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Abstract: The appropriate 1-arylhydrazinecarbonitriles 1a–c are subjected to the reaction with
2-chloro-4,5-dihydro-1H-imidazole (2), yielding 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-
2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3a–c, which are subsequently converted into the
corresponding amides 4a–e, 8a–c, sulfonamides 5a–n, 9, ureas 6a–I, and thioureas 7a–d. The structures
of the newly prepared derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 are confirmed by
IR, NMR spectroscopic data, as well as single-crystal X-ray analyses of 5e and 8c. The in vitro
cytotoxic potency of these compounds is determined on a panel of human cancer cell lines,
and the relationships between structure and antitumor activity are discussed. The most active
4-chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,
2,4]triazol-3(5H)-ylidene)benzamide (4e) and N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-
dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-[1,1′-biphenyl]-4-sulfonamide (5l) inhibits
the growth of the cervical cancer SISO and bladder cancer RT-112 cell lines with IC50 values in
the range of 2.38–3.77 µM. Moreover, N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-
2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-phenoxybenzenesulfonamide (5m) has the best
selectivity towards the SISO cell line and induces apoptosis in this cell line.

Keywords: imidazo[2,1-c][1,2,4]triazol-3(5H)-imines; amides; sulfonamides; ureas; thioureas;
X-ray analysis; in vitro cytotoxic activity

1. Introduction

Commonly used antineoplastic drugs represent a group of structurally diverse compounds.
Their incomplete efficacy and the acquired resistance of tumor cells remain major challenges in
cancer treatment. Both imidazoline [1,2] and triazole scaffolds display important fragments in several
promising classes of compounds with an interesting pharmacological profile [3–8]. Special attention
is paid to imidazolines with anticancer activity. One of the best-known imidazoline-containing
topoisomerase inhibitors is bisantrene, used for many years in the treatment of certain types of
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leukemia [9,10]. Furamidazoline (DB60), another topoisomerase inhibitor, inhibits the growth of
various tumor cell lines, including the cisplatin-resistant line [11]. Moreover, imidazoline derivatives
have shown a strong ability to inhibit the growth of human cancer cell lines such as H460, HeLa,
MiaPaCa-2, SW620, and MCF-7 in micromolar concentrations. The activity of the compounds is
related to the influence on DNA and tubulin [12]. Nutlins, imidazoline-containing small-molecule
inhibitors blocking the MDM2-p53 protein-protein interaction [13,14], have been advanced
into early phase clinical trials (RG7112, RO5045337 (Figure 1), NCT01164033, NCT00623870,
NCT005595533) [15]. 2-Aminoimidazolines are creatine kinase (CK) or creatine transport inhibitors,
and have recently been patented as novel anticancer agents [16]. Water-soluble derivatives bearing
the 2-aminoimidazoline moiety arrest tumor cells in the G2/M phase [17]. Moreover, imidazoline
derivatives were identified as potent oligodendrocyte lineage transcription factor 2 (OLIG2) inhibitors,
promising agents in the treatment of glioblastoma tumors [18,19]. Fused imidazoline derivative
(S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole—levamisole (Figure 1), an anti-parasitic drug,
is used with 5-fluorouracil in adjuvant therapy in patients after colorectal tumor surgery due to its
immunostimulatory activity. Levamisole reduced the frequency of relapses and improved prognosis [20]
and completed phase 3 clinical trials for colon cancer stage III treatment (NCT00309530). On the other
hand, the 1,2,4-triazole scaffold is present in the structure of anticancer drugs such as anastrozole,
vorozole, and letrozole [21]. Based on the idea of hybrid compounds [22–29], we reasoned that
compounds incorporating both the imidazoline and triazole pharmacophore groups could be effective
as chemotherapeutic agents. It should be pointed out that the imidazo-triazole moiety is a recurring
motif of synthetic compounds of pharmacological interest [30,31]. The antiproliferative effects of the
imidazo-triazole derivatives may result from inhibition of EPH-B3 and FGF-R1 tyrosine kinases [32].
In addition, imidazo-triazoles have been extensively explored due to their antimicrobial [30,33–36],
antifungal [30,34], and antiviral activity [37].
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Figure 1. Nutlin (RG7112, RO5045337) and (S)-6-phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole
(levamisole).

As a part of our research aimed at finding new anticancer pharmacophore structures,
we previously described the synthesis and pronounced anticancer activity of 2-imino-
2H-chromen-3-yl-1,3,5-triazines, 3-(benzoxazol/benzothiazol-2-yl)-2H-chromen-2-imines, 8-chloro-5,5-
dioxoimidazo[1,2-b][1,4,2]benzodithiazines, 2-amino-4-(3,5,5-trimethyl-2-pyrazolino)-1,3,5-triazines,
copper(II) complexes of 2-substituted benzimidazoles, and N-(2-pyridyl)imidazolidin-2-ones
(thiones) [28,29,38–41]. In this study, we chose to synthesize a small library of 7-(4,5-dihydro-1H-
imidazol-2-yl)-2-aryl-6,7- dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine derivatives of types A–E
(Figure 2) to identify compounds with potential antitumor activity.
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c][1,2,4]triazol-3(5H)-imines (A) and the series of amide derivatives (B), sulfonamide derivatives (C),
ureas or thioureas (D), and N,N-disubstituted 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-
2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine derivatives (E).

2. Results and Discussions

2.1. Chemistry

Our research started with reactions of 1-arylhydrazinecarbonitriles 1a–c [42] with 2-chloro-
4,5-dihydro-1H-imidazole (2) [43]. As outlined in Scheme 1, the treatment of 1a–c with an excess
of 2-chloro-4,5-dihydro-1H-imidazole (2) in dichloromethane at ambient temperature yielded the
desired 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine
derivatives 3a–c.
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The mechanism of the formation of 3a–c may be explained as follows. The nucleophilic attack of
the NH2 group of 1-arylhydrazinecarbonitriles 1a–c at the carbon atom C-2 of 2-chloro-4,5-dihydro-
1H-imidazole (2) leads to the formation of the intermediate A. The use of a molar excess of
2-chloro-4,5-dihydro-1H-imidazole (2) allows the compound A to attack the second molecule of
2 to yield intermediate B. It should be noted that 2-chloroimidazoline (2) acts as a base in this
process. In turn, the resulting intermediate B undergoes intramolecular cyclization to form fused
imidazo-triazole derivatives 3a–c (Scheme 1).

The imine moiety C=NH present in the structure of compounds 3a–c allowed for their further
transformations. Thus, reactions of 3a–c carried out in chloroform with a variety of acyl chlorides or
sulfonyl chlorides gave rise to the formation of the corresponding amides 4a–e and sulfonamides 5a–n
in good yields (Scheme 2).
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During the course of our experimental research, it was found that heating compounds 3a
and 3b with a two-fold molar excess of acyl or sulfonyl chloride in the presence of triethylamine
(TEA) leads to the formation of products substituted both at the nitrogen atom of the imine C=N-H
moiety and at the N-1 position of the 4,5-dihydro-1H-imidazole ring. In this way, the corresponding
N-(7-(1-benzoyl-4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-
3(5H)-ylidene)benzamides 8a–c and N-(2-phenyl-7-(1-(phenylsulfonyl)-4,5-dihydro-1H-imidazol-2-yl)-
6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzenesulfonamide (9) were obtained
(Scheme 4).
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Scheme 4. Synthesis of N-(7-(1-benzoyl-4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo
[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzamides 8a–c and N-(2-phenyl-7-(1-(phenylsulfonyl)-4,5-dihydro-
1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzenesulfonamide (9).

The structures of novel 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c]
[1,2,4]triazol-3(5H)-imine derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 were confirmed by
IR, NMR spectroscopic data (see NMR spectra in Supplementary Materials), mass spectrometry,
and elementary analysis. Thus, in the IR spectra of 3a–c, bands in the range of 3408–3205 cm−1 are
attributable to the N-H group, while the strong absorptions of the C=N group are observed in the range
of 1531–1683 cm−1. In turn, the most diagnostic feature of the IR spectra of di-substituted derivatives
8a–c and 9 is the absence of N-H bands.

In the 1H-NMR spectra of compounds 4–7, a broad singlet corresponding to the proton of the N-H
group of the imidazoline ring is present in the range of 5.45–6.33 ppm. The characteristic methylene
protons CH2-CH2 of the fused imidazo-triazole moiety and 4,5-dihydro-1H-imidazole ring are found
in the range of 3.38–4.79 ppm.

The 13C-NMR spectra recorded for 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-
imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3–9 revealed three signals of quaternary carbon atoms:
C7a=N, C3=N of fused imidazo-triazole, and C2=N of the 4,5-dihydro-1H-imidazole ring at 144, 150,
and 155 ppm, respectively. The aliphatic carbons of 4,5-dihydro-1H-imidazole and imidazo-triazole
moieties are found in the range of 40–53 ppm. The signals of the urea carbonyl group C=O of
compounds 6a–i are located in the range of 155.50–158.68 ppm. The 13C-NMR spectra of 7a and 7d
showed signals at 181.54 and 182.08 ppm, which may be assigned to the quaternary carbon atom C=S
of the thiourea group.
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Moreover, the crystal structures of compounds 5e and 8c were determined by X-ray
crystallography. The molecules of 5e and 8c contain a common 7-(4,5-dihydro-1H-imidazol-2-yl)-
2,5,6,7-tetrahydro-3H-imidazo[2,1-c][1,2,4]triazol-3-imine fragment that adopts the same configuration
in both molecules (Figures 3 and 4). The amino N13 atom of the imidazolidine substituent shows a
pyramidal arrangement of its bonds with the sum of valence angles equal to 343.4◦ in 5e and 349.2◦ in
8c. A weak intramolecular N13-H···N1 hydrogen-bond interaction with H···N1 distance of 2.4 Å is
observed in 5e. In turn, introduction of the acyl group at N13 results in an intramolecular strain that
leads to a short contact of 2.822 Å between the imino N1 atom of the bicyclic system and the carbonyl
C23 atom of the acyl group.
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2.2. In Vitro Cytotoxic Activity

The in vitro cytotoxic potential of 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo
[2,1-c][1,2,4]triazol-3(5H)-imine derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 was evaluated
against human cancer cell lines by the crystal violet microtiter plate assay as described earlier [44].
This assay measures the antiproliferative potency of compounds towards actively dividing cancer cells.

First, primary screening of the new compounds was done to indicate whether a compound
possesses enough activity at a concentration of 10 µM or 20 µM to inhibit cell growth by 50%.
The human tumor cell lines used were: human non-small cell lung cancer LCLC-103H, human cervix
cancer SISO, human bladder carcinoma 5637, and human bladder carcinoma epithelial RT-112.
Compounds that inhibited cell growth by more than 50% at 10 or 20 µM in one or more cell line were
further investigated.
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It should be noted that all the imines 3a–c (Scheme 1), as well as the di-substituted amides 8a–c
and benzenesulfonamide 9 (Scheme 4) were inactive. On the other hand, for amide 4e, sulfonamides 5e,
5i–m, ureas 6e–f, and thiourea 7c, which passed the preliminary test, a secondary screening to
determine their potency was performed on two human tumor cell lines: human cervix cancer SISO
and human bladder carcinoma epithelial RT-112. The results of the secondary screening are presented
in Table 1 as the average IC50 values calculated from dose-response data after 96 h of exposure to the
tested compounds.

Table 1. Cytotoxic activity as IC50 values (µM, average ± SD of three independent experiments)
of 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine
derivatives 4e, 5e, 5i–m, 6e, 6f, and 7c on human tumor cell lines compared to cisplatin after 96 h.

