Biobased Polymers via Radical Homopolymerization and Copolymerization of a Series of Terpenoid-Derived Conjugated Dienes with exo-Methylene and 6-Membered Ring
Takenori Nishida, ${ }^{\dagger}$ Kotaro Satoh, ${ }^{\dagger, \dagger}$ and Masami Kamigaito ${ }^{*},{ }^{\dagger}$
${ }^{\dagger}$ Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering,Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan${ }^{\dagger}$ Department of Chemical Science and Engineering, School of Materials and Chemical Technology,Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japane-mail: kamigait@chembio.nagoya-u.ac.jp
Contents:
Figure S1 S2
Figure S2 S2
Figure S3 S3
Figure S4 S3
Table S1 S4
Figure $\mathbf{S 5}$ S4
Figure S6 S5
Figure S7 S6
Figure S8 S7
Figure S9 S8
Figure S10 S9
Figure S11 S10
Figure S12 S11
Figure S13 S12
Figure S14 S13
Figure S15 S14

Figure S1. SEC curves of the homopolymers obtained in the radical polymerization of β-Phe, $(-)-\mathrm{HCvD}$, and PtD: $[\mathrm{M}]_{0} /[\mathrm{VAm}-110]_{0}=5000 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

Radical

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectra (in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ at $100{ }^{\circ} \mathrm{C}$) of poly $((-)-\mathrm{HCvD})$ obtained in the cationic (A) and radical (B) polymerization: $[(-)-\mathrm{HCvD}]_{0} /[\mathrm{CEVE}-\mathrm{HCl}]_{0} /\left[\mathrm{SnCl}_{4}\right]_{0} /\left[\mathrm{nBu} \mathrm{BNCl}_{4}\right]_{0}=100 / 1.0 / 5.0 / 4.0$ mM in toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad\left(50 / 50\right.$ vol\%) at $-78{ }^{\circ} \mathrm{C} \quad\left(M_{\mathrm{n}}(\mathrm{Calcd})=15200\right) \quad(\mathrm{A})$ or $[(-)-\mathrm{HCvD}]_{0} /[\mathrm{VAm}-110]_{0}=5000 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}(\mathrm{B})$.

Figure S3. Differential scanning calorimetry (DSC) curves of poly($\beta-\mathrm{Phe})$, poly((-)-HCvD), and poly (PtD) obtained in the radical polymerization: $[\mathrm{M}]_{0} /[\mathrm{VAm}-110]_{0}=5000 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

Figure S4. Time-conversion curves for the radical copolymerization of terpenoid-derived exo-methylene 6-membered ring conjugated dienes with MA (A), AN (B), MMA (C), and $\mathrm{St}(\mathrm{D})$ as a comonomer: [diene $]_{0} /[\text { comonomer }]_{0} /[A I B N]_{0}=1500 / 1500 / 30 \mathrm{mM}$ in toluene at $60^{\circ} \mathrm{C}$.

Table S1. Radical copolymerization of terpenoid-derived exo-methylene 6-membered ring conjugated dienes $\left(\mathrm{M}_{1}\right)$ and various common vinyl monomers $\left(\mathrm{M}_{2}\right)$ in toluene at $60^{\circ} \mathrm{C}^{a}$.

Entry	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	Time (h)	Conv. (\%) $\mathbf{M}_{\mathbf{1}} / \mathbf{M}_{\mathbf{2}}$	$\boldsymbol{M}_{\mathbf{n}}(\mathbf{S E C})^{\boldsymbol{c}}$	$\boldsymbol{M}_{\mathbf{w}} / \boldsymbol{M}_{\mathbf{n}}{ }^{\boldsymbol{c}}$
1	$\beta-$ Phe	MA	242	$17 / 11$	1600	2.80
2	HCvD	MA	96	$49 / 48$	11700	1.62
3	PtD	MA	90	$32 / 25$	6300	1.68
4	VnD	MA	364	$8 / 9$	480	1.87
5	$\beta-P h e$	AN	90	$30 / 25$	4700	1.96
6	HCvD	AN	24	$56 / 60$	19400	1.68
7	PtD	AN	35	$64 / 58$	14700	1.61
8	VnD	AN	175	$11 / 19$	1100	1.65
9	$\beta-P h e$	MMA	130	$6 / 2$	1700	2.60
10	HCvD	MMA	340	$22 / 29$	7900	1.91
11	PtD	MMA	250	$19 / 20$	4500	2.49
12	VnD	MMA	268	$4 / 8$	350	1.80
13	$\beta-P h e$	St	240	$17 / 13$	1400	2.51
14	HCvD	St	175	$21 / 27$	6600	2.20
15	PtD	St	110	$16 / 17$	2400	1.87
16	VnD	St	260	$8 / 9$	460	1.36

${ }^{a}$ Polymerization condition: $\left[\mathrm{M}_{1}\right]_{0} /\left[\mathrm{M}_{2}\right]_{0} /[\mathrm{AIBN}]_{0}=1500 / 1500 / 30 \mathrm{mM}$ in toluene at $60{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR of reaction mixture. ${ }^{c}$ Determined by SEC.

