf CK2 during the asexual blood-stage [48]. Both Pf CK1 and
Pf CK2 have been demonstrated to be essential for the asexual blood-stage [17,49].

While studying the Pf CK2 catalytic domain, Ruiz-Carillo et al. used CX-4945 (Figure 8, compound
27) [50], a human CK2 inhibitor currently in multiple phase II clinical trials in oncology [51], to inhibit
Pf CK2 with an IC50 of 13.2 nM.
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4.4. Molecules Targeting Plasmodium falciparum Cyclin-Dependent-Like Kinase (PfCLK)

The CLK family includes four enzymes (Pf CLK1 to Pf CLK 4) involved in the phosphorylation
(and the activity modulation) mainly of serine-arginine-rich proteins found in spliceosomes [14,52,53].
Spliceosomes are complexes of proteins involved in the removal of introns in pre-messenger RNA.
All Pf CLKs are considered essential for the asexual blood-stage [17]. Inhibition of CLKs was first
linked to a schizonticide and gametocytocidal effect [53]. A more recent study on Pf CLK3 showed that
inhibition of this protein affected all three stages of the malaria cycle [54].

In 2014, Kern et al. studied the effect of inhibiting Pf CLKs [53]. The authors did not manage to
disrupt the genes directly and therefore turned to chemical compounds. They screened 63 HsCLK
inhibitors against Pf CLKs. Two compounds, 28 and chlorhexidine (29) showed interesting results
regarding Pf CLK inhibition and Pf 3D7 growth inhibition; results are summarized in Table 5.

Table 5. Summary of in vitro properties of Pf CLK inhibitors from Kern et al. [53].

Compound
Pf3D7

IC50 (µM)
EIA 1 IC50

(µM)

% Inhibition
(at Pf3D7 IC50 Concentration)

PfCLK1 PfCLK2 PfCLK3 PfCLK4
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In 2017, Bendjeddou et al. tested an imidazopyridazine series on multiple human and parasitic
kinases, including Pf CLK1 [55]. Two compounds (30 and 31, Figure 9) showed activity on Pf CLK1
below 100 nM but lacked selectivity as they also targeted human kinases, in some cases with IC50

below 100 nM.
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More recently, Alam et al. screened 30,000 compounds on Pf CLK1 and Pf CLK3 [54]. TCMDC-
135793 (compound 32) and TCMDC-135051 (compound 33) were among the most potent and selective
compounds on Pf CLK1 and Pf CLK3, respectively (Figure 10). Target was confirmed for 33 with Pf Dd2
strain possessing a mutant Pf CLK3 that showed an increased IC50 value. Compund 33 was active at
all stages, inhibiting:

• Schizont development in blood-stage,
• Sporozoite invasion and development in the liver stage,
• Gametocyte development,
• Exflagellation in the mosquito midgut.
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SAR work associated with 33 was carried out by Mahindra et al. [56]. Modulations targeting the
substituents of the phenyl ring at position 2 of the pyrrolo[2,3-b]pyridine core led to analogs possessing
an IC50 against Pf CLK3 below 100 nM. However, micromolar activity was found against Pf 3D7
when the diethylamine was changed to dimethylamine, primary amine or morpholine substituents.
The position of the methoxy substituent appeared to be important for activity. Similar modifications
were carried out on the other phenyl ring: removing the isopropyl substituent or replacing it by methyl
led to compounds with micromolar activities against Pf 3D7, and removing the carboxylic acid or
changing it to an ethyl ester resulted in coumpounds with micromolar activity on Pf CLK3. Replacing the
carboxylic acid to a tetrazole, a known bioisoster, led to compound 34 showing a slight improvement
in Pf CLK3 activity, with an IC50 of 19 nM but with an increased Pf 3D7 IC50 to 270 nM. 34 stability
was conserved in vitro in mouse liver microsomes with an intrinsic clearance at 2.32 mL/min/g of liver,
compared to 33 with 1.33.

4.5. Molecules Targeting Coenzyme A Synthesis Pathway Kinases: Plasmodium falciparum Pantothenate
Kinase and Dephospho-Coenzyme A Kinase (PfPanK & PfDPCK)

Coenzyme A is a molecule found in many metabolic pathways in eukaryotic life forms.
In P. falciparum, coenzyme A is synthesized in five steps starting from pantothenate; two of these steps
involve kinases:

• the first step, transforming pantothenate into 4′-phosphopantothenate, is catalyzed by Pf PanK,
• the last step, transforming dephospho-coenzyme A into coenzyme A, is catalyzed by Pf DPCK.

While the synthesis and the function of coenzyme A are well preserved around all organisms that
possess it [57], the enzymes’ coding sequences can differ.