Cell Line/Compound SISO RT-112

4e 2.87 ± 0.41 3.06 ± 0.38
5e 14.74 ± 0.47 nd
5i 8.13 ± 1.64 >10
5j 7.36 ± 1.61 nd
5k 3.42 ± 0.58 5.59 ± 0.66
5l 2.38 ± 0.20 3.77 ± 0.64

5m 5.37 ± 0.33 >10
6e 6.65 ± 0.55 >10
6f 3.75 ± 1.12 6.01 ± 0.85
7c 14.16 ± 0.80 nd

cisplatin ref. [44] 0.24 ± 0.06 1.22 ± 0.13

nd—not determined.

In the series of amides 4a–e (Scheme 2), only compound 4e bearing electron-withdrawing groups
R = Cl at position 4 of the phenyl ring and R1 = C6H4-Cl(4) of the amide functionality displayed growth
inhibitory properties towards the two cell lines and showed slightly lower potency than the reference
drug cisplatin (IC50 values 2.87–3.06 µM vs. 0.24–1.22 µM, Table 1). Other compounds with R = H,
CH3 and R1 = C6H5, C6H4-CH3(4), C6H4-F(4), and C6H4-Cl(4) did not pass the preliminary test (4a–d,
Scheme 2). This may suggest that the presence of two electron-withdrawing substituents at both R-
and R1-positions is important for the inhibitory activity of the tested compounds.

For the sulfonamide series 5a–n (Scheme 2), it was found that incorporation of a bulky lipophilic
group at the R2-position of the sulfonamide moiety (R2 = 1-naphthyl, 2-naphthyl, C6H4-C6H5,
or C6H4-O-C6H5) afforded compounds 5i–m with good to high activity (IC50 = 2.38–8.13 µM,
Table 1). The most active compound 5l with methyl substituent at R-position (R = CH3) and
1,1′-biphenyl group at R2-position (R2 = C6H4-C6H5) displayed relatively high cell growth inhibitory
potency (IC50 = 2.38–3.77 µM) compared to the reference cisplatin (IC50 = 0.24–1.96 µM). A slightly
decreased antiproliferative activity was observed for unsubstituted at R-position analogue 5k (R = H,
R2 = C6H4-C6H5, IC50 = 3.42–5.59 µM). Likewise, when 1,1′-biphenyl at the R2-position in compound
5k was replaced by the 1-naphthyl, 2-naphthyl, or phenoxyphenyl group, the resulting compounds 5i,
5j, and 5m were less potent with antitumor activity limited to the SISO cell line (IC50 = 5.37–8.13 µM).
Interestingly, the sulfonamide 5e with R = H and R2 = C6H4-CH3(4) demonstrated moderate cytotoxic
activity towards the SISO cell line (IC50 = 14.74 µM) while its analogue 5f featuring the methyl group
at the R-position (R = CH3, R2 = C6H4-CH3(4)), as well as other compounds with R = H, CH3 and
R2 = CH3, C6H5 or a variously substituted phenyl ring did not pass the preliminary test (5a–d,
5g–h, 5n, Scheme 2). It could be suggested from these results that the combination of R = CH3 and
R2 = C6H4-C6H5 results in a compound with optimal properties.

Similarly to amides 4a–e, in the series of ureas 6a–i, the best activity was found for compound 6f
with two electron-withdrawing substituents: R = Cl at position 4 of the phenyl ring and R1 = C6H4-Cl(4)
of the urea moiety (IC50 = 3.75–6.01 µM, Table 1). Replacement of the Cl-substituent at the R-position for
the electron-donating methyl group yielded less active analogue 6e with selectivity to the cervical cancer
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cell line SISO (IC50 = 6.65 µM) over the bladder cancer cell line RT-112 (IC50 > 10 µM). Introduction of
any of the substituents R = H, CH3 and R1 = C6H5, C6H4-CH3(4), and 1-naphthyl, SO2-C6H4-CH3(4),
however, resulted in compounds that did not pass the preliminary test (6a–d, 6g–i, Scheme 3).

In turn, among the thiourea derivatives 7a–d (Scheme 3), the only substituent R2 of the thiourea
moiety that produced moderate activity in the SISO cell line was C6H4-Cl(4) (7c: IC50 = 14.16 µM,
Table 1).

The sulfonamide 5m, which demonstrated pronounced cytotoxicity and selectivity for the cervical
cancer cell line SISO (IC50 = 5.37 µM) over the bladder cancer cell line RT-112 (IC50 > 10 µM), was chosen
to investigate whether it can induce apoptosis in the representative SISO cell line.

2.3. Induction of Apoptosis by Compound 5m

One of the most common methods used to detect apoptotic programmed cell death is to double
stain treated cancer cells with the Annexin V-FITC (fluorescein isothiocyanate) and propidium iodide,
which together distinguish cells as normal and in early or late stage of apoptosis. The Annexin V
assay allows the quantification of the relative number of cancer cells undergoing apoptosis; by use of
fluorescent flow cytometry the distribution of cells in early and late stages of apoptosis can be measured.
In Figure 5 are summarized the average results of three independent experiments after treatment of the
SISO cells for 24 h at the IC50 or doubled IC50 concentrations of compound 5m. The fractions of early
apoptotic cells are displayed on left y-axis and the late apoptotic cells on right y-axis. The left displays
24 h solvent control (DMF). After 24 h of treatment with the IC50 and the doubled IC50 of 5m, 10.2 % and
17.2% of the SISO cells displayed signs of early apoptosis, respectively. As revealed, the percentage of
cells in an early state of apoptosis increased with an increasing concentration of compound 5m. In the
case of late apoptotic cells, there was a significant increase when the IC50 concentration was doubled.
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Data displayed as the mean ± standard deviation. Statistical comparison of treatment conditions with
solvent control DMF was performed via one-way ANOVA and Dunnett’s multiple comparison post-hoc
test in GraphPad Prism 7, * p < 0.05, n = 3.

3. Experimental Section

3.1. Chemistry

The melting points were determined with a Boëtius apparatus and were uncorrected. The infrared
spectra were recorded on a Nicolet 380 FT-IR spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). Magnetic resonance spectra (NMR) (Agilent, Santa Clara, CA, USA) were recorded on a
Varian Gemini 200 BB (200 MHz) spectrometer, a Varian Mercury-Vx300 spectrometer (300 MHz), and a
Varian Unity Inova 500 (500 MHz) spectrometer in DMSO-d6 or CDCl3. The residual peaks of solvents
were used as internal standards. Chemical shifts (δ) are given in ppm, and coupling constants (J) are
given in Hz. Mass spectra were recorded on an LCMS 2010 spectrometer (Shimadzu, Tokyo, Japan).
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The compounds were identified based on their molecular ions obtained through electrospray ionization.
Compounds were purified by the use of preparative chromatography. Thin-layer chromatography
was performed on silica gel plates with fluorescence detection (Merck Silica Gel 254, Merck KGaA,
Darmstadt, Germany). After, drying spots were detected under UV light (λ = 254 nm). The elemental
analyses of carbon, hydrogen, and nitrogen determined for the compounds were within ±0.4% of the
theoretical values.

3.1.1. A General Procedure for the Preparation of Compounds 3a–c

To a stirred solution of 2.5 g of 2-chloro-4,5-dihydro-1H-imidazole (25 mmol) (2) in dichloromethane
(25–30 mL), five millimoles of the appropriate 1-arylhydrazinecarbonitrile 1a–c were added. When the
exothermic reaction subsided, the reaction mixture was stirred at room temperature for 12 h.
The precipitate was filtered and washed with dichloromethane (1a, 1c) or the oily residue was separated
by decantation and washed with dichloromethane (1b). After drying, the resulting precipitate or oily
residue was mixed with cooled water (15 mL) and filtered. The cooled filtrate was basified with 15 mL
of a 20% potassium carbonate solution. The precipitate (3b, 3c) was separated by suction, washed with
a small amount of cooled water, and dried or the resulting oil (3a) was extracted with chloroform
(4 × 20 mL). The combined organic extract was dried with anhydrous magnesium sulfate(VI), filtered,
and concentrated under reduced pressure.

7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine (3a).
Starting from 5 mmol (0.6658 g) of 1-phenylhydrazinecarbonitrile (1a), to the resulting oily residue,
ten milliliters of anhydrous 2-propanone were added, and the precipitate was filtered and washed
with a small amount of cooled 2-propanone. Compound 3a was purified on silica gel by preparative
thin-layer chromatography (chromatotron); eluent: ethyl acetate:methanol:triethylamine (7:2:1, v/v/v);
yield 0,65 g (48%); m.p. 187–190 ◦C; IR (KBr, cm−1): 3404, 3315, 3205, 3065, 2946, 2862, 1677,
1626, 1533, 1287, 1217, 1055, 760; 1H-NMR (200 MHz, CDCl3): 3.66 (m, 4H, CH2-CH2), 3.99 (t, 2H,
CH2), 4.39–4.47 (m, 2H, CH2), 5.05 (br.s, 2H, 2xNH), 7.15–7.22 (m, 1H, Ar), 7.30–7.44 (m, 2H, Ar),
7.53–7,57 (m, 2H, Ar); 13C-NMR (50 MHz, CDCl3): 39.88, 45.84, 51.04, 52.27, 121.17 (two overlapping
signals), 125.72, 129.73 (two overlapping signals), 139.30, 149.84, 150.27, 155.51; m/z (ESI): 270 [M + H]+.
Anal. Calcd for C13H15N7 (269.31): C, 57.98; H, 5.61; N, 36.41. Found: C, 57.91; H, 5.58; N, 36.11.

7-(4,5-Dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine (3b).
Starting from 5 mmol (0.7359 g) of 1-(p-tolyl)hydrazinecarbonitrile (1b), compound 3b was purified on
silica gel by preparative thin-layer chromatography (chromatotron); eluent: ethyl acetate:methanol:
triethylamine (8:1:1, v/v/v); crystallized from acetonitrile; yield 0,9 g (64%); m.p. 213–216 ◦C; IR (KBr,
cm−1): 3408, 3361, 3319, 3240, 3206, 3065, 2948, 2887, 2863, 1676, 1625, 1592, 1531, 1500, 1451, 1390, 1331,
1287, 1253, 1055, 1025, 975, 759, 707; 1H-NMR (500 MHz, DMSO-d6): 2.26 (s, 3H, CH3), 3.48 (s, 4H,
CH2-CH2), 3.85 (t, 2H, CH2), 4.24 (t, 2H, CH2), 5.80–6.20 (br.s, 2H, 2xNH), 7.14 (d, J = 8.8 Hz, 2H, Ar),
7.85 (d, J = 8.8 Hz, 2H, Ar); 13C-NMR (125 MHz, DMSO-d6+TFA): 21.13, 43.06, 44.34 (two overlapping
signals), 53.66, 125.69 (two overlapping signals), 130.91 (two overlapping signals), 132.74, 140.75, 147.16,
149.68, 153.75; m/z (ESI): 284 [M + H]+. Anal. Calcd for C14H17N7 (283.33): C, 59.35; H, 6.05; N, 34.60.
Found: C, 59.28; H, 5.99; N, 34.62.

2-(4-Chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine
(3c). Starting from 5 mmol (0.838 g) of 1-(4-chlorophenyl)hydrazinecarbonitrile (1c), compound 3c
was purified on silica gel by preparative thin-layer chromatography (chromatotron); yield 0.85 g
(56%); m.p. 220–223 ◦C; IR (KBr, cm−1): 3384, 3243, 2963, 2930, 2892, 1683, 1625, 1594, 1537, 1492,
1390, 1289, 1255, 1063, 828; 1H-NMR (300 MHz, DMSO-d6): 3.51 (s, 4H, CH2-CH2), 3.87–3.89 (m,
2H, CH2), 4.24–4.28 (t, 2H, CH2), 6.16 (br.s, 2H, 2xNH), 7.37–7.39 (m, 2H, Ar), 8.12–8.14 (m, 2H, Ar);
13C-NMR (75 MHz, DMSO-d6): 45.64, 49.15, 51.21, 51.60, 118.74 (two overlapping signals), 125.97,
128.69 (two overlapping signals), 139.68, 149.10, 149.53, 155.12; m/z (ESI): 304 [M + H]+. Anal. Calcd for
C13H14ClN7 (303.75): C, 51.40; H, 4.65; N, 32.28. Found: C, 51.36; H, 4.68; N, 32.34.



