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Abstract: We herein constructed supramolecular assemblies from guanidinocalixarenes and
sulfonatocalixarenes by exploiting multiple salt bridge interactions. They encapsulate six different
kinds of fluorescent dyes (both cationic and anionic), leading to a fluorescence enhancement that
could not be achieved by either single calixarene. As such, this study advances the research on
high-performance fluorophores.
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1. Introduction

The modulation of the photophysical properties of organic fluorophores by supramolecular
encapsulation in synthetic macrocyclic hosts attracts much interest and has various applications in
sensing, bioimaging, dye laser, and photoluminescent materials, among others [1-5]. The macrocycles
crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene are commonly used to investigate
the complexation of organic dyes in aqueous media [6]. The host-guest complexation of macrocycles
and dyes prompts emission changes, including spectral shift [7,8], fluorescence quenching or
enhancement [6,9], and increases in the photochemical stability [8,10]. The effects of inclusion
complexation are generally understood in terms of changes in the internal conversion process, related to
the relocation of the fluorophore to the hydrophobic environment of the host cavity, prevention of
chromophore aggregation, or geometrical confinement of the chromophore within the host [11,12].

The restriction of dye rotation by macrocycles is a representative strategy to enhance the
fluorescence of dyes [7,13-16]. However, in some cases, this approach is hampered by the mismatched
size or shape of the macrocycles and dyes. To overcome this limitation, the synergistic restriction of the
dye within the macrocycle by other molecules or ions, instead of complexing a single dye in a macrocycle,
was explored. For instance, Nau and coworkers enhanced the fluorescence of Brilliant green (BG)
by ternary complexation with bovine serum albumin and cucurbit[7]uril (CB[7]), as the fluorescence
enhancement by complexation of BG and CB[7] is difficult [17]. Bhasikuttan and coworkers added
metal ions to a 2:1 CB[7]:thioflavin T (ThT) complex to strongly increase the fluorescence emission [18],
which was not achieved by the ThT and CB[7] complex. Therefore, the synergistic restriction by two or
more molecules has emerged as a smart approach to attaining greater fluorescence enhancement in the
host-guest assemblies.

Over the past decades, molecular capsule-liked assemblies composed of two or more
calixarenes have gained considerable attention [19-21]. Owing to the facile modification of
the calixarene scaffold, various capsule-like assemblies have been constructed and applied to
encapsulation, catalysis, enantioselective recognition, and molecule sensing [21-26]. To our
knowledge, reports on fluorescence changes resulting from encapsulation into supramolecular
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calixarene capsule-like assemblies remain elusive, despite the anticipated regulation of the
photophysical and photochemical properties by capsulation. In this study, we constructed
four calixarene-based assemblies and investigated their ability to enhance the fluorescence of
six dyes (Scheme 1), namely 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (4Asp),
2-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (2Asp), 1-anilinonaphthalene-8-sulfonic
acid (1,8-ANS), 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS), ThT, and Thiazole orange (TO).
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Scheme 1. Schematic illustration of dye encapsulation and fluorescence enhancement displaying the
chemical structures of the studied dyes and calixarenes.
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2. Results and Discussion

The calixarenes were synthesized by reported procedures (Figures S1-54) [27-29].
Sulfonatocalixarenes SC4A and SC5A, and guanidinocalixarenes GC5A and GC4A, conveniently
assemble through the formation of multiple salt bridge interactions between their upper rims, and were
combined to construct assembly S4G4 (SC4A + GC4A), S4G5 (SC4A + GC5A), S5G4 (SC5A + GC4A),
and S5G5 (SC5A + GC5A) (Scheme 1). Benefiting from the reversibility of non-covalent interactions
and the high association constants, simply mixing the solution of different calixarenes generates the
assembly spontaneously without further separation and purification. Additionally, most macrocycles
exhibit intrinsic substrate selectivity and are rarely compatible with both positive and negative species.
Regarding the studied assemblies, guanidinocalixarenes and sulfonatocalixarenes accommodate anionic
and cationic guests, respectively. As such, the prepared assemblies may suitably complex both types of
species. The strength of the formation of the different assemblies was measured by isothermal titration
calorimetry (ITC). In the obtained thermograms, the presence of inflection points at a molar ratio of
1 indicates the formation of 1:1 assembly (Figures S5-S8 from Supplementary Materials). The negative
AH and TAS values imply that formation is an enthalpy-driven process (Table 1). In the self-assembly
progress, the formation of multiple charge-assisted hydrogen bonds between the anionic sulfonic
groups of SC4A/SC5A and the cationic guanidinium groups of GC4A/GC5A, which constitute the upper
calixarene rims, dominates the favorable enthalpy change. The unfavorable entropy changes may
result from the loss of conformational degrees of freedom upon the assembly formation. Furthermore,
the exceptionally high binding constants of approximately 10’ M~! indicate a strong affinity between
the oppositely charged building blocks.