Studies on the inhibition of Pf PanK focused on the synthesis of pantothenate (Table 6, compound 35)
analogs able to competitively inhibit 4′-phosphopantothenate synthesis. Spry et al. synthesized ten
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analogs with various chains on the nitrogen atom of the amide group [58]. Compound 36 was the best
of the series, with an IC50 of 76 µM on Pf 3D7 (at 1 µM pantothenate concentration). Increasing the
pantothenate concentration increased this IC50 suggesting a mechanism of action related to the
pantothenate metabolism. Changing the terminal group of the chain or its length did not affect the
activity. Spry et al. recently investigated the synthesis of analogs of CJ-15,801 (37) [59], a trans enamide
analog of pantothenate. Modulations were focused on the ester and modifying the diol side chain.
Compound 38 showed an improved IC50 of 13 µM on Pf 3D7 compared to 36 µM for 37 but most
importantly a 100-fold decreased of the Pf PanK IC50 value. In 2017, Chiu et al. described compound
39 as a pantothenate kinase inhibitor with an IC50 of 30 nM on Pf W2 [60]. Adding more pantothenate
to the growing medium increased this value. The authors also demonstrated that 39 was able to inhibit
the Pf PanK homolog of S. cervisiae, Cab1.

Table 6. Pantothenate and pantothenate analog inhibitors of Pf PanK.

Compound P. falciparum IC50
(µM) 1,2

Pantothenate
Phosphorylation

Inhibition %
PfPanK IC50
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35) analogs able to competitively inhibit 4′-phosphopantothenate synthesis. Spry et al. synthesized 
ten analogs with various chains on the nitrogen atom of the amide group [58]. Compound 36 was the 
best of the series, with an IC50 of 76 µM on Pf3D7 (at 1 µM pantothenate concentration). Increasing 
the pantothenate concentration increased this IC50 suggesting a mechanism of action related to the 
pantothenate metabolism. Changing the terminal group of the chain or its length did not affect the 
activity. Spry et al. recently investigated the synthesis of analogs of CJ-15,801 (37) [59], a trans 
enamide analog of pantothenate. Modulations were focused on the ester and modifying the diol side 
chain. Compound 38 showed an improved IC50 of 13 µM on Pf3D7 compared to 36 µM for 37 but 
most importantly a 100-fold decreased of the PfPanK IC50 value. In 2017, Chiu et al. described 
compound 39 as a pantothenate kinase inhibitor with an IC50 of 30 nM on PfW2 [60]. Adding more 
pantothenate to the growing medium increased this value. The authors also demonstrated that 39 
was able to inhibit the PfPanK homolog of S. cervisiae, Cab1. 

Table 6. Pantothenate and pantothenate analog inhibitors of PfPanK. 

Compound 
P. falciparum IC50 

(µM) 1,2 

Pantothenate 
Phosphorylation Inhibition 

% 

PfPanK 
IC50 

 

- - - 

 

76 >85% (at 1 mM) - 

 

36 - 14 µM 

 

13 >60% (at 10 µM) 140 nM 

 

0.03 - - 

1 Pf3D7 strain except for 39, where the value shown is on PfW2 strain. 2 Pantothenate concentration in 
growth medium was 1 µM except for 39, where it was 1.14 µM. 

13 >60% (at 10 µM) 140 nM
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Concerning Pf DPCK, work by Fletcher et al. identified some potent compounds [61]. The activity
of assessed compounds on P. falciparum was counterbalanced by adding coenzyme A to the culture
medium to identified compounds active on coenzyme A synthesis. Similar rescue tests were then done
with Pf PanK or Pf DPCK substrates. Four compounds (40–43, Figure 11) showed possible activity on
Pf DPCK, affecting the blood-stage and gametocytes.
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4.6. Molecules Targeting Plasmodium falciparum FIKK Kinases (PfFKks)

FIKK kinases are named after a shared sequence of four amino acids (Phe-Ile-Lys-Lys or FIKK) and
are an important group of kinases in malaria parasites [14]. While P. vivax and P. berghei possess one
FIKK kinase, P. falciparum differs completely, possessing 20 FIKK kinases. The FIKK kinase gene may
be essential for the parasite [18], yet the role of these proteins remains unclear. Pf FKks are exported
into the RBC cytosol (except Pf FKk8), where they possibly interact with RBC’s cytoskeletal proteins
and membrane [62,63].

The only studies on inhibitors of FKks were performed by Lin et al. [64,65], who screened
compounds on Pf FKk8 and P. vivax FKk (catalytic domain only for the latter). In both articles,
emodin (44, Figure 12), an anthraquinone, showed an IC50 of 1.9 µM and 2 µM against these tested
proteins, respectively.
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4.7. Molecules Targeting Plasmodium falciparum Guanylate Kinase (PfGK)

Guanylate kinase catalyzes the transformation of (deoxy)guanosine-monophosphate into
(deoxy)guanosine-diphosphate. However, this transformation can potentially be bypassed by
P. falciparum thymidylate kinase, which can also catalyze the Pf GK reaction [66]. In their screening [46],
Crowther et al. included guanylate kinase as one of their screened proteins but used PvGK (possibly
because guanylate kinase expression is greater at liver stage [67]). Three compounds emerged as
potential hits (45 to 47, Figure 13), but as the authors stated, structural features do not currently make
them good candidates for further medicinal chemistry studies.
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4.8. Molecules Targeting Plasmodium falciparum Glycogen Synthase Kinase 3 (PfGSK3)

Pf GSK3 is possibly an essential enzyme for the parasite asexual blood-stage [17] but its implication
in biological pathways is not clear. One of its phosphorylation targets, the apical membrane antigen
1 (AMA1) [68], is required for RBC invasion by merozoites. Pf GSK-3 possesses a human ortholog,
HsGSK3. HsGSK3 hyperactivation is linked to Alzheimer’s disease, diabetes, or cancers and many
compounds inhibiting HsGSK3 have been described [69].