Molecules 2020, 25, 5924 10 of 23

3.1.2. A General Procedure for the Preparation of Compounds 4a–e and 5a–n

To a stirring solution of compound 3a–c in anhydrous chloroform (5 mL), the appropriate aryl
chloride or sulfonyl chloride (sulfonic acid chloride) was added (in the molar ratio of 1:1). The mixture
was heated in an oil bath at 90 ◦C (compound 5m: 20–22 ◦C) for 8–12 h. The progress of the reaction
was controlled by TLC. After completion of the reaction, the mixture was evaporated under reduced
pressure, and into the resulting residue, crushed ice was added. The precipitate was separated by suction
and dried. The crude product was purified on silica gel by preparative thin-layer chromatography
(chromatotron) or crystallization. In this manner, the following compounds were obtained.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
benzamide (4a). Starting from 0.25 g (0.93 mmol) of 3a and 0.131 g (0.108 mL, 0.93 mmol) of benzoyl
chloride; yield 0.18 g (52%); eluent: dichloromethane:ethyl acetate:2-propanone:triethylamine (3:3:3:1,
v/v/v/v); m.p. 219–222 ◦C; IR (KBr, cm−1): 3325, 3058, 2925, 2865, 1665, 1611, 1521, 1537, 1456, 1352, 1292,
721; 1H-NMR (200 MHz, CDCl3): 3.72–3.73 (m, 4H, CH2-CH2), 4.45–4.55 (m, 4H, CH2-CH2), 5.55 (br.s,
1H, NH), 7.28–7.36 (m, 1H, Ar), 7.41–7.49 (m, 5H, Ar), 8.02 (d, J = 7.9 Hz, 2H, Ar), 8.20 (d, J = 7.1 Hz,
2H, Ar); m/z (ESI): 374 [M + H]+. Anal. Calcd for C20H19N7O (373.41): C, 64.33; H, 5.13; N, 26.26.
Found: C, 64.46; H, 5.06; N, 25.95.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
methylbenzamide (4b). Starting from 0.142g (0.5 mmol) of 3b and 0.077 g (0.5 mmol) of p-toluoyl
chloride; yield 0.1 g (25%); m.p. 238–240 ◦C; IR (KBr, cm−1): 3283, 3030, 2951, 2922, 2878, 1671, 1604,
1542, 1512, 1472, 1368, 1342, 1312, 1292, 815, 758; 1H-NMR (200 MHz, CDCl3): 2.39 (s, 6H, 2xCH3),
3.72 (br.s, 4H, CH2-CH2), 4.45–4.53 (m, 4H, CH2-CH2), 7.19–7.26 (m, 4H, Ar), 7.86 (d, J = 8.3 Hz, 2H,
Ar), 8.08 (d, J = 7.9 Hz, 2H, Ar); 1H-NMR (200 MHz, CDCl3+TFA): 2.43 (s, 6H, 2xCH3), 4.08 (s, 4H,
CH2-CH2), 4.94 (br.s, 4H, CH2-CH2), 7.28–7.37 (m, 6H, Ar), 7.07 (d, J = 7.9 Hz, 2H, Ar); 7.88 (br.s, 2H,
NH+H+); m/z (ESI): 402 [M + H]+. Anal. Calcd for C22H23N7O (401.46): C, 65.82; H, 5.77; N, 24.42.
Found: C, 65.78; H, 5.76; N, 24.38.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
fluorobenzamide (4c). Starting from 0.1347 g (0.5 mmol) of 3a and 0.079 g (0.5 mmol) of
4-fluorobenzoyl chloride; yield 0.09 g (46%); m.p. 238–242 ◦C; IR (KBr, cm−1): 3392, 3072, 2930,
2876, 1675, 1618, 1599, 1517, 1457, 1286, 1217, 1146, 767; 1H-NMR (500 MHz, CDCl3): 3.74 (s, 4H,
CH2-CH2), 4.47–4.52 (m, 2H, CH2), 4.54–4.58 (m, 2H, CH2), 7.06 (t, 2H, Ar), 7.30 (t, 1H, Ar);
7.45 (t, 2H, Ar); 7.97 (d, J = 7.8 Hz, 2H, Ar), 8.17–8.19 (m, 2H, Ar); 13C-NMR (125 MHz, CDCl3):
45.57 (two overlapping signals), 50.62 (two overlapping signals), 115.10 (d, J(C-F) = 21.5 Hz,
two overlapping signals), 122.01 (two overlapping signals), 126.84, 129.01 (two overlapping signals),
132.06 (d, J(C-F) = 9.2 Hz, two overlapping signals), 133.63 (d, J(C-F) = 3.1 Hz), 138.12, 148.37, 150.57,
154.85, 165.21 (d, J(C-F) = 250.7 Hz), 171.60; m/z (ESI): 392 [M + H]+. Anal. Calcd for C20H18FN7O
(391.40): C, 61.37; H, 4.64; N, 25.05. Found: C, 61.28; H, 4.60; N, 24.98.

4-Chloro-N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-
ylidene)benzamide (4d). Starting from 0.20 g (0.74 mmol) of 3a and 0.13 g (0.095 mL, 0.74 mmol) of
4-chlorobenzoyl chloride; yield 0.19 g (63%); eluent: dichloromethane:ethyl acetate:2-propanone:
triethylamine (3:3:3:1, v/v/v/v); m.p. 249–251 ◦C; IR (KBr, cm−1): 3315, 3063, 2945, 2866, 1677, 1609, 1589,
1524, 1498, 1458, 1390, 1354, 1290, 1888, 1087, 1013, 760; 1H-NMR (200 MHz, CDCl3): 3.67–3.78 (m, 4H,
CH2-CH2), 4.41–4.60 (m, 4H, CH2-CH2), 5.55 (br.s, 1H, NH), 7.24–7.50 (m, 5H, Ar), 7.96 (d, J = 7.6 Hz,
2H, Ar), 8.11 (d, J = 8.5 Hz, 2H, Ar); m/z (ESI): 408 [M + H]+. Anal. Calcd for C20H18ClN7O (407.86): C,
58.90; H, 4.45; N, 24.04. Found: C, 58.84; H, 4.42; N, 23.70.