Table 1. Enthalpy (AH®) and entropy changes (TAS®), standard free energy (AG°) and association
constants (K,) of capsule-like aggregate formation in HEPES buffer (10 mM, pH = 6.0) at 298 K.

AHP TAS® AG®
-1
(keal/mol) (kcal/mol) (keal/mol) K, M)
S4G4  -122+02 14401 108402  (8.0+02)x10
S4G5  -166+02 70402 96402  (10+02)x 107
S5G4  -192+0.1 88401 ~103+01  (37+01)x 107
S5G5  -269+03  -175+02 94402  (72402)x 107

Next, we studied the typical organic laser dye 4Asp as a putative ideal encapsulated dye
(Scheme 1). 4Asp is a common fluorophore that undergoes twisted intramolecular charge transfer (TICT)
process [30]. In the local excited state during the photoexcitation, the electron-donating aniline moiety
can transfer an electron to the electron-accepting pyridinium unit, and this process is accompanied by
single/double-bond twisting [9,31]. Molecules in the TICT state generally favor internal conversion over
fluorescent emission [32,33], showing relatively weak fluorescence. Thus, the extremely weak emission
of 4Asp in aqueous solution limits its application. First, we investigated whether the encapsulation can
enhance the fluorescent intensity of 4Asp. As shown in Figure 1, no fluorescence change was observed
by adding GC4A or GC5A into the 4Asp solution. The small fluorescence enhancement observed
upon addition of SC4A or SC5A into the 4Asp solution (1.5- to 2.5-fold) suggested that complexation
with a calixarene did not effectively restrict the twisting of 4Asp. However, a dramatic fluorescence
enhancement (10- to 40-fold) was observed upon the addition of the four capsules into the 4Asp
solution, indicating that encapsulation effectively suppressed the TICT. The larger complexation space
available in the assemblies and the cooperative interactions of both calixarenes restrict the rotational
freedom of 4Asp, and thus hamper the formation of the TICT state. Moreover, the complexation of
4Asp by S4G4 was associated with the largest fluorescence enhancement, presumably because S4G4
had the most suitable size among the tested aggregates. The relative fluorescence quantum yield is
1.49% (Figure S11 from Supplementary Materials), nearly seven-fold that of pure 4Asp under the same
condition (approximately 0.2%) [34]. Molecular modeling studies (CHARMM36) indicate that SC4A
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and GC4A can form the heterotopic 1:1 capsule-like structure in a “head-to-head” mode. 4Asp can
enter the cavity of the capsule and form a sandwich-liked assembly structure (Figure 2).
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Figure 1.  Fluorescence spectra of 4Asp (2 puM) in the absence and presence of 10 uM
(a) SC5A/GC4A/S5G4, (b) SC5A/GC5A/S5G5, (c) SC4A/GC4A/S4G4, and (d) SC4A/GC5A/54G5.
Aex =475 nm. All experiments were performed in N-2-hydroxyethylpiperazine-N-ethane-sulphonicacid
(HEPES) buffer (10 mM, pH = 6.0) at 298 K.

Figure 2. Molecular simulations (CHARMMS36) of S4G4 (a) without and (b) with 4Asp in the cavity.

In order to prove the synergistic rotational restriction of 4Asp by GC4A and SC4A, we further
investigated the encapsulation of 4Asp by 54G4. The solubility of the capsule prevents the direct
determination of the 4Asp/S4G4 association constant (K4, Scheme 2) by fluorescence or ITC titration.
Instead, its value was obtained from a thermodynamic cycle. As shown in Scheme 2, the interaction
between 4Asp and S4G4 to form 4Asp@S4G4 can proceed via two pathways. In the first one,
the complexation of 4Asp with SC4A (4Asp@SC4A, K;) and subsequently with GC4A delivers
4Asp@5S4G4 (Ky), whereas the second pathway involves the initial formation of S4G4 from SC4A and



Molecules 2020, 25, 5912 50f 10

GC4A (K3), followed by the encapsulation of 4Asp (K4). As the starting materials and products are the
same, the following equation is true:

Ky = (K x K2) / K3 1

Ky ((1.8 £0.1) x 10* M~1), Ky ((1.1 £ 0.3) x 108 M~1) and K3 ((8.0 + 0.2) x 107 M~!) were obtained
from ITC (Scheme 2, Figures S8-510 from Supplementary Materials). As such, K4 was calculated as
2.4 x 10* M~L. The enthalpy and entropy changes can also be assessed by the thermodynamic cycle
(Scheme 2). As K4 is higher than Kj, the complex of S4G4 and 4Asp has a slightly more positive
cooperativity than that of SC4A and 4Asp. The more favorable entropy change (TAS® = 6.7 kcal/mol) of
the earlier process likely leads to a more extensive desolvation effect. The presence of both calixarenes
reinforces the dye complex and enables additional favorable hydrophobic and electrostatic interactions,
which mutually enhance the binding constant and further restrict the dye in the cavity.

Ky=2.4x 104 M-
AH?°= - 0.5 kcal/mol
TAS°= 6.7 kcal/mol

+ 4Asp
4Asp@S4G4 = > S4G4
— 4Asp
+ GC4A + GC4A
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Scheme 2. Four-state thermodynamic equilibrium cycle for the complexation of 4Asp with SC4A
and GC4A.

Inspired by these findings, we evaluated the potential of the calixarene capsule-like aggregates as
general platforms for fluorescence enhancement by investigating their interaction with the cationic
dyes 2Asp, ThT, and TO, and the anionic dyes 2,6-TNS and 1,8-ANS (Scheme 1). A quantitative
comparison of the fluorescence intensity before and after the addition of the aggregates is presented
in Figure 3. 2,6-TNS exhibits extremely weak fluorescence with the emission maximum at 495 nm
in aqueous solution (Figure S12a from Supplementary Materials). However, the addition of GC4A
led to a seven-fold fluorescence enhancement, which sharply increased to a 79-fold enhancement
upon titration with S4G4. The complexation-induced fluorescence enhancement of 1,8-ANS, with an
emission maximum at 480 nm, is similar to that of 2,6-TNS. While its fluorescence was slightly enhanced
upon complexation with GC4A, a 138-fold intensity increase was observed in the presence of 54G4
(Figure S12b from Supplementary Materials). Further, 2Asp, an analogue of 4Asp, is a styryl pyridinium
dye with an electron donor-acceptor architecture. Its encapsulation by S4G4 is similar to that of 4Asp
(Figure S12c¢ from Supplementary Materials), and led to a 50-fold increase in the fluorescence intensity.
As for ThT, a fluorescent probe for detecting protein folding [35], a TICT process occurs in the excited
singlet state. The resulting transition from the fluorescent local excited state to the nonfluorescent TICT
state is responsible for the significant quenching of the ThT fluorescence in low-viscosity solvents,
such as water. In viscous solvents or in rigid microenvironments, steric hindrance prevents internal
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rotation, leading to the suppression of the TICT quenching process and thus a higher fluorescence
quantum yield. Upon the binding of ThT with 54G4, the slightly enhanced fluorescence (five-fold)
indicated that the TICT process can be limited to some extent (Figure S12d from Supplementary
Materials). Upon the encapsulation of TO by S4G4, a distinct fluorescence peak with a maximum at
565 nm and a 35-fold increase in intensity was observed (Figure S12e from Supplementary Materials).
We hypothesize that the inclusion of TO into the cavity restricted its rotational freedom, thus inhibiting
the non-radiative pathway.
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Figure 3. Quantitative comparison of the fluorescence intensity of 2 uM 2,6-TNS (Aex = 327 nm), 1,8-ANS
(Aex = 327 nm), 4Asp (Aex = 475 nm), 2Asp (Aex = 463 nm), ThT (Aex = 410 nm), and TO (Aex = 488 nm)
in the absence and presence of 10 pM SC4A/GC4A/S4G4. All experiments were performed in HEPES
buffer (10 mM, pH = 6.0) at 298 K.

3. Materials and Methods

3.1. Materials

All reagents and solvents were commercially available and used as received unless purification is
otherwise specified. 4Asp was purchased from Heowns (Tianjin, China), 1,8-ANS and 2,6-TNS were
purchased from J&K Chemicals (Beijing, China), ThT was purchased from Acros (Tianjin, China), TO was
purchased from Sigma-Aldrich (Shanghai, China). 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic
acid (HEPES) was purchased from Meryer (Shanghai, China). 2Asp was synthesized according
to previous literature [36]. SC4A, SC5A, GC4A and GC5A were synthesized according to
previous literature [27-29].