In 2013, Fugel et al. realized a high-throughput screening of 10,000 molecules on
Pf GSK3 [70]. Multiple molecules with a thieno[2,3-b]pyridine core were found to be hits against
Pf GSK3. Forty-three analogs from four different thieno[2,3-b]pyridines scaffolds were synthesized.
The 3,6-diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-nitriles showed the best results on
Pf GSK3 and Sus scrofa GSK3 (used for selectivity comparison). HsGSK3 IC50 and Pf NF54LUC EC50

tests were done on the best compound, 48 (Table 7).

Table 7. Thieno[2,3-b]pyridine inhibitors of Pf GSK3.
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Based on a docking study of 48 on an analogy model of Pf GSK3, Masch el al. synthesized 23
analogs of 48 with different substituents (halogens, ethers, alkylated amines, cyclic amines) at position
4 of the 2-chlorophenyl cycle [71] (Table 7). Compound 49 showed lower activity on Pf GSK3 but its
potency on in vitro parasites was improved compared to 48. Aqueous solubility was improved, going
from 1.5 µM for 48 to 4.8 µM for 49. The authors explored the possible axial chirality created by the
2-chlorophenyl cycle. They isolated the two isomers of 50 and compared their activity: (+)-50 was
active but not (−)-50. According to the authors, this difference arose from the chlorine atom position in
(−)-50, which prevented it from fitting into the protein binding pocket.

4.9. Molecules Targeting Plasmodium falciparum Hexokinase (PfHK)

Hexokinase is the first enzyme implicated in glycolysis, catalyzing the transformation of glucose
into glucose 6-phosphate. Studies showed that Pf HK inhibition (directly or indirectly by inhibiting
glucose transporters) is linked to parasite death during the asexual blood-stage [72,73]. Pf HK only
possesses 24% similarity with human glucokinase, suggesting the possibility of designing selective
Pf HK inhibitors [74].

In 2013, Harris et al. screened a small library of compounds on Pf HK [74]: three simple
benzoisothiazolinones (51–53, Table 8) and the closely-related selenium compound ebselen (54) showed
activity against Pf HK below 300 nM. These values were not completely correlated regarding EC50

against Pf 3D7, as stated by the authors, who suggested that cell permeability and off-target interaction
problems might explain the difference.

Table 8. Isobenzothiazolinones and ebselen as inhibitors of Pf HK.
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4.10. Molecules Targeting Plasmodium falciparum Mitogen-Activated Protein Kinase 2 (PfMAP2)

Mitogen-activated protein kinases (MAPK) are proteins involved in signal transduction and are
the key to many cellular processes in eukaryotic organisms. Two MAPKs are found in P. falciparum:
Pf MAP1 and Pf MAP2. Very recently, Hitz et al. defined the role of these two proteins: neither is
essential for asexual development, but Pf MAP2 is essential for exflagellation, a mechanism that appears
to be directly linked to this protein without the involvement of Pf MAP1 [76]. Brumlik et al. screened
some Hsp38α (a human MAPK) inhibitors to assess their activity on P. falciparum [77]. One compound
(57) displayed sub-micromolar activity on Pf W2 (Figure 14).
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4.11. Molecules Targeting Plasmodium falciparum MO15-Related Protein Kinase (PfMRK)

Pf MRK is a cyclin-dependent kinase located in the nucleus. It interacts with two other proteins [78]:
CDK-activating kinase assembly factor (Pf MAT1) and cyclin 1 (Pf cyc-1). These three proteins are
considered likely to be important for gene expression and DNA replication, and Pf MRK is believed to
be essential for the asexual blood-stage [17]. Pf MRK shares the most properties, regarding human
proteins, with HsCDK7.

Woodard et al. screened 12 isoquinoline and naphthalene sulfonamides, known for being kinase
inhibitors, on Pf MRK [79]. Only 58 displayed a sub-micromolar activity on Pf MRK but was not active
on P. falciparum in vitro. The same team later designed some chalcones based on an in-silico model of
HsCDK7 [80]. One of these chalcones, 59, displayed a 1.3 µM activity against Pf MRK associated with
an in vitro activity of 4.6 µM on Pf W2. Caridha et al. tested 27 sulfonamide compounds substituted by
phenyl or thiophene cycles [81]. Ten molecules, including compound 60 (Figure 15), possessed a sub-
micromolar activity on Pf MRK, but none was active on Pf W2. Cytotoxicity of compound 60 on five
different cell lines was assessed, and all the values were around or above 25 µM.
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4.12. Molecules Targeting Plasmodium falciparum NIMA-Related Kinase 1 (PfNEK1)

Never-in-mitosis/Aspergillus (NIMA) related protein kinases are found in multiple eukaryotic
organisms and are involved in the cell division process. Four NEK proteins have been discovered in
Plasmodium [82]:

• Pf NEK2 and Pf NEK4 are related to sexual stages of the parasite,
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• Pf NEK1 and Pf NEK3 can interact with Pf MAP2 and,
• Pf NEK1 is also expressed during schizogony (it is the only NEK essential in the blood-stage) and

in male gametocytes.