4-Chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-
3(5H)-ylidene)benzamide (4e). Starting from 0.1519 g (0.5 mmol) of 3c and 0.0875 g (0.064 mL,
0.5 mmol) of 4-chlorobenzoyl chloride; yield 0.12 g (54%); eluent: ethyl acetate:dichloromethane:
methanol:triethylamine (6:2:1:1, v/v/v/v); crystallized from methanol; m.p. 278–283 ◦C; IR (KBr, cm−1):
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3326, 3079, 3053, 3034, 2944, 2866, 1680, 1645, 1615, 1567, 1543, 1525, 1492, 1445, 1418, 1348, 1303, 1287,
1275, 1097, 1086, 1011, 831; 1H-NMR (400 MHz, DMSO-d6): 3.54 (br.s, 4H, CH2-CH2), 4.31–4.38 (m,
4H, CH2-CH2), 6.32 (br.s, 1H, NH), 7.51–7.61 (m, 4H, Ar), 8.07–8.16 (m, 4H, Ar); m/z (ESI): 442 and
444 [M + H]+. Anal. Calcd for C20H17Cl2N7O (442.30): C, 54.31; H, 3.87; N, 22.17. Found: C, 54.25; H,
3.92; N, 22.02.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
methanesulfonamide (5a). Starting from 0.135 g (0.5 mmol) of 3a and 0.0573 g (0.0387 mL,
0.5 mmol) of methanesulfonyl chloride; yield 0.1 g (58%); eluent: dichloromethane:ethyl
acetate:2-propanone:triethylamine (3:3:3:1, v/v/v/v); m.p. 262–264 ◦C; IR (KBr, cm−1): 3378, 3072, 3015,
2950, 2875, 1681, 1643, 1606, 1578, 1521, 1498, 1460, 1271, 1128, 968, 934, 784, 762, 539; 1H-NMR
(200 MHz, CDCl3): 3.10 (s, 3H, CH3), 3.69–3.74 (m, 4H, CH2-CH2), 4.45 (t, 2H, CH2), 4.66 (t, 2H,
CH2), 5.49 (br.s, 1H, NH), 7.27 (t, 1H, Ar), 7.42 (t, 2H, Ar), 7.79 (d, J = 7.7 Hz, 2H, Ar); 13C-NMR
(50 MHz, CDCl3): 43.43, 45.75 (br.), 46.75, 50.83, 53.00 (br.), 122.05 (two overlapping signals); 127.13,
129.26 (two overlapping signals), 137.95, 144.34, 155.45, 154.93; m/z (ESI): 348 [M + H]+. Anal. Calcd
for C14H17N7O2S (347.40): C, 48.40; H, 4.93; N, 28.22. Found: C, 48.38; H, 4.89; N, 28.28.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
methanesulfonamide (5b). Starting from 0.142 g (0.5 mmol) of 3b and 0.0573 g (0.0387 mL, 0.5 mmol)
of methanesulfonyl chloride; yield 0.1 g (55%); eluent: 2-propanone:ethyl acetate:dichloromethane:
triethylamine (2:1:1:1, v/v/v/v); m.p. 258–262 ◦C; IR (KBr, cm−1): 3384, 3297, 3037, 3008, 2924, 2865, 1673,
1633, 1613, 1593, 1574, 1520, 1474, 1387, 1274, 1121, 968, 926, 782, 534; 1H-NMR (200 MHz, CDCl3):
2.37 (s, 3H, CH3), 3.08 (s, 3H, CH3), 3.71 (br.s, 4H, CH2-CH2), 4.45 (t, 2H, CH2), 4.66 (t, 2H, CH2),
5.45 (br.s, 1H, NH), 7.21 (d, J = 8.4 Hz, 2H, Ar); 7.64 (d, J = 8.4 Hz, 2H, Ar); 13C-NMR (50 MHz, CDCl3):
21.52, 43.42 (two overlapping signals), 45.71 (two overlapping signals), 50.81, 122.23 (two overlapping
signals), 129.82 (two overlapping signals), 135.44, 137.23, 144.76, 150.36, 154.97; m/z (ESI): 362 [M + H]+.
Anal. Calcd for C15H19N7O2S (361.42): C, 49.85; H, 5.30; N, 27.13. Found: C, 49.87; H, 5.30; N, 27.06.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
benzenesulfonamide (5c). Starting from 0.18 g (0.668 mmol) of 3a and 0.118 g (0.085 mL, 0.668 mmol)
of benzenesulfonyl chloride; yield 0.18 g (66%); eluent: dichloromethane:ethyl acetate:2-propanone
(1:2:2, v/v/v); crystallized from methanol; m.p. 233–234 ◦C; IR (KBr, cm−1): 3358, 3062, 2956, 2927,
2878, 1677, 1641, 1602, 1570, 1521, 1496, 1389, 1273, 1140, 1085, 925, 769, 690, 594; 1H-NMR (200 MHz,
CDCl3): 3.51–3.91 (m, 4H, CH2-CH2), 4.46 (t, 2H, CH2), 4.72 (t, 2H, CH2), 5.49 (br.s, 1H, NH),
7.19–7.57 (m, 6H, Ar), 7.75 (d, J = 7.9 Hz, 2H, Ar), 7.94–7.99 (m, 2H, Ar); 13C-NMR (50 MHz, CDCl3):
45.83, 46.33, 50.84, 53.05, 121.97 (two overlapping signals), 126.59 (two overlapping signals), 127.16,
129,17 (two overlapping signals), 129.25 (two overlapping signals), 132.31, 137.88, 143.66, 144.32,
150.55, 154.92; m/z (ESI): 310 [M + H]+. Anal. Calcd for C19H19N7O2S (409.46): C, 55.73; H, 4.68; N,
23.95. Found: C, 55.69; H, 4.58; N, 24.30.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
benzenesulfonamide (5d). Starting from 0.142 g (0.5 mmol) of 3b and 0.118 g (0.085 mL, 0.668 mmol) of
benzenesulfonyl chloride; yield 0.14 g (66%); eluent: ethyl acetate:2-propanone (1:1, v/v); crystallized
from 2-propanone; m.p. 219–221 ◦C; IR (KBr, cm−1): 3361, 3104, 3058, 2953, 2870, 1667, 1638, 1591, 1568,
1513, 1445, 1386, 1314, 1277, 1145, 1087, 926, 760, 603; 1H-NMR (200 MHz, CDCl3): 2.33 (s, 3H, CH3),
3.56–3.72 (m, 2H, CH2), 3.73–3.81 (m, 2H, CH2), 4.45 (t, 2H, CH2), 4.71 (t, 2H, CH2), 5.49 (br.s, 1H,
NH), 7.15 (d, J = 8.3 Hz, 2H, Ar), 7.42–7.50 (m, 3H, Ar), 7.60 (d, J = 8.3 Hz, 2H, Ar), 7.94–7.97 (m, 2H,
Ar); 13C-NMR (50 MHz, CDCl3): 21.49, 45.81, 46.51 (br.), 50.83, 53.09 (br.), 122.08 (two overlapping
signals), 126.59 (two overlapping signals), 129.13 (two overlapping signals), 129.80 (two overlapping
signals), 132.22, 135.41, 137.20, 143.76, 144.22, 150.48, 154.92. m/z (ESI): 424 [M + H]+; Anal. Calcd for
C20H21N7O2S (423.49): C, 56.72; H, 5.00; N, 23.15. Found: C, 56.68; H, 5.01; N, 23.12.
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N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
methylbenzenesulfonamide (5e). Starting from 0.135 g (0.5 mmol) of 3a and 0.095 g (0.5 mmol) of
p-toluenesulfonyl chloride; yield 0.13 g (61%); crystallized from methanol; m.p. 227–231 ◦C; IR (KBr,
cm−1): 3316, 3065, 2955, 2925, 2874, 1678, 1630, 1603, 1567, 1515, 1474, 1259, 1142, 1091, 926, 770,
565; 1H-NMR (200 MHz, CDCl3): 2.40 (s, 3H, CH3), 3.64–3.76 (m, 4H, CH2-CH2), 4.44 (t, 2H, CH2),
4.70 (t, 2H, CH2), 5.50 (br.s, 1H, NH), 7.18–7.29 (m, 5H, Ar), 7.74–7.86 (m, 4H, arom); 13C-NMR
(50 MHz, CDCl3): 21.97, 45.85, 46.25 (br.), 50.82, 53.05 (br.), 121.88 (two overlapping signals),
126.61 (two overlapping signals), 127.02, 129.22 (two overlapping signals), 129.76 (two overlapping
signals), 137.96, 140.90, 142.85, 144.29, 150.52, 154.91; m/z (ESI): 424 [M + H]+. Anal. Calcd for
C20H21N7O2S (423.49): C, 56.72; H, 5.00; N, 23.15. Found: C, 56.69; H, 4.99; N, 23.27.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
methylbenzenesulfonamide (5f). Starting from 0.142 g (0.5 mmol) of 3b and 0.095 g (0.5 mmol) of
p-toluenesulfonyl chloride; yield 0.14 g (64%); eluent: 2-propanone:ethyl acetate (4:1, v/v);
m.p. 203–206 ◦C; IR (KBr, cm−1): 3381, 3030, 2923, 2858, 1684, 1634, 1590, 1561, 1523, 1509, 1313, 1282,
1254, 1147, 1090, 935, 820, 556; 1H-NMR (200 MHz, CDCl3): 2.33 (s, 3H, CH3), 2.41 (s, 3H, CH3),
3.54–3.69 (m, 2H, CH2), 3.72–3.80 (m, 2H, CH2), 4.44 (t, 2H, CH2), 4.70 (t, 2H, CH2), 5.50 (br.s, 1H,
NH), 7.15 (d, J = 8.4 Hz, 2H, Ar), 7.26 (d, J = 8.1 Hz, 2H, Ar), 7.61 (d, J = 8.4 Hz, 2H, Ar), 7.84 (d,
J = 8.1 Hz, 2H, Ar); 13C-NMR (50 MHz, CDCl3): 21.48, 21.96, 45.82, 46.40 (br.), 50.82, 53.10 (br.),
122.01 (two overlapping signals), 126.61 (two overlapping signals), 129.72 (two overlapping signals),
129.78 (two overlapping signals), 135.48, 137.08, 140.97, 142.75, 144.20, 150.45, 154.95; m/z (ESI):
438 [M + H]+. Anal. Calcd for C21H23N7O2S (437.52): C, 57.65; H, 5.30; N, 22.41. Found: C, 57.61; H,
5.28; N, 22.44.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
methoxybenzenesulfonamide (5g). Starting from 0.269 g (1 mmol) of 3a and 0.207 g (1 mmol) of
4-methoxybenzenesulfonyl chloride; yield 0.15 g (34%); eluent: chloroform:ethyl acetate:2-propanone:
triethylamine (3:4:2:1, v/v/v/v); m.p. 207–209 ◦C; IR (KBr, cm−1): 3379, 3072, 2945, 2876, 1677, 1596,
1572, 1521, 1499, 1257, 1139, 1087, 769, 570; 1H-NMR (200 MHz, CDCl3): 3.71 (br.s, 4H, CH2-CH2),
3.86 (s, 3H, OCH3), 4.46 (t, 2H, CH2), 4.72 (t, 2H, CH2), 6.95 (d, J = 8.2 Hz, 2H, Ar), 7.19–7.40 (m,
3H, Ar), 7.76 (d, J = 7.7 Hz, 2H, Ar), 7.89 (d, J = 8.2 Hz, 2H, Ar); 13C-NMR (50 MHz, CDCl3):
45.34 (two overlapping signals), 50.32 (two overlapping signals), 55.50, 113.76 (two overlapping signals),
121.33 (two overlapping signals), 126.49, 128.11 (two overlapping signals), 128.70 (two overlapping
signals), 135.16, 137.42, 143.70, 149.85, 154.38; 162,15; m/z (ESI): 440 [M + H]+. Anal. Calcd for
C20H21N7O3S (439.49): C, 54.66; H, 4.82; N, 22.31. Found: C, 54.61; H, 4.74; N, 22.26.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
nitrobenzenesulfonamide (5h). Starting from 0.135 g (0.5 mmol) of 3a and 0.111 g (0.5 mmol) of
4-nitrobenzenesulfonyl chloride; yield 0.19 g (84%); m.p. 263–269 ◦C; IR (KBr, cm−1): 3327, 3101, 3083,
2931, 2875, 1675, 1626, 1602, 1569, 1521, 1493, 1387, 1354, 1279, 1147, 1090, 926, 775, 747, 615; 1H-NMR
(200 MHz, DMSO-d6): 3.52 (br.s, 4H, CH2-CH2), 4.34–4.36 (m, 4H, CH2-CH2), 6.33 (br.s, 1H, NH),
7.31–7.46 (m, 3H, Ar), 7.78 (d, J = 7.9 Hz, 2H, Ar), 8.1 (d, J = 8.3 Hz, 2H Ar), 8.37 (d, J = 8.7 Hz, 2H, Ar);
m/z (ESI): 455 [M + H]+. Anal. Calcd for C19H18N8O4S (454.46): C, 50.21; H, 3.99; N, 24.66. Found: C,
50.19; H, 4.04; N, 24.78.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
naphthalene-1-sulfonamide (5i). Starting from 0.134 g (0.5 mmol) of 3a and 0.113 g (0.5 mmol) of
1-naphthalenesulfonyl chloride; yield 0.1 g (44%); eluent: dichloromethane:ethyl acetate:2-propanone:
triethylamine:methanol (6:6:5:2:1, v/v/v/v/v); m.p. > 350 ◦C; IR (KBr, cm−1): 3371, 3058, 2928, 2878, 1672,
1632, 1590, 1566, 1518, 1388, 1263, 1112, 922, 769, 597, 509; 1H-NMR (200 MHz, CDCl3): 3.71 (s, 4H,
CH2-CH2), 4.49 (t, 2H, CH2), 4.79 (t, 2H, CH2), 7.10–7.27 (m, 4H, Ar+NH), 7.48 (d, J = 7.5 Hz, 1H, Ar),
7.54–7.65 (m, 2H, Ar), 7.68 (d, J = 7.9 Hz, 2H, Ar), 7.89–7.94 (m, 1H, Ar), 8.02 (d, J = 7.9 Hz, 1H, Ar),
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8.29 (d, J = 7.5 Hz, 1H, Ar), 8.81–8.86 (m, 1H, Ar); 13C-NMR (50 MHz, CDCl3): 45.79 (two overlapping
signals), 50.63 (two overlapping signals), 121.73 (two overlapping signals), 124.30, 126.23, 126.85,
126.93, 127.69, 128.68, 128.79, 128.89 (three overlapping signals), 133.62, 134.48, 137.44, 138.56, 143.88,
150.29, 154.64; m/z (ESI): 460 [M + H]+. Anal. Calcd for C23H21N7O2S (459.52): C, 60.12; H, 4.61; N,
21.34. Found: C, 60.02; H, 4.55; N, 21.30.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
naphthalene-2-sulfonamide (5j). Starting from 0.269 g (1 mmol) of 3a and 0.227 g (1 mmol) of
2-naphthalenesulfonyl chloride; yield 0.13 g (28%); eluent: dichloromethane:ethyl acetate:2-propanone:
triethylamine (1:3:3:3, v/v/v/v); crystallized from methanol; m.p. 214–217 ◦C; IR (KBr, cm−1): 3374, 3054,
2951, 2879, 1680, 1607, 1570, 1519, 1479, 1459, 1278, 1255, 1122, 1075, 925, 769, 751, 663, 558; 1H-NMR
(200 MHz, CDCl3): 3.67–3.77 (m, 4H, CH2-CH2), 4.49 (t, 2H, CH2), 4.78 (t, 2H, CH2), 5.52 (br.s, 1H,
NH), 7.23–7.35 (m, 3H, Ar), 7.60–7.62 (m, 2H, Ar), 7.78 (d, J = 7.5 Hz, 2H, Ar), 7.96 (m, 4H, Ar), 8.52 (s,
1H, Ar); 13C-NMR (50 MHz, CDCl3): 45.31, 45.87, 50.34, 52.54, 121.37 (two overlapping signals), 122.34,
126.56 (two overlapping signals), 127.12, 127.76, 128.21, 128.71 (two overlapping signals), 128.92,
129.18, 132.04, 134.44, 137.35, 140.01, 143.73, 150.01, 154.32; m/z (ESI): 460 [M + H]+. Anal. Calcd for
C23H21N7O2S (459.52): C, 60.12; H, 4.61; N, 21.34. Found: C, 60.09; H, 4.58; N, 21.28.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-
[1,1’-biphenyl]-4-sulfonamide (5k). Starting from 0.135 g (0.5 mmol) of 3a and 0.126 g (0.5 mmol) of
biphenyl-4-sulfonyl chloride; yield 0.12 g (49%); eluent: dichloromethane:ethyl acetate:2-propanone:
triethylamine:methanol (4:3:1:1:1, v/v/v/v/v) or ethyl acetate:triethylamine (4:1, v/v); crystallized from
methanol; m.p. 241–244 ◦C; IR (KBr, cm−1): 3370, 3058, 3033, 2965, 2923, 2823, 1673, 1631, 1605,
1575, 1511, 1258, 1139, 1093, 1033, 935, 766, 597; 1H-NMR (500 MHz, CDCl3): 3.64–3.79 (m, 4H,
CH2-CH2), 4.49 (t, 2H, CH2), 4.74 (t, 2H, CH2), 5.52 (br.s, 1H, NH), 7.23–7.27 (m, 1H, Ar), 7.37 (t,
2H, Ar), 7.41 (d, J = 7.8 Hz, 1H Ar), 7.47 (t, 2H, Ar), 7.61 (d, J = 7.3 Hz, 2H, Ar), 7.69 (d, J = 8.3 Hz,
2H, Ar), 7.77 (d, J = 8.8 Hz, 2H, Ar), 8.02 (d, J = 8.8 Hz, 2H, Ar); 13C-NMR (125 MHz, CDCl3):
45.61 (two overlapping signals), 50.62 (two overlapping signals), 121.79 (two overlapping signals),
126.89 (two overlapping signals), 126.97, 127.55 (two overlapping signals), 127.62 (two overlapping
signals), 128.46, 129.05 (two overlapping signals), 129.21 (two overlapping signals), 137.62, 139.91,
142.06, 144.07, 144.97, 150.32, 154.67; m/z (ESI): 486 [M + H]+. Anal. Calcd for C25H23N7O2S (485.56): C,
61.84; H, 4.77; N, 20.19. Found: C, 61.80; H, 4.71; N, 20.08.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-
[1,1’-biphenyl]-4-sulfonamide (5l). Starting from 0.142 g (0.5 mmol) of 3b and 0.126 g (0.5 mmol) of
biphenyl-4-sulfonyl chloride; yield 0.09 g (36%); m.p. 214–218 ◦C; IR (KBr, cm−1): 3360, 3069, 3034, 2980,
2950, 2874, 1670, 1638, 1591, 1570, 1517, 1450, 1388, 1281, 1144, 1090, 924, 672, 604; 1H-NMR (300 MHz,
CDCl3): 2.33 (s, 3H, CH3), 3.71 (br.s, 4H, CH2-CH2), 4.48 (t, 2H, CH2), 4.74 (t, 2H, CH2), 5.47 (br.s, 1H,
NH), 7.17 (d, J = 8.4 Hz, 2H, Ar), 7.39–7.49 (m, 3H, Ar); 7.59–7.70 (m, 6H, Ar), 7.99–8.03 (m, 2H, Ar);
13C-NMR (75 MHz, CDCl3): 21.01, 45.34, 46.28, 50.37, 52.14, 121.63 (two overlapping signals), 126.62
(three overlapping signals), 127.29, 127.32 (two overlapping signals), 128.17, 128.94, 128.95, 129.34,
129.38, 134.89, 136.77, 139.70, 141.90, 143.71, 144.64, 149.97, 154.43; m/z (ESI): 500 [M + H]+. Anal. Calcd
for C26H25N7O2S (499.59): C, 62.51; H, 5.04; N, 19.63. Found: C, 62.55; H, 4.89; N, 19.58.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
phenoxybenzenesulfonamide (5m). Starting from 0.135 g (0.5 mmol) of 3a and 0.134 g (0.5 mmol) of
4-phenoxybenzenesulfonyl chloride; yield 0.08 g (32%); eluent: ethyl acetate:methanol (9:1, v/v and
8:2, v/v); crystallized from methanol; m.p. 186–188 ◦C; IR (KBr, cm−1): 3372, 3247, 3069, 2924, 2848,
1671, 1607, 1590, 1522, 1488, 1390, 1280, 1266, 1241, 1142, 1087, 927, 769, 578; 1H-NMR (500 MHz,
DMSO-d6): 3.46–3.55 (m, 4H, CH2-CH2), 4.29 (t, 2H, CH2), 4.40 (t, 2H, CH2), 6.11 (s, 1H, NH), 7.07 (d,
J = 8.8 Hz, 2H, Ar), 7.12 (d, J = 7.8 Hz, 2H, Ar), 7.23 (t, 1H, Ar), 7.28 (t, 1H, Ar), 7.42 (d, J = 7.3 Hz, 2H,
Ar), 7.45 (d, J = 7.3 Hz, 2H, Ar), 7.80 (d, J = 7.8 Hz, 2H, Ar), 7.84 (d, J = 8.8 Hz, 2H, Ar); 13C-NMR
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(125 MHz, DMSO-d6+TFA): 44.30 (two overlapping signals), 46.49, 52.61, 118.18 (two overlapping
signals), 120.64 (two overlapping signals), 122.34 (two overlapping signals), 125.43, 127.76,
128.76 (two overlapping signals), 129.64 (two overlapping signals), 130.98 (two overlapping signals),
137.72, 138.35, 144.21, 149.57, 153.89, 155.67, 160.69; m/z (ESI): 502 [M + H]+. Anal. Calcd for
C25H23N7O3S (501.56): C, 59.87; H, 4.62; N, 19.55. Found: C, 59.87; H, 4.62; N, 19.55.