3.2. Instruments

ITC measurements were examined on Malvern MicroCal PEAQ-ITC (Malvern, Worcestershire,
UK). Steady-state fluorescence measurements were recorded in a conventional quartz cuvette (light
path 10 mm) on a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies, Inc., Santa Clara,
CA, USA) equipped with a Cary single-cuvette peltier.

3.3. ITC Experiment

All microcalorimetric titrations between hosts and guests were performed in HEPES buffer (10 mM,
pH = 6.0) at atmospheric pressure and 298 K. Nineteen successive injections were made for each
titration experiment. A constant volume (2 uL/injection) of guest (or host) solution in a 40 pL syringe
was injected into the reaction cell (280 pL) charged with host (or guest) solution in the same HEPES
buffer solution.
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A control experiment was carried out in each run to determine the dilution heat by injecting a
guest (or host) into a pure HEPES buffer containing no host (or guest) molecules. The dilution heat
determined in these control experiments was subtracted from the apparent reaction heat measured in
the titration experiments to give the net reaction heat. The net reaction heat in each run was analyzed
by using the “one set of binding sites” model to simultaneously compute the binding stoichiometry
(N), complex-associated constant (K,), standard molar reaction enthalpy (AH®), and standard deviation
from the titration curve. Generally, the first point of the titration curve was disregarded, as some
liquid mixing near the tip of the injection needle is known to occur at the beginning of each ITC run.
Knowledge of the complex-associated constant (K,) and molar reaction enthalpy (AH®) enabled the
calculation of the standard free energy (AG°) and entropy changes (AS°) according to

AG®° = —-RT In K, = AH® — TAS®

where R is the gas constant, and T is the absolute temperature.
To check the accuracy of the observed thermodynamic parameters, two independent titration
experiments were carried out to afford a self-consistent thermodynamic parameter.

3.4. Fluorescence Quantum Yield Measurements

The fluorescence quantum yields were determined using the following formula [37]:

Jp— X 71_12 X £ X —1 _10_AS(/\&YC)
$i= s nk o Is T 1-1074i(e)

where ¢ is fluorescence quantum yield, A is the absorbance at the excitation wavelength, I the area
under the fluorescence spectra, and  is the refractive index of the solvent in which the sample was
collected. The subscripts “@;” and “¢g” refer to the sample of interest and the standard, respectively.
Coumarin 153 in EtOH (¢ = 0.38) was used as a standard for 4Asp@S4G4. The excitation wavelength
used with Coumarin 153 and 4Asp@54G4 was 423 nm.

3.5. Molecular Simulation

The assemblies of S4G4 and 4Asp@S4G4 were solvated in an equilibrated box of water.
The overall charge neutrality was achieved by adding CI™ ions to the solution. The systems before
production simulations underwent (i) 5000-step minimizations and 100 ps Molecule Dynamics (MD)
simulation with host and guest restrained, and (ii) 2 ns of water equilibration without restraint.
Then, the conformation was investigated by performing a 100 ns MD simulation for each complex.
The scalable program NAMD 2.13 [38] with the CHARMMS36 force field [39] and the TIP3P water
model [40] were used to perform the MD simulations. Visualization and analysis of all the MD
trajectories were carried out with the VMD program [41].

4. Conclusions

In conclusion, we constructed supramolecular assemblies from guanidinocalixarenes and
sulfonatocalixarenes, investigated their encapsulation behavior toward several dyes and analyzed
the complexation-induced photophysical changes. An increase in the fluorescence intensity was
achieved for both cationic and anionic dyes, demonstrating the utility of calixarene assemblies as
general platforms for fluorescence enhancement. Such enhancement results from the restriction of the
rotational and vibrational freedom of TICT dyes upon encapsulation, which disfavors non-radiative
pathways. This novel strategy provides a new approach to achieving high-performance fluorophores,
and inspires the rational development of abundant high-performance dyes across different fluorophore
families, thus enabling potential applications in bioimaging, advanced organic luminescent materials,
high-performance supramolecular dye lasers, and dye-sensitized solar cells.
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Supplementary Materials: Figures S1-54: the 1H-NMR spectra, Figures S5-510: the ITC spectra, Figure S11:
the fluorescence quantum yield spectra of 4Asp; Figure S12: the fluorescence spectra of 2,6-TNS, 1,8-ANS, 2Asp,
ThT and TO in the absence and presence of capsules.
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