Laurent et al. and Desoubzdanne et al. found two natural compounds targeting this protein
(Figure 16): xestoquinone 61 and alisiaquinone 62 [83,84] displayed interesting in vitro parameters and
an in vivo activity on a mouse model at 5 mg/kg during a four-day Peter’s test [27]. Xestoquinone 61
was found to be selective of Pf NEK1 versus other plasmodial and human kinases.
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4.13. Molecules Targeting Plasmodium falciparum Phosphatidyl-Inositol 4-Kinase (PfPI4K)

Phosphatidyl-inositol 4-kinase catalyzes the transformation of phosphatidyl-inositol into
phosphatidyl-inositol 4 phosphate (PI4P). PI4P is a key secondary messenger involved in multiple
cellular pathways. Inhibition of Pf PI4K led to activity on every stage of the Plasmodium cycle [85] with
inhibition of:

• Development of schizonts and hypnozoites in the liver stage,
• Asexual growth and gametocytogenesis in blood-stage,
• Reduction of oocysts in mosquito midgut in the sexual stage.

PfPI4K inhibition phenotypic consequences were found by McNamara et al. using four compounds as
tools (three are showed in Table 10) [85]. The most assessed compound, KDU691 (63) an imidazopyrazine,
showed promising in vivo activity on luciferase-expressing P. berghei-infected mice: with a single dose
of 7.5 mg/kg, 63 was able to protect mice from what would be otherwise a fatal infection. 63 is selective
of Pf PI4K versus other human kinases including HsPI4K (IC50 = 7.9 µM). Other tested compounds
included the imidazopyridazine KAI715 (64) and the quinoxaline BQR695 (65). Their in vitro results
are summed up in Table 10. Pf PI4K was confirmed as the target of these compounds by analysis of
resistant clones and artificial modifications of Pf PI4K gene were also associated with drug resistance.

Pf PI4K inhibitors are the most advanced plasmodial kinase inhibitors in terms of drug development.
One compound, MMV390048 (66), is currently in phase II of clinical trials and is the only plasmodial
kinase inhibitor currently in clinical trial (Figure 17) [86]. MMV390048 PI4K inhibitory effects, with the
consequence of a multistage activity, were demonstrated by Paquet et al. using chemoproteomics
studies [87]. This inhibition is selective, as HsPI4Kα and HsPI4Kβ were not targeted by 66.
Numerous in vivo experiments were performed (on mice, rats, dogs, and monkeys): multistage
potency was conserved in in vivo models and 66 displayed very good pharmacokinetic parameters
including bioavailability of 74% and a half-time of 66 h at an oral dose of 5 mg/kg on monkeys. All these
parameters pointed 66 as a strong lead compound candidate for clinical studies for single exposure
radical cure; it could also be promising for chemoprevention. Compound 66 originally emerged
from a SAR study by Younis et al. which, starting from compound 67, focused on modulation of the
methoxyphenol group [88].
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Table 10. Three of the inhibitors of Pf PI4K described by McNamara et al. [85].

Compound P. yoelii liver stage
IC50 (nM)

P. falciparum Asexual
Blood-Stage IC50 (nM)

PfNF54 Gametocyte
III IC50 (nM)
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Compound 
P. yoelii liver 

stage IC50 
(nM) 

P. falciparum Asexual 
Blood-Stage IC50 (nM) 

PfNF54 
Gametocyte III 

IC50 (nM) 

 

36 29.9 220 

 

9 3.9 n.d. 1 

 

n.d. 71 n.d. n.d. 71 n.d.

1 n.d. = not determined

Molecules 2020, 25, x FOR PEER REVIEW 18 of 35 

 

1 n.d. = not determined 

PfPI4K inhibitors are the most advanced plasmodial kinase inhibitors in terms of drug 
development. One compound, MMV390048 (66), is currently in phase II of clinical trials and is the 
only plasmodial kinase inhibitor currently in clinical trial (Figure 17) [86]. MMV390048 PI4K 
inhibitory effects, with the consequence of a multistage activity, were demonstrated by Paquet et al. 
using chemoproteomics studies [87]. This inhibition is selective, as HsPI4Kα and HsPI4Kβ were not 
targeted by 66. Numerous in vivo experiments were performed (on mice, rats, dogs, and monkeys): 
multistage potency was conserved in in vivo models and 66 displayed very good pharmacokinetic 
parameters including bioavailability of 74% and a half-time of 66 h at an oral dose of 5 mg/kg on 
monkeys. All these parameters pointed 66 as a strong lead compound candidate for clinical studies 
for single exposure radical cure; it could also be promising for chemoprevention. Compound 66 
originally emerged from a SAR study by Younis et al. which, starting from compound 67, focused on 
modulation of the methoxyphenol group [88]. 