N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-
(trifluoromethyl)benzenesulfonamide (5n). Starting from 0.135 g (0.5 mmol) of 3a and 0.122 g (0.5 mmol)
of 4-(trifluoromethyl)benzenesulfonyl chloride; yield 0.1 g (42%); eluent: dichloromethane:methanol
(9:1, v/v); m.p. 221–223 ◦C; IR (KBr, cm−1): 3379, 3076, 2933, 2876, 1677, 1605, 1574, 1522, 1499, 1471,
1458, 1389, 1324, 1274, 1168, 1143, 1093, 1063, 939, 926, 769, 724, 610; 1H-NMR (500 MHz, DMSO-d6):
3.51 (s, 4H, CH2-CH2), 4.29–4.32 (m, 2H, CH2), 4.39–4.42 (m, 2H, CH2), 6.18 (br.s, 1H, NH), 7.31 (t,
1H, Ar), 7.45 (t, 2H, Ar), 7.77–7.79 (m, 2H, Ar), 7.93 (d, J = 8.3 Hz, 2H, Ar), 8.07 (d, J = 8.3 Hz,
2H, Ar); 13C-NMR (75 MHz, DMSO-d6): 45.58 (two overlapping signals), 51.21 (two overlapping
signals), 122.21 (two overlapping signals), 124.03 (q, 1J(C-F) = 272 Hz), 126.71 (q, 3J(C-F) = 4.3 Hz,
two overlapping signals), 127.00 (two overlapping signals), 127.25, 129.31 (two overlapping signals),
131.54 (q, 2J(C-F) = 32 Hz), 137.59, 143.90, 148.17, 151.04, 154.74; m/z (ESI): 478 [M + H]+. Anal. Calcd for
C20H18F3N7O2S (477.46): C, 50.31; H, 3.80; N, 20.53. Found: C, 50.26; H, 3.84; N, 20.47.

3.1.3. A General Procedure for the Preparation of Compounds 6a–i and 7a–d

To a stirring solution of compound 3a–c in anhydrous dichloromethane (5 mL), the appropriate
aryl isocyanate or isothiocyanate was added (in the molar ratio of 1:1). The mixture was stirred at room
temperature (20–22 ◦C) for 12 h. The progress of the reaction was controlled by TLC. After completion of
the reaction, the precipitate was separated by suction, washed with a small amount of dichloromethane,
and dried. The crude product was purified on silica gel by preparative thin-layer chromatography
(chromatotron) or crystallization. In this manner, the following compounds were obtained.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-
phenylurea (6a). Starting from 0.135 g (0.5 mmol) of 3a and 0.0596 g (0.0543 mL, 0.5 mmol) of phenyl
isocyanate; yield 0.12 g (62%); eluent: chloroform:ethyl acetate:2-propanone:methanol (1:1:1:1,
v/v/v/v); m.p. 241–247 ◦C; IR (KBr, cm−1): 3402, 3201, 3076, 2930, 2873, 1686, 1633, 1598, 1570, 1512,
1497, 1436, 1305, 1234, 1143, 748; 1H-NMR (500 MHz, DMSO-d6): 3.52 (s, 4H, CH2-CH2), 4.25 (t,
2H, CH2), 4.34 (t, 2H, CH2), 6.21 (br.s, 1H, NH), 6.88 (t, 1H, Ar), 7.19–7.24 (m, 3H, Ar), 7.44 (t, 2H,
Ar), 7.61 (d, J = 7.8 Hz, 2H, Ar), 8.11 (d, J = 7.8 Hz, 2H, Ar), 9.17 (s, 1H, NH); 1H-NMR (500 MHz,
DMSO-d6+TFA): 3.85 (s, 4H, CH2-CH2), 4.41–4.48 (m, 4H, CH2-CH2), 6.90 (t, 1H, Ar), 7.22 (t, 2H, Ar),
7.28 (t, 1H, Ar), 7.48 (t, 2H, Ar), 7.62 (d, J = 7.3 Hz, 2H, Ar), 8.18 (d, J = 8.3 Hz, 2H, Ar), 9.20 (br.s,
2H, NH+NH+), 9.31 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d6+TFA): 44.29 (two overlapping
signals), 46.20, 52.20, 118.86 (two overlapping signals), 121.54 (two overlapping signals), 122.12, 126.44,
129.10 (two overlapping signals), 129.44 (two overlapping signals), 138.93, 141.46, 146.90, 149.28,
154.00, 158.33; m/z (ESI): 389 [M + H]+. Anal. Calcd for C20H20N8O (388.43): C, 61.84; H, 5.19; N, 28.85.
Found: C, 61.80; H, 5.15; N, 28.79.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-
phenylurea (6b). Starting from 0.142 g (0.5 mmol) of 3b and 0.0596 g (0.0543 mL, 0.5 mmol) of
phenyl isocyanate; yield 0.16 g (80%); eluent: chloroform:ethyl acetate:2-propanone:methanol
(1:1.5:1:0.5, v/v/v/v); crystallized from chloroform:ethyl acetate:methanol (1:1:1, v/v/v); m.p. 242–246 ◦C;
IR (KBr, cm−1): 3411, 3312, 3046, 2950, 2873, 1684, 1638, 1589, 1570, 1498, 1432, 1303, 1223, 1141,
820, 758; 1H-NMR (500 MHz, DMSO-d6): 2.32 (s, 3H, CH3), 3.52 (s, 4H, CH2-CH2), 4.24 (t, 2H,
CH2), 4.33 (t, 2H, CH2), 6.25 (br.s, 1H, NH), 6.87 (t, 1H, Ar), 7.20 (t, 2H, Ar), 7.24 (d, J = 8.3 Hz, 2H,
Ar), 7.60 (d, J = 8.3 Hz, 2H, Ar), 7.96 (d, J = 8.3 Hz, 2H, Ar), 9.12 (s, 1H, NH); 13C-NMR (125 MHz,
DMSO-d6+TFA): 20.87, 44.21 (two overlapping signals), 46.75, 52.28, 119.18 (two overlapping signals),