Figure S5. SEC curves of the copolymers obtained in the radical copolymerization of terpenoid-derived exo-methylene 6 -membered-ring conjugated dienes $\left(\mathrm{M}_{1}\right)$ with various common vinyl monomers $\left(\mathrm{M}_{2}\right):\left[\mathrm{M}_{1}\right]_{0} /\left[\mathrm{M}_{2}\right]_{0} /[\mathrm{VAm}-110]_{0}=1500 / 1500 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

(A) $\overbrace{\text { Mn }}^{b, b^{\prime}, c^{\prime}}$

$1,4-/ 1,2-=84 / 16$ $n / m=52 / 48$ (NMR) $n / m=53 / 47$ (Calcd)
1

(B) \qquad
1,4-/1,2- = 95/5
$n / m=53 / 47$ (NMR)
$n / m=47 / 53$ (Calcd)

$1,4-/ 1,2-=99 / 1$
$n / m=50 / 50($ NMR $)$
$n / m=47 / 53$ (Calcd)

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra (in CDCl_{3} at $55{ }^{\circ} \mathrm{C}$) of copolymers obtained in the radical copolymerization of β-Phe (A), (-)-HCvD (B), or PtD (C) with AN: $[d i e n e]_{0} /[A N]_{0} /[V A m-110]_{0}=$ $1500 / 1500 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

1,2-

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra (in CDCl_{3} at $55{ }^{\circ} \mathrm{C}$) of copolymers obtained in the radical copolymerization of β-Phe (A), (-)-HCvD (B), or PtD (C) with MMA: $[\text { diene }]_{0} /[\mathrm{MMA}]_{0} /[\mathrm{VAm}-110]_{0}=1500 / 1500 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra (in CDCl_{3} at $55{ }^{\circ} \mathrm{C}$) of copolymers obtained in the radical copolymerization of β-Phe (A), (-)-HCvD (B), or PtD (C) with St: $[\text { diene }]_{0} /[\mathrm{St}]_{0} /[\mathrm{VAm}-110]_{0}=$ $1500 / 1500 / 30 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

Figure S9. Time-conversion curves for the RAFT copolymerization of (-)-HCvD with MA (A), AN (B), MMA (C), and St (D) as a comonomer: $[(-)-\mathrm{HCvD}]_{0} /[\text { comonomer }]_{0} /[\mathrm{CBTC}]_{0} /[\mathrm{VAm}-110]_{0}=$ $1500 / 1500 / 30 / 10 \mathrm{mM}$ in toluene at $100^{\circ} \mathrm{C}$.

(A)

$M_{\mathrm{n}}=6300$ (SEC)
$M_{\mathrm{n}}=5700$ (NMR- α)
$M_{n}=6000$ (NMR- ω)
$M_{\mathrm{n}}=5200($ Calcd $)$
$n / m=53 / 47$ (NMR) $n / m=48 / 52$ (Calcd)
(B)

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectra (in CDCl_{3} at $55{ }^{\circ} \mathrm{C}$) of copolymers obtained in the RAFT copolymerization of (-)- HCvD with MA (A), AN (B), MMA (C), or St (D) as a comonomer: $[(-)-\mathrm{HCvD}]_{0} /[\text { comonomer }]_{0} /[\mathrm{CBTC}]_{0} /[\mathrm{VAm}-110]_{0}=1500 / 1500 / 30 / 10 \mathrm{mM}$ in toluene at $100{ }^{\circ} \mathrm{C}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectra of $(-)-\mathrm{VnD}(\mathrm{A})$ and $\mathrm{PtD}(\mathrm{B})$ in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S12. ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $(-)-\mathrm{VnD}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S13. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra of $(-)-\mathrm{VnD}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of PtD in CDCl_{3} at $25^{\circ} \mathrm{C}$.

Figure S15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC spectra of PtD in CDCl_{3} at $25^{\circ} \mathrm{C}$.