 
Figure 17. Starting from 67, medicinal chemistry work led to 66 which was further improved to 68. 
EG = Early-stage gametocytes, LG = Late-stage gametocytes. 1 mouse model, 20 mg/kg per os. 

Initial human clinical studies on 66 “showed high variability in exposure, which was attributed 
to low aqueous solubility” [89]. To solve, this problem, Brunshwig et al., synthesized UCT943 (68), 
an analog of 66 where the methylsulfone was replaced by a piperazinyl carboxamide and the 
aminopyridine by an aminopyrazine to improve aqueous solubility [89]. This second generation of 
PfPI4K inhibitor showed improved parameters on every stage of the malaria cycle. ADMET 
properties were impacted by the modification but the in vivo activity was conserved. 

Continuing on this new aminopyrazine scaffold, Gibhard et al., synthesized two 
aminopyrazines (Figure 18) to explore a potential prodrug strategy by conversion of a sulfoxide into 
a sulfone [90]. Compounds 69 (pyrazine analog of 66) and 70 showed nanomolar activities in vitro. 
Solubility was better at physiological pH for the sulfoxide derivative compared to the sulfone. In 
vivo, the 90% effective dose (ED90) per os was at 0.12 mg.kg−1 for both compounds compared to 0.57 
mg.kg−1 for 66 and 0.25 mg.kg-1 for 68 (on Pf3D7 infected mouse model). As expected by the authors, 
70 was found to be rapidly converted in vivo into 69, validating the sulfoxide prodrug approach for 
this series of compounds. 

Figure 17. Starting from 67, medicinal chemistry work led to 66 which was further improved to 68.
EG = Early-stage gametocytes, LG = Late-stage gametocytes. 1 mouse model, 20 mg/kg per os.

Initial human clinical studies on 66 “showed high variability in exposure, which was attributed
to low aqueous solubility” [89]. To solve, this problem, Brunshwig et al., synthesized UCT943
(68), an analog of 66 where the methylsulfone was replaced by a piperazinyl carboxamide and the
aminopyridine by an aminopyrazine to improve aqueous solubility [89]. This second generation of
Pf PI4K inhibitor showed improved parameters on every stage of the malaria cycle. ADMET properties
were impacted by the modification but the in vivo activity was conserved.

Continuing on this new aminopyrazine scaffold, Gibhard et al., synthesized two aminopyrazines
(Figure 18) to explore a potential prodrug strategy by conversion of a sulfoxide into a sulfone [90].
Compounds 69 (pyrazine analog of 66) and 70 showed nanomolar activities in vitro. Solubility was
better at physiological pH for the sulfoxide derivative compared to the sulfone. In vivo, the 90%
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effective dose (ED90) per os was at 0.12 mg.kg−1 for both compounds compared to 0.57 mg.kg−1 for
66 and 0.25 mg.kg-1 for 68 (on Pf 3D7 infected mouse model). As expected by the authors, 70 was
found to be rapidly converted in vivo into 69, validating the sulfoxide prodrug approach for this series
of compounds.
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Figure 18. Aminopyrazines derivatives used to study a sulfoxide-to sulfone produg approach.

Other compounds with original scaffolds have been discovered since the development of 66.
Kandepedu et al. described a series of 1,5-naphthyridines, most of them having submicromolar
activities on Pf NF54 [91]. Starting from MMV024101 (71), a SAR study was performed on the two
substituents of the naphthyridine core (Figure 19) and 48 analogs were synthesized. Compound 73
showed good activity on Pf NF54 with an IC50 of 63 nM and good metabolic stability (t1/2 = 33 h at
5 mg/kg per os) but limited oral bioavailability (39%) on a mouse model.
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Figure 19. 1,5-naphthyridines as inhibitors of Pf PI4K.

Liang et al. described a bipyridine series targeting Pf PI4K from screening in their compound
library [92]. Compound 74 displayed an activity around 4 µM on Pf 3D7 but was able to inhibit Pf PI4K
with an IC50 of 7.7 nM (Figure 20). An in-silico homology model of Pf PI4K was then used to rationally
guide modulations on 74: the 2-chloro-3-sulfonamide pyridine core was kept and modulations were
performed on the two side chains. Compound 75 displayed the best activity on Pf 3D7 of 25.1 nM
together with an IC50 on Pf PI4K of 0.9 nM. This activity was shown to be selective of Pf PI4K versus
human kinases including HsPI3K or HsPI4K. With oral bioavailability of 80% and a t1/2 of 3.6 h on
a mouse model (at 10 mg/kg per os), 75 was able in vivo to cure blood-stage P. yoelii at 80 mg/kg/7 days
and to stop liver-stage infection by P. berghei sporozoites at a single dose of 1 mg/kg in a mouse model.
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4.14. Molecules Targeting Plasmodium falciparum Protein Kinase 5, 6, 7 and 9 (PfPK5, PfPK6,
PfPK7 and PfPK9)