Molecules 2020, 25, 5924 15 of 23

122.73, 123.18 (two overlapping signals), 129.09 (two overlapping signals), 130.05 (two overlapping
signals), 135.18, 137.85, 140.41, 145.83, 149.67, 153.90, 155.50; m/z (ESI): 403 [M + H]+. Anal. Calcd for
C21H22N8O (402.45): C, 62.67; H, 5.51; N, 27.84. Found: C, 62.65; H, 5.55; N, 27.92.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-(p-
tolyl)urea (6c). Starting from 0.135 g (0.5 mmol) of 3a and 0.0665 g (0.063 mL, 0.5 mmol) of p-tolyl
isocyanate; crystallized from methanol; yield 0.16 g (80%); m.p. 262–264 ◦C; IR (KBr, cm−1): 3388,
3207, 3062, 3026, 2948, 2877, 1691, 1638, 1604, 1588, 1573, 1513, 1403, 1313, 1291, 1235, 1145, 769, 748;
1H-NMR (500 MHz, DMSO-d6): 2.21 (s, 3H, CH3), 3.52 (s, 4H, CH2-CH2), 4.25 (t, 2H, CH2), 4.33 (t, 2H,
CH2), 6.20 (br.s, 1H, NH), 7.01 (d, J = 8.3 Hz, 2H, Ar), 7.22 (t, 1H, Ar), 7.43 (t, 2H, Ar), 7.49 (d, J = 7.3 Hz,
2H, Ar), 8.11 (d, J = 7.8 Hz, 2H, Ar), 9.08 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d6+TFA): 20.57,
44.20 (two overlapping signals), 46.71, 52.27, 119.25 (two overlapping signals), 122.95 (two overlapping
signals), 127.48, 129.48 (two overlapping signals), 129.58 (two overlapping signals), 131.76, 137.79,
137.85, 145.88, 149.71, 153.92, 155.63; m/z (ESI): 403 [M + H]+. Anal. Calcd for C21H22N8O (402.45): C,
62.67; H, 5.51; N, 27.84. Found: C, 62.67; H, 5.51; N, 27.84.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-
(p-tolyl)urea (6d). Starting from 0.142 g (0.5 mmol) of 3b and 0.0665 g (0.063 mL, 0.5 mmol) of p-tolyl
isocyanate; eluent: ethyl acetate:2-propanone:methanol (7:1:2, v/v/v); crystallized from methanol;
yield 0.11 g (53%); m.p. 258–262 ◦C; IR (KBr, cm−1): 3398, 3205, 3079, 3030, 2958, 2919, 2876, 1686,
1637, 1587, 1514, 1312, 1291, 1236, 1181, 1144, 813; 1H-NMR (500 MHz, DMSO-d6): 2.20 (s, 3H,
CH3), 2.32 (s, 3H, CH3), 3.52 (s, 4H, CH2-CH2), 4.24 (t, 2H, CH2), 4.33 (t, 2H, CH2), 6.25 (br.s,
1H, NH), 7.00 (d, J = 8.3 Hz, 2H, Ar), 7.23 (d, J = 8.3 Hz, 2H, Ar), 7.48 (d, J = 7.8 Hz, 2H, Ar),
7.96 (d, J = 8.3 Hz, 2H, Ar), 9.03 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d6+TFA): 20.58, 20.88,
44.23 (two overlapping signals), 47.12, 52.39, 119.38 (two overlapping signals), 123.92 (two overlapping
signals), 129.59 (two overlapping signals), 130.25 (two overlapping signals), 132.25, 134.52, 137.25,
138.79, 145.25, 150.01, 153.90, 158.64; m/z (ESI): 417 [M + H]+. Anal. Calcd for C22H24N8O (416.48): C,
63.45; H, 5.81; N, 26.90. Found: C, 63.48; H, 5.74; N, 26.86.

1-(4-Chlorophenyl)-3-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-
3(5H)-ylidene)urea (6e). Starting from 0.142 g (0.5 mmol) of 3b and 0.0768 g (0.0639 mL, 0.5 mmol)
of 4-chlorophenyl isocyanate; eluent: ethyl acetate:methanol (9:1, v/v); crystallized from methanol;
yield 0.105 g (48%); m.p. 256–260 ◦C; IR (KBr, cm−1): 3408, 3374, 3272, 3063, 3037, 2927, 2866, 1680, 1622,
1574, 1492, 1391, 1309, 1286, 1270, 1229, 1151, 825; 1H-NMR (300 MHz, DMSO-d6): 2.31 (s, 3H, CH3),
3.51 (s, 4H, CH2-CH2), 4.21–4.27 (m, 2H, CH2), 4.30–4.36 (m, 2H, CH2), 6.17 (br.s, 1H, NH), 7.21–7.25 (m,
4H, Ar), 7.63 (d, J = 8.8 Hz, 2H, Ar), 7.93 (d, J = 8.3 Hz, 2H, Ar); 13C-NMR (75 MHz, DMSO-d6): 20.98,
45.28 (two overlapping signals), 50.88 (two overlapping signals), 119.87 (two overlapping signals),
121.37 (two overlapping signals), 124.90, 128.65 (two overlapping signals), 129.46 (two overlapping
signals), 135.08, 136.53, 140.62, 147.01, 150.60, 155.08, 158.32; m/z (ESI): 437 and 439 [M + H]+. Anal.
Calcd for C21H21ClN8O (436.90): C, 57.73; H, 4.84; N, 25.65. Found: C, 57.78; H, 4.81; N, 25.58.

1-(4-Chlorophenyl)-3-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c]
[1,2,4]triazol-3(5H)-ylidene)urea (6f). Starting from 0.1519 g (0.5 mmol) of 3c and 0.0768 g (0.0639 mL,
0.5 mmol) of 4-chlorophenyl isocyanate; eluent: chloroform:methanol (9.5:0.5, v/v); yield 0.12 g
(52%); m.p. 256–260 ◦C; IR (KBr, cm−1): 3385, 3291, 3101, 2955, 2927, 2876, 1686, 1662, 1630, 1584,
1514, 1490, 1304, 1234, 1145, 1090, 827; 1H-NMR (300 MHz, DMSO-d6): 3.51 (s, 4H, CH2-CH2),
4.20–4.27 (m, 2H, CH2), 4.30–4.35 (m, 2H, CH2), 6.21 (br.s, 1H, NH), 7.24–7.27 (m, 2H, Ar), 7.46–7.49 (m,
2H, Ar), 7.62–7.65 (m, 2H, Ar), 8.16–8.19 (m, 2H, Ar), 9.36 (s, 1H, NH); 13C-NMR (75 MHz,
DMSO-d6): 45.38 (two overlapping signals), 50.89 (two overlapping signals), 119.94, 122.30, 125.13,
128.71 (two overlapping signals), 128.95 (three overlapping signals), 129.33 (two overlapping signals),
137.87, 140.42, 146.91, 150.80, 154.98, 158.06; m/z (ESI): 437 and 439 [M + H]+. Anal. Calcd for
C20H18Cl2N8O (457.32): C, 52.53; H, 3.97; N, 24.50. Found: C, 52.44; H, 3.99; N, 24.45.
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1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-
(naphthalen-1-yl)urea (6g). Starting from 0.135 g (0.5 mmol) of 3a and 0.085 g (0.5 mmol) of 1-naphthyl
isocyanate; yield 0.11 g (50%); m.p. 190–194 ◦C; IR (KBr, cm−1): 3367, 3204, 3051, 3012, 2966, 2878, 1678,
1638, 1599, 1578, 1515, 1492, 1455, 1402, 1341, 1256, 1148, 1044, 772; 1H-NMR (500 MHz, DMSO-d6,
recorded at a temperature of 70 ◦C): 3.55 (s, 4H, CH2-CH2), 4.27 (t, 2H, CH2), 4.38 (t, 2H, CH2),
7.19 (t, 1H, Ar), 7.38 (t, 2H, Ar), 7.43–7.50 (m, 3H, Ar), 7.65 (d, J = 7.8 Hz, 1H, Ar), 7.76 (d, J = 7.3 Hz,
1H, Ar), 7.86–7.89 (m, 1H, Ar), 8.07 (d, J = 7.8 Hz, 2H, Ar), 8.13–8.15 (m, 1H, Ar), 8.82 (s, 1H, NH);
1H-NMR (500 MHz, DMSO-d6+TFA): 3.83 (s, 4H, CH2-CH2), 4.44–4.46 (m, 2H, CH2), 4.55–4.56 (m,
2H, CH2), 7.33–7.34 (m, 1H, Ar), 7.44–7.59 (m, 5H, Ar), 7.68 (d, J = 8.3 Hz, 1H, Ar), 7.72–7.73 (m,
1H, Ar), 7.88 (d, J = 7.8 Hz, 1H, Ar), 8.00–8.08 (m, 3H, Ar), 9.24 (br.s, 2H, 2xNH+), 9.35 (br.s, 1H,
NH); 13C-NMR (125 MHz, DMSO-d6+TFA): 44.23 (two overlapping signals), 46.97, 52.37, 123.10,
123.40, 125.30, 125.61, 126.06, 126.30 (two overlapping signals), 126.50, 128.68, 129.79 (two overlapping
signals), 130.47, 134.36 (two overlapping signals), 134.55, 137.32, 145.56, 149.98, 153.87, 158.68; m/z (ESI):
439 [M + H]+. Anal. Calcd for C24H22N8O (438.48): C, 65.74; H, 5.06; N, 25.55. Found: C, 65.69; H,
5.12; N, 25.48.

N-((7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
carbamoyl)-4-methylbenzenesulfonamide (6h). Starting from 0.135 g (0.5 mmol) of 3a and 0.0986 g
(0.0764 mL, 0.5 mmol) of p-toluenesulfonyl isocyanate; yield 0.148 g (63%); m.p. 228–232 ◦C;
IR (KBr, cm−1): 3386, 3108, 3030, 2953, 2887, 1687, 1641, 1601, 1589, 1567, 1527, 1499, 1443, 1328,
1244, 1134, 1088, 1004, 914, 562; 1H-NMR (500 MHz, DMSO-d6): 2.35 (s, 3H, CH3), 3.50 (s, 4H,
CH2-CH2), 4.13–4.16 (m, 2H, CH2), 4.19–4.22 (m, 2H, CH2), 7.23 (t, 1H, Ar), 7.32 (d, J = 7.8 Hz, 2H,
Ar), 7.39 (t, 2H, Ar), 7.74 (d, J = 8.3 Hz, 2H, Ar), 8.01 (d, J = 8.3 Hz, 2H, Ar), 8.50 (br.s, 2H, 2 x NH);
1H-NMR (500 MHz, DMSO-d6+TFA): 2.30 (s, 3H, CH3), 3.79 (s, 4H, CH2-CH2), 4.33–4.35 (m, 4H,
CH2-CH2), 7.23–7.27 (m, 3H, Ar), 7.37 (t, 2H, Ar), 7.73 (d, J = 8.3 Hz, 2H, Ar), 8.03 (d, J = 8.3 Hz, 2H,
Ar), 9.15 (br.s, 3H, NH+NH2

+); 13C-NMR (125 MHz, DMSO-d6+TFA): 21.18, 44.12 (two overlapping
signals), 46.35, 52.13, 122.03 (two overlapping signals), 126.91, 127.80 (two overlapping signals),
129.16 (two overlapping signals), 129.68 (two overlapping signals), 138.21, 138.43, 143.76, 147.62,
149.25, 153.89, 155.81; m/z (ESI): 467 [M + H]+. Anal. Calcd for C21H22N8O3S (466.52): C, 54.07; H, 4.75;
N, 24.02. Found: C, 54.01; H, 4.69; N, 23.88.

N-((7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)
carbamoyl)-4-methylbenzenesulfonamide (6i). Starting from 0.142 g (0.5 mmol) of 3b and 0.0986 g
(0.0764 mL, 0.5 mmol) of p-toluenesulfonyl isocyanate; yield 0.15 g (62%); m.p. 229–231 ◦C; IR (KBr,
cm−1): 3346, 3063, 2953, 2889, 2808, 1686, 1644, 1617, 1523, 1443, 1363, 1332, 1315, 1159, 1092, 1022, 1012,
813, 754, 666, 585, 547; 1H-NMR (500 MHz, DMSO-d6): 2.31 (s, 3H, CH3), 2.35 (s, 3H, CH3), 3.49 (s,
4H, CH2-CH2), 4.12–4.15 (m, 2H, CH2), 4.18–4.22 (m, 2H, CH2), 7.18 (d, J = 8.3 Hz, 2H, Ar), 7.32 (d,
J = 8.3 Hz, 2H, Ar), 7.73 (d, J = 8.3 Hz, 2H, Ar), 7.87 (d, J = 8.3 Hz, 2H, Ar), 8.35 (br.s, 2H, 2xNH);
1H-NMR (500 MHz, DMSO-d6+TFA): 2.31 (s, 3H, CH3), 2.33 (s, 3H, CH3), 3.81 (s, 4H, CH2-CH2),
4.30–4.33 (m, 2H, CH2), 4.35–4.39 (m, 2H, CH2), 7.21 (d, J = 8.5 Hz, 2H, Ar), 7.30 (d, J = 7.2 Hz, 2H, Ar),
7.74 (d, J = 7.2 Hz, 2H, Ar), 7.92 (d, J = 8.5 Hz, 2H, Ar), 15.46 (br.s, 3H, NH+NH2

+); 13C-NMR (125 MHz,
DMSO-d6+TFA): 20.94, 21.43, 44.08, 46.37, 52.23 (two overlapping signals), 121.96 (two overlapping
signals), 127.84 (two overlapping signals), 129.70 (two overlapping signals), 129.81 (two overlapping
signals), 135.89, 136.58, 138.48, 143.77, 147.53, 149.21, 153.83, 155.73; m/z (ESI): 481 [M + H]+. Anal.
Calcd for C22H24N8O3S (480.54): C, 54.99; H, 5.03; N, 23.32. Found: C, 54.84; H, 5.13; N, 23.25.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-
phenylthiourea (7a). Starting from 0.135 g (0.5 mmol) of 3a and 0.0676 g (0.0597 mL, 0.5 mmol) of phenyl
isothiocyanate; yield 0.17 g (84%); m.p. 221–223 ◦C; IR (KBr, cm−1): 3296, 3194, 3174, 3103 3023, 2945,
2878, 1676, 1638, 1596, 1558, 1514, 1460, 1421, 1380, 1325, 1285, 1189, 752, 691; 1H-NMR (500 MHz,
DMSO-d6): 3.41–3.51 (m, 4H, CH2-CH2), 4.41 (s, 4H, CH2-CH2), 6.17 (s, 1H, NH), 6.97 (t, 1H, Ar), 7.21 (t,
2H, Ar), 7.31 (d, J = 7.2 Hz, 1H, Ar), 7.45 (t, 2H, Ar), 7.55 (d, J = 7.4 Hz, 2H, Ar), 7.85 (d, J = 7.9 Hz, 2H,
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Ar), 10.08 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d6, recorded at a temperature of 40 ◦C): 44.98,
49.34 (two overlapping signals), 51.85, 121.80 (two overlapping signals), 121.89 (two overlapping
signals), 123.58, 127.27, 128.85 (two overlapping signals), 129.56 (two overlapping signals), 138.17,
141.14, 148.57, 151.75, 155.19, 181.54; m/z (ESI): 405 [M + H]+. Anal. Calcd for C20H20N8S (404.49): C,
59.39; H, 4.98; N, 27.70. Found: C, 59.42; H, 4.89; N, 27.65.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-(p-
tolyl)thiourea (7b). Starting from 0.135 g (0.5 mmol) of 3a and 0.0746 g (0.5 mmol) of p-tolyl isothiocyanate;
crystallized from methanol; yield 0.12 g (57%); m.p. 212–214 ◦C; IR (KBr, cm−1): 3298, 3199, 3093,
3016, 2941, 2879, 1678, 1634, 1594, 1555, 1512, 1462, 1424, 1375, 1325, 1310, 1284, 1188, 1138, 752;
1H-NMR (500 MHz, CDCl3): 2.27 (s, 3H, CH3), 3.67–3.76 (m, 4H, CH2-CH2), 4.51–4.70 (m, 4H,
CH2-CH2), 5.51 (br.s, 1H, NH), 6.91–7.02 (m, 2H, Ar), 7.26–7.39 (m, 5H, Ar), 7.77–7.99 (m, 2H, Ar),
8.10 (s, 1H, NH); m/z (ESI): 419 [M + H]+. Anal. Calcd for C21H22N8S (418.52): C, 60.27; H, 5.30; N,
26.77. Found: C, 60.19; H, 5.28; N, 26.75.

1-(4-Chlorophenyl)-3-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-
3(5H)-ylidene)thiourea (7c). Starting from 0.135 g (0.5 mmol) of 3a and 0.0848 g (0.5 mmol) of
4-chlorophenyl isothiocyanate; yield 0.13 g (59%); m.p. 229–231 ◦C; IR (KBr, cm−1): 3301, 3192, 3163,
3087, 3004, 2947, 2874, 1675, 1641, 1594, 1555, 1511, 1488, 1461, 1430, 1380, 1223, 1300, 1283, 1241, 1186,
1138, 1089, 916, 822, 778, 751, 644; 1H-NMR (500 MHz, DMSO-d6): 3.53 (s, 4H, CH2-CH2), 4.36–4.43 (m,
4H, CH2-CH2), 6.26 (br.s, 1H, NH), 7.24 (d, J = 8.8 Hz, 2H, Ar), 7.30 (t, 1H, Ar), 7.45 (t, 2H, Ar), 7.58 (m,
2H, Ar), 7.82 (d, J = 7.8 Hz, 2H, Ar), 10.19 (s, 1H, NH); m/z (ESI): 439 + 440 +441 [M + H]+. Anal.
Calcd for C20H19ClN8S (438,94): C, 54.73; H, 4.36; N, 25.53. Found: C, 54.67; H, 4.31; N, 25.21.

1-(7-(4,5-Dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-3-(4-
nitrophenyl)thiourea (7d). Starting from 0.135 g (0.5 mmol) of 3a and 0.09 g (0.5 mmol) of 4-nitrophenyl
isothiocyanate; yield 0.15 g (67%); m.p. 253–255 ◦C; IR (KBr, cm−1): 3389, 3193, 3140, 3065, 3033, 2867,
1664, 1595, 1567, 1508, 1460, 1432, 1325, 1301, 1244, 1187, 1110, 772; 1H-NMR (500 MHz, DMSO-d6):
3.53 (s, 4H, CH2-CH2), 4.41 (s, 4H, CH2-CH2), 6.28 (br.s, 1H, NH), 7.34 (t, 1H, Ar), 7.48 (t, 2H, Ar),
7.81 (d, J = 8.3 Hz, 2H, Ar), 7.85 (d, J = 9.3 Hz, 2H, Ar), 8.08 (d, J = 9.3 Hz, 2H, Ar), 10.61 (s, 1H,
NH); 1H-NMR (500 MHz, DMSO-d6+TFA): 3.84 (s, 4H, CH2-CH2), 4.56 (s, 4H, CH2-CH2), 7.32 (t,
1H, Ar), 7.45 (t, 2H, Ar), 7.83–7.86 (m, 4H, Ar), 8.03 (d, J = 9.3 Hz, 2H, Ar), 9.27 (s, 2H, NH+NH+),
10.69 (s, 1H, NH); 13C-NMR (125 MHz, DMSO-d6+TFA): 44.25 (two overlapping signals), 45.77, 53.05,
120.17 (two overlapping signals), 122.61 (two overlapping signals), 124.91 (two overlapping signals),
128.27, 129.66 (two overlapping signals), 137.41, 142.10, 146.78, 148.82, 150.30, 154.14, 182.08; m/z (ESI):
450 [M + H]+. Anal. Calcd for C20H19N9O2S (449.49): C, 53.44; H, 4.26; N, 28.05. Found: C, 53.34; H,
4.21; N, 28.12.

3.1.4. A General Procedure for Preparation of Compounds 8a–c and 9

To a stirring solution of compound 3a or 3b in anhydrous chloroform (5 mL) appropriate aryl
chloride or sulfonyl chloride (sulfonic acid chloride) and anhydrous triethylamine were added (in the
mole ratio of 1:2:6). A mixture was heated in an oil bath at 90 ◦C for 8 h. The progress of the reaction
was controlled by TLC. After completion of the reaction the mixture was evaporated under reduced
pressure and to the residue, 10 mL of 20% solution of potassium carbonate was added. The mixture
was extracted with chloroform (3 × 20 mL). The organic extract was dried with anhydrous magnesium
sulfate(VI), filtered, and concentrated under reduced pressure. The crude product was purified on
silica gel by preparative thin-layer chromatography (chromatotron) or crystallization. In this manner,
the following compounds were obtained.

4-Methyl-N-(7-(1-(4-methylbenzoyl)-4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c]
[1,2,4]triazol-3(5H)-ylidene)benzamide (8a). Starting from 0.142 g (0.5 mmol) of 3b, 0.1546 g (1 mmol)
of p-toluoyl chloride and 0.30357 g (0.418 mL, 3 mmol) of triethylamine; yield 0.14 g (27%);
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m.p. 245–248 ◦C; IR (KBr, cm−1): 3069, 3026, 2983, 2915, 2865, 1677, 1656, 1606, 1537, 1501, 1465, 1391,
1339, 1312, 1292, 820, 755; 1H-NMR (200 MHz, CDCl3): 2.30 (s, 3H, CH3), 2.39 (s, 3H, CH3), 2.45 (s, 3H,
CH3), 3.81 (t, 2H, CH2), 4.03 (t, 2H, CH2), 4.54 (s, 4H, CH2-CH2), 7.05 (d, J = 8.4 Hz, 2H, Ar), 7.20 (d,
J = 8.0 Hz, 2H, Ar), 7.28 (d, J = 7.6 Hz, 2H, Ar), 7.64–7.73 (m, 4H, Ar), 8.08 (d, J = 8.0 Hz, 2H, Ar);
13C-NMR (50 MHz, CDCl3): 21.43, 22.02, 22.18, 45.45, 52.09, 52.62, 52.70, 121.68 (two overlapping
signals), 129.12 (two overlapping signals), 129.42 (two overlapping signals), 129.58 (two overlapping
signals), 129.66 (two overlapping signals), 130.02 (two overlapping signals), 131.85, 135.29, 136.09,
136.39, 141.96, 143.96, 148.12, 149.75, 151.24, 171.46, 172.65; m/z (ESI): 520 [M + H]+. Anal. Calcd for
C30H29N7O2 (519.60): C, 69.35; H, 5.63; N, 18.87. Found: C, 69.29; H, 5.61; N, 18.92.

4-Methoxy-N-(7-(1-(4-methoxybenzoyl)-4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-
c][1,2,4]triazol-3(5H)-ylidene)benzamide (8b). Starting from 0.142 g (0.5 mmol) of 3b, 0.1706 g (1 mmol) of
4-methoxybenzoyl chloride (p-anisoyl chloride) and 0.30357 g (0.418 mL, 3 mmol) of triethylamine;
yield 0.1 g (36%); m.p. 258–262 ◦C; IR (KBr, cm−1): 3076, 3010, 2964, 2905, 2838, 1672, 1604, 1537,
1505, 1462, 1417, 1401, 1341, 1316, 1291, 1252, 1172, 1160, 1029, 848, 772; 1H-NMR (200 MHz, CDCl3):
2.30 (s, 3H, CH3), 3.81 (t, 2H, CH2), 3.84 (s, 3H, OCH3), 3.89 (s, 3H, OCH3), 4.03 (t, 2H, CH2),
4.54 (s, 4H, CH2-CH2), 6.87–7.06 (m, 6H, Ar), 7.63 (d, J = 8.5 Hz, 2H, Ar), 7.80 (d, J = 8.8 Hz, 2H,
Ar), 8.14 (d, J = 8.8 Hz, 2H, Ar); 13C-NMR (50 MHz, CDCl3): 21.42, 45.49, 52.15, 52.48, 52.78, 55.83,
56.06, 113.60 (two overlapping signals), 114.32 (two overlapping signals), 121.65 (two overlapping
signals), 126.64, 129.42 (two overlapping signals), 130.62, 131.84 (two overlapping signals),
131.87 (two overlapping signals), 131.09, 136.39, 147.95, 149.63, 151.59, 162.66, 163.77, 171.14, 172.24;
m/z (ESI): 552 [M + H]+. Anal. Calcd for C30H29N7O4 (551.60): C, 65.32; H, 5.30; N, 17.78. Found: C,
65.28; H, 5.34; N, 17.68.