Pf PK5 is a cyclin-dependent-like kinase [93], essential for the parasite blood-stage [17],
with functions still unclear. Because of its homology with HsCDK2 [94], Pf PK5 could be linked
to cell division regulation [95]. Pf PK6 is another cyclin-dependent like kinase most likely essential
for the asexual blood-stage [17,18,96]. Pf PK7 is an orphan kinase (it does not cluster with defined
eukaryotic kinase groups) distantly related to the MAPKK proteins (mitogen-activated protein
kinase) [97]. Disrupting Pf PK7 showed that it was not essential for the asexual blood-stage and was
linked to a reduced growth rate during the asexual blood-stage and a lower number of oocysts in the
mosquito midgut [98]. Pf PK9 is another orphan kinase, essential for the blood-stage [17], with currently
only one known phosphorylation target: the E2 ubiquitin-conjugating enzyme 13 (Pf UBC13) [99].
The human homolog, HsUBC13, is involved in DNA repair and immune responses [100].

4.14.1. Molecules Targeting Plasmodium falciparum Protein Kinase 5 (Pf PK5)

Compound 76 is a known HsCDK2 and Pf PK5 inhibitor, but is 1000 times more potent toward
the human protein (Figure 21). Eubanks et al. synthesized analogs of 76 to try to obtain selective
compounds against Pf PK5 but their modifications failed [95]. Since Pf PK5 crystal structure was
available, authors also realized an in-silico screening of 35,000 compounds against Pf PK5 followed
by an in vitro high throughput binding screening. A chromen-2-one-based compound was found
interesting and analogs of this compound were purchased and tested. Compound 77 was the most
interesting analog, with a Kd(app) of 3.8 µM and 5 µM against Pf PK5 and HsCDK2 respectively but
lacked activity against Pf Dd2 in vitro (Figure 21).
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4.14.2. Molecules Targeting Plasmodium falciparum Protein Kinase 6 (Pf PK6)

Pf PK6 inhibitors have only been identified as hit compounds in the screening by Crowther et al.
Figure 22 displays two compounds (78 and 79) having an IC50 against Pf PK6 of around 60 nM but
lacked selectivity toward Pf PK6.
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4.14.3. Molecules Targeting Plasmodium falciparum Protein Kinase 7 (Pf PK7)

Starting from hit compound 80 identified by a high-throughput screening campaign, Bouloc et al.
synthesized a series of 3-amino-6-phenyl-imidazopyridazines (Figure 23) [101]. Thirty-five analogs
were synthesized with modulations targeting the substitution of the amine at position 3 and the nature
of the para-substituent on the phenyl at position 6. Compound 81 was the best compound of this series,
with an IC50 of 0.13 µM and 1.09 µM against Pf PK7 and Pf 3D7 respectively.
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the size of intracellular parasites but not their numbers, suggesting a deregulation of growth 
pathways by inhibition of PbPK9. Analogs of taketinib were synthesized to obtain selective 
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Figure 23. Imidazopyridazine inhibitors of Pf PK7.

Merckx et al. realized a screening of compounds against Pf PK7, where two molecules (82 and 83,
Figure 24) with an imidazopyridazine or pyrazolopyrimidine core displayed moderate activity on both
kinase and Plasmodium inhibition assays [102]. Klein et al. tested their series of pyrazolopyrimidines
against Pf PK7 [103]. Compound 84 was shown to inhibit Pf PK7 at 10 µM by approximately 60%
(Figure 24).
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4.14.4. Molecules Targeting Plasmodium falciparum Protein Kinase 9 (Pf PK9)

Pf PK9 inhibitors have only been explored by Raphemot et al. [100]. Starting from a screening of
3,200 molecules, authors discovered that taketinib (85), an inhibitor of HsTAK1, was an inhibitor of
Pf PK9 (Table 11). 85 used at its EC50 on P. berghei infected HuH7 cells (7.3 µM) was able to increase the
size of intracellular parasites but not their numbers, suggesting a deregulation of growth pathways by
inhibition of PbPK9. Analogs of taketinib were synthesized to obtain selective compounds against
Pf PK9: analog 86 displayed a decreased affinity toward Pf PK9 at 4.1 µM but was unable to interact
with HsTAK1 (Table 11).

Table 11. Taketinib and its analog as inhibitors of Pf PK9.
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4.15. Molecules Targeting cGMP Cyclin-Dependent Protein Kinase (PfPKG)

Pf PKG is a serine/threonine kinase involved in mechanisms at all the stages of parasite life: parasite
motility, hepatocyte invasion, asexual blood-stage development, and gametocytogenesis [104–108].
Compared to HsPKG, Pf PKG possesses a smaller gatekeeper (the amino acid at the entrance of the
catalytic domain), making it easier to develop molecules selective toward Pf PKG. Inhibition of Pf PKG
led to multistage activity [109,110] with inhibition of:

• sporozoite invasion during the liver-stage,
• development of asexual blood-stage,
• development of gametocytes,
• exflagellation in the mosquito midgut.

Two different scaffolds were explored for Pf PKG inhibitors: imidazopyridines and trisubstituted
five-membered aromatic cycles which could be viewed as ring-simplified analogs of the first series.

4.15.1. Imidazopyridines Targeting Pf PKG

Starting from compound 87 (Table 12), designed originally as a PKG inhibitor against Eimeria tenella
in chickens [111], Baker et al. realized a SAR study and synthesized nine analogs [110]. This work
led to compound 88 with an IC50 against Pf PKG reduced from 3.1 to 0.16 nM and IC50 against Pf 3D7
strain reduced from 395 to 2.1 nM. 88 was also able to reduce blood-stage growth of P. berghei in
a mouse model during a four-day Peter’s test by around 60% (25 mg/kg/twice per day per os) [27].
Additional work to better understand the properties of the imidazopyridine series was carried out by
Large et al., leading to compound 89 [112] which showed lower potency on P. falciparum than 87 but
better selectivity and metabolic stability.
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Another study by Large et al. involved modifying the imidazopyridine core using a scaffold
hopping strategy [113]. Compound 90, a pyrazolopyridine analog of 87, displayed activities on both
Pf PKG and Pf 3D7 similar to 87 but with lower metabolic stability (22% of compound remaining after
30 min incubation with mouse liver microsome) due to a more lipophilic molecule (Figure 25).
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Figure 25. Pyrazolopyridine 90 as inhibitor of Pf PKG.

4.15.2. Trisubstitued Five-Membered Aromatic Cycles Targeting Pf PKG

Work on trisubstituted five-membered aromatic cycles started with Diaz et al., who tested
compound 91 on P. falciparum (Figure 26) [114]. 91 was designed initially as an anticoccidial compound
targeting Eimeria tenella PKG [115]. 91 displayed nanomolar activity against multiple recombinant
Pf PKG and an IC50 of 0.49 µM against P. falciparum NF54 strain. Activity in vivo on a mouse model
infected by P. berghei was also assessed. At 50 mg/kg/7 days by intraperitoneal injections, 91 was able
to delay the death of all the mouse groups by 12 days.
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Figure 26. Trisubstituted pyrrole as inhibitor of Pf PKG.

Tsagris et al. decided to change the pyrrole core in 91 into a thiazole while keeping key
substituents from both compounds 87 and 91 [116]. The authors started from compound 92 which
displayed nanomolar inhibition of Pf PKG but lacked good potency in vitro against Pf 3D7 (Figure 27).
15 analogs were synthesized, with modifications targeting all three substituents, leading to compound
93. Using the same substituents as 87 led to improved potency but 93 displayed an hERG IC50 of
1.3 µM (Figure 27). 93 was assessed against human kinases and inhibited all the tested kinases
below 70% at 100 nM. Starting from 93, Matralis et al. continued pharmacomodulations, mainly on
the N-substituent of aminopyrimidine and the replacement of N-methypiperidine [117]. Multiple
compounds showed improved potency, including compound 94 (Figure 27). 94 was able to kill
parasites rapidly, like artemisinin. Thus, the authors decided to assess 94 in a binding assay against
other plasmodial kinases and found that it was also able to bind Pf CLK2. This dual activity was linked
to the fast-killing profile, since compounds only targeting PfPKG possessed a slow killing profile.
Moreover, 94 also showed an affinity toward Pf CDPK1 and Pf CDPK4.
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several structural features important for potency: α-anomers were more potent than β, thiourea 
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Figure 27. Trisubstituted thiazoles as inhibitors of Pf PKG.

From three isoxazole-based hits on Pf PKG of their own compounds’ library, Ul Mahmood et al.
explored the three positions on the isoxazole cycle while keeping key features like aminopyrimidine
from previously described Pf PKG inhibitors [118]. 29 analogs were synthesized and tested on
Pf PKG: six of them displayed an IC50 below 50 nM, including compound 95, the most potent one
(Figure 28). Finally, MMV030084 (compound 96, Figure 28), a trisubstituted imidazole, was described
by Vanaershot et al. as a multistage active compound (no gametocytocidal effect) targeting Pf PKG [109].
Using knockout studies, Pf PKG was confirmed to be the main target of 96.
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4.16. Molecules Targeting Plasmodium falciparum Thymidylate Kinase (PfTMK)

Pf TMK is the enzyme catalyzing the phosphorylation of thymidine monophosphate to thymidine
diphosphate. Pf TMK is involved in the de novo synthesis of purine bases and is the only way for the
parasite to create these bases [119]. This pathway also includes major drug targets such as dihydrofolate
reductase (Pf DHFR, targeted by sulfadoxine) and more recently, dihydroorotate dehydrogenase
(Pf DHODH, targeted by DSM265 [120]). Pf TMK is also able to catalyze the phosphorylation of
deoxyguanosine monophosphate into deoxyguanosine diphosphate.