4-Chloro-N-(7-(1-(4-chlorobenzoyl)-4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c]
[1,2,4]triazol-3(5H)-ylidene)benzamide (8c). Starting from 0.135 g (0.5 mmol) of 3a, 0.175 g (1 mmol) of
4-chlorobenzoyl chloride and 0.30357 g (0.418 mL, 3 mmol) of triethylamine; eluent: dichloromethane:
ethyl acetate:2-propanone:triethylamine (3:3:3:1, v/v/v/v); yield 0.1 g (18%); m.p. 199–204 ◦C; IR (KBr,
cm−1): 3058, 2965, 2926, 2869, 1677, 1638, 1624, 1591, 1534, 1504, 1458, 1398, 1333, 1280, 1089, 1012, 845,
762, 754; 1H-NMR (500 MHz, DMSO-d6): 3.71 (t, 2H, CH2), 3.97 (t, 2H, CH2), 4.32 (m, 2H, CH2), 4.44 (t,
2H, CH2), 7.22 (t, 1H, Ar), 7.35 (t, 2H, Ar), 7.49 (d, J = 8.8 Hz, 2H, Ar), 7.60 (d, J = 8.3 Hz, 2H, Ar), 7.72 (d,
J = 8.3 Hz, 2H, Ar), 7.77 (d, J = 8.3 Hz, 2H, Ar), 8.05 (d, J = 8.8 Hz, 2H, Ar); m/z (ESI): 547 [M + H]+.
Anal. Calcd for C27H21Cl2N7O2 (546.41): C, 59.35; H, 3.87; N, 17.94. Found: C, 59.31; H, 3.84; N, 17.91.

N-(2-phenyl-7-(1-(phenylsulfonyl)-4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-
3(5H)-ylidene)benzenesulfonamide (9). Starting from 0.135 g (0.5 mmol) of 3a, 0.17662 g (0.1276 mL,
1 mmol) of benzenesulfonyl chloride and 0.30357 g (0.418 mL, 3 mmol) of triethylamine; eluent:
dichloromethane:ethyl acetate:2-propanone:triethylamine (3:3:3:1, v/v/v/v); yield 0.121 g (44%);
m.p. 213–216 ◦C; IR (KBr, cm−1): 3058, 2962, 2921, 2873, 1668, 1634, 1598, 1562, 1496, 1447, 1380,
1278, 1174, 1143, 1089, 936, 767, 732, 696, 608; 1H-NMR (200 MHz, CDCl3): 3.38 (t, 2H, CH2),
3.92 (t, 2H, CH2), 4.65–4.78 (m, 4H, CH2-CH2), 7.20–7.38 (m, 3H, Ar), 7.47–7.58 (m, 5H, Ar).
7.64–7.75 (m, 3H, Ar), 7.94–8.00 (m, 4H, Ar); 13C-NMR (50 MHz, CDCl3); 45.10, 50.17, 51.89, 53.59,
122.23 (two overlapping signals), 126.05 (two overlapping signals), 126.78, 127.64 (two overlapping
signals), 128.61 (four overlapping signals), 129.60 (two overlapping signals), 131.70, 134.26, 137.07,
137.35, 143.26, 143.64, 149.10, 150.09; m/z (ESI): 550 [M + H]+. Anal. Calcd for C25H23N7O4S2 (549.62):
C, 54.63; H, 4.22; N, 17.84. Found: C, 54.60; H, 4.26; N, 17.79.

3.2. X-ray Crystallography

Diffraction experiments were carried out at room temperature with an Oxford Diffraction
SuperNova diffractometer using Cu Kα radiation for 5e and with an Oxford Diffraction Xcalibur
E diffractometer using Mo Kα radiation for 8c. Diffraction data were processed with CrysAlisPro
software [45]. The structures were solved with the program SIR2004 [46] and refined by the full-matrix
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least-squares method on F2 with SHELXL-2018/3 [47]. Hydrogen atoms were placed in calculated
positions and refined as riding on their carriers, except the N-H group H atom in 5e, which was freely
refined. For 8c, the final difference Fourier map showed a residual electron density peak of ca. 1 e/Å3
close to the inversion center and at a distance of 2.97 Å from O16. This peak was interpreted as a
water molecule with occupancy 0.25 disordered around the inversion center. The H atom positions of
the disordered water molecule were not determined. Illustrations were prepared with the Mercury
software [48].

Crystal data for 5e (C20H21N7O2S, M = 423.50 g/mol): monoclinic, space group P21/c (No. 14),
a = 11.0126(11) Å, b = 11.4338(10) Å, c = 15.7222(13) Å, β= 97.819(9)◦, V = 1961.3(3) Å3, Z = 4, T = 294 K,
µ(Cu Kα) = 1.754 mm−1, Dcalc = 1.434 g/cm3, 7252 reflections measured (8.104◦ ≤ 2Θ ≤ 133.18◦),
3424 unique (Rint = 0.0271, Rsigma = 0.0346), which were used in all calculations. The final R1 was
0.0415 (I > 2σ(I)), and wR2 was 0.1244 (all data).

Crystal data for 8c (C27H21Cl2N7O2· · · 0.25H2O), M = 550.91 g/mol): triclinic, space group P-1
(No. 2), a = 8.8784(4) Å, b = 9.4988(5) Å, c = 15.3376(9) Å, α = 81.192(4)◦, β = 77.160(4)◦, γ = 83.356(4)◦,
V = 1241.78(11) Å3, Z = 2, T = 298 K, µ(Mo Kα) = 0.304 mm−1, Dcalc = 1.43 g/cm3, 14,261 reflections
measured (8.25◦ ≤ 2Θ ≤ 52.73◦), 4889 unique (Rint = 0.0240, Rsigma = 0.0324), which were used in all
calculations. The final R1 was 0.0484 (I > 2σ(I)) and wR2 was 0.1289 (all data).

3.3. In Vitro Anticancer Activity

All cell culture reagents were purchased from Sigma (Deisenhofen, Germany). Cancer cell lines
were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig,
Germany). The culture medium for cell lines was RPMI-1640 medium containing 2 g/L HCO3

− and
10% FCS. Cells were incubated in a humid atmosphere of 5% CO2 at 37 ◦C in 75 cm2 plastic culture
flasks (Sarstedt, Nümbrecht, Germany) and were passaged shortly before becoming confluent. For the
cytotoxicity studies, one-hundred microliters of a cell suspension were seeded into 96 well microtiter
plates (Sarstedt) at a density of 1000 cells per well except for the LCLC-103H cell line, which was plated
out at 250 cells per well. One day after plating, the cells were treated with the test substance at five
concentrations per compound. The 1000-fold concentrated stock solutions in DMF or DMSO were
serially diluted by 50% in DMF or DMSO to give the feed solutions, which were diluted 500-fold into
the culture medium. The controls received DMF or DMSO. Each concentration was tested in eight
wells, with each well receiving 100 µL of the medium containing the substance. The concentration
ranges were chosen to bracket the expected IC50 values as best as possible. Cells were then incubated
for 96 h, after which time, the medium was removed and replaced with 1% glutaraldehyde/PBS.
Optical density (OD) was measured at λ = 570 nm by the use of a Sunrise plate reader (Anthos 2010,
Salzburg, Austria). Corrected T/C values were calculated according to the equation: (T/C)corr(%) =

(O.D.T − O.D.c.0)/(O.D.C − O.D.c.0) × 100, where O.D.T is the mean absorbance of the treated cells,
O.D.C the mean absorbance of the controls, and O.D.c.0 the mean absorbance at the time the drug
was added. The IC50 values were estimated by linear least-squares regression of the T/Ccorr values
versus the logarithm of the substance concentration; only concentrations that yielded T/Ccorr values
between 10% and 90% were used in the calculation. The reported IC50 values are the averages of three
independent experiments.

3.4. Annexin V Assay

For this assay, the SISO cell line was used. Cells were detached by trypsinization and counted with
a Coulter Counter Z2. Two-hundred fifty-thousand cells were seeded in 2 mL per well of a 6 well plate
and allowed to attach overnight. The stock solutions of compound 5m dissolved in DMF were added
to the culture medium to the desired end concentration of 10 µM. For the control, only the solvent
was added. The old medium was removed, and 3 mL of fresh medium containing the test compound
were added to each well. The plates were incubated for 24 h. After centrifugation, supernatants
were removed, and the cells were washed once with PBS, then 500 µL of a 25% trypsin/EDTA/PBS
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solution were added to each well. Plates were incubated for 5 min, and 1.0 mL of medium was
added per well. Cells were resuspended, transferred to 1.5 mL tubes and centrifuged for 5 min.
The supernatant was discarded, and 500 µL of 1× binding buffer were added to each tube followed by
a 5 min centrifugation. Afterward, the supernatant was removed and 50 µL of 1× binding buffer were
added to resuspend the cells. Five microliters of Annexin V-FITC staining solution were pipetted into
each tube. To obtain a homogenous suspension, tubes were vortexed and incubated in the dark for
15 min at room temperature. Afterward, 500 µL of 1× binding buffer were added per tube to wash
the cells. Tubes were centrifuged for 5 min, and the supernatant was aspired completely. The cell
pellet was resuspended in 250 µL 1× binding buffer. Immediately before measurement, two-point-five
microliters of the PI solution were added. The prepared samples were analyzed by flow cytometry
using the FITC signal detector (FL1) and the phycoerythrin emission signal detector (FL2).

4. Conclusions

The newly obtained 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]
triazol-3(5H)-imine derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 constitute a small
library of heterocyclic compounds in the anticancer drugs design process. The tested compounds
exhibit cytotoxic activity, and their calculated IC50 values are in the range of 2.38–14.74 µM.
The most active compounds are amide 4e and sulfonamide 5l, whereas compound 5m shows the
highest selectivity for the SISO cell line. Preliminary results from the Annexin-V assay indicate
that N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-
ylidene)-4-phenoxybenzenesulfonamide (5m) induces apoptosis in human cancer cell line SISO.

Supplementary Materials: The following are available online. Supplementary data including the NMR spectra
of 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imine derivatives
associated with this article are available online. CCDC 2020645-2020646 contains the supplementary
crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.
uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033;
E-mail: deposit@ccdc.cam.ac.uk).
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the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J.
Med. Chem. 2008, 43, 404–419. [CrossRef]

31. Hassan, A.Y.; Sarg, M.T.; El Deeb, M.A.; El Rabeeb, S.I. Anticancer activity screening of a series of
imidazo[2,1-c][1,2,4]triazolone and imidazo[1,2-b][1,2,4]triazolone derivatives synthesized under solvent
free conditions. Org. Supramol. Chem. 2020, 5, 4755–4760. [CrossRef]

32. Urich, R.; Wishart, G.; Kiczun, M.; Richters, A.; Tidten-Luksch, N.; Rauh, D.; Sherborne, B.; Wyatt, P.G.;
Brenk, R. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding
fragments. ACS Chem. Biol. 2013, 8, 1044–1052. [CrossRef]

33. Sztanke, K.; Pasternak, K.; Sidor-Wójtowicz, A.; Truchlińska, A.; Jóźwiak, K. Synthesis of imidazole and
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