Research on Pf TMK inhibitors has been centered on thymidine analogs. Cui et al. synthesized
a large number of thymidine analogs bearing a urea side chain [121]. Compound 97 was used as
a starting point for pharmacomodulations which led to compound 98 (Figure 29). Modulations
showed several structural features important for potency: α-anomers were more potent than β,
thiourea decreased potency whereas hydrophobic para-substituent on the phenyl urea increased
potency. 98 displayed nanomolar activity on Pf 3D7 but with low microsomal stability. Surprisingly,
no inhibitory assays were performed on the most potent compounds of the series, meaning no clear
conclusion can be drawn on the target of these compounds.
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Figure 29. α-thymidine urea analogs as inhibitors of PfTMK.

Simpler structures were explored by Kato et al., who replaced the tetrahydrofuran by
a cyclopentene [122]. This led to compound 99, showing a weak activity with a Ki of 20 µM on
Pf TMK (Figure 30). 99 was then used by Noguchi et al. as a starting point for pharmacomodulations
on the side chain of the cyclopentene core [123]. Compound 100 with a fluoroethanol substituent
displayed better potency than 99, with a Ki of 14 µM (Figure 30).
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MMV390048 (66), targeting Pf PI4K is currently the only plasmodial kinase inhibitor in clinical trial.
However, this could quickly change as the way is opened to other Pf PI4K inhibitors. This makes Pf PI4K
inhibitors the most advanced plasmodial kinase inhibitors in the drug development process (Table 13).
Pf CDPK4 inhibitors are getting close to a pre-clinical stage while Pf CDPK1, Pf CLK3, Pf GSK3 and
Pf PKG inhibitors are promising compounds awaiting further studies. This represents only six out
of the 22 kinases described in this review. Many are still in a hit discovery stage, sometimes without
progress for more than ten years.
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Table 13. Plasmodial kinases targeted by inhibiting compounds described in this review.

Protein Role of Protein—Consequence(s) of Inhibition 1
Development Stage of

the Most Advanced
Compound(s)

Studies Reviewed

CDPK1

Egress and invasion processes
regulator—Inhibition of asexual blood-stage

growth and gametogenesis, reduced mosquito
infection

Hit to lead [23,24,28–33]

CDPK4 Exflagellation regulator—Reduced mosquito
infection Lead optimization [33,36–39]

CK Transformation of choline into phosphocholine Hit discovery—Target
validation needed [41,45–47]

CK2 Serine/threonine kinase, possibly phosphorylating
many proteins during asexual blood-stage

Hit discovery—In vitro
activity to be determined [50]

CLK1
Phosphorylation of spliceosomes

proteins—Inhibition of asexual and sexual
blood-stage growth

Hit discovery—In vitro
activity to be determined [53,55]

CLK3 Phosphorylation of spliceosomes
proteins—All-stage activity Hit to lead [53,54,56]

PanK Transformation of pantothenate into
4′-phosphopantothenate Hit discovery [58–60]

DPCK Transformation of dephospho-coenzyme A into
coenzyme A Hit discovery [61]

FKk8 Not defined Hit discovery [64,65]

GK
Transformation of (deoxy)

guanosine-monophosphate into (deoxy)
guanosine-diphosphate

Hit discovery—Target
validation needed [46]

GSK3 Not defined Hit to lead [70,71]

HK Transformation of glucose into
glucose-6-phosphate Hit discovery [74,75]

MAP2
Involved in many key cellular

processes—Inhibition of asexual blood-stage and
exflagellation

Hit discovery—Target
validation needed [77]

MRK Regulation of gene expression and DNA replication Hit discovery [79–81]

NEK1 Regulation of cell division processes Hit discovery [83,84]

PI4K
Transformation of phosphatidyl-inositol into
phosphatidyl-inositol 4 phosphate—All-stage

activity
Phase II clinical trial [85,87,89–92]

PK5 Cyclin-dependent like kinase, possibly regulating
cell division Hit discovery [95]

PK6 Cyclin-dependent like kinase, role not defined Hit discovery - In vitro
activity to be determined [33]

PK7
Orphan kinase, role not defined—Inhibition of

asexual blood-stage and reduced mosquito
infection

Hit to lead [101–103]

PK9
Orphan kinase, role unclear, able to phosphorylate
Pf UBC13—Deregulation of asexual hepatic stage

growth
Hit discovery [100]

PKG Serine/threonine kinase—All-stage activity Hit to lead [109,110,112–114,116–
118]

TMK Transformation of thymidine monophosphate into
thymidine diphosphate Hit to lead [121–123]

1 When not specified, each of these proteins is assumed to at least inhibit asexual blood-stage growth.
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The development of plasmodial kinase inhibitors is slowed by a lack of X-ray structural data,
challenges regarding selectivity against human kinases, and loss of potency going from protein to
parasite activity. Moreover, new antiplasmodial hit molecules without a defined target usually have
their mechanism of action explored based on commercial antiplasmodial drugs. If these compounds
possess multistage activity, they should be tested on plasmodial kinases.

There is still plenty of room for new kinase inhibitors: only 22 out of 86 (or 99) estimated plasmodial
kinases were found to be targeted by the compounds in this review. In addition to plasmodial kinases
inhibitors, other new promising drugs in development targeting plasmodial proteins such as Pf DHODH
or Pf ATP4 will be important for the creation of new powerful drug combinations to reduce numbers of
malaria cases and deaths in years to come.
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