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Abstract: The introduction of antifungals in clinical practice has an enormous impact on the provision
of medical care, increasing the expectancy and quality of life mainly of immunocompromised patients.
However, the emergence of pathogenic fungi that are resistant and multi-resistant to the existing
antifungal therapy has culminated in fungal infections that are almost impossible to treat. Therefore,
there is an urgent need to discover new strategies. The marine environment has proven to be a
promising rich resource for the discovery and development of new antifungal compounds. Thus,
this review summarizes more than one hundred marine natural products, or their derivatives,
which are categorized according to their sources—sponges, bacteria, fungi, and sea cucumbers—as
potential candidates as antifungal agents. In addition, this review focus on recent developments
using marine antifungal compounds as new and effective approaches for the treatment of infections
caused by resistant and multi-resistant pathogenic fungi and/or biofilm formation; other perspectives
on antifungal marine products highlight new mechanisms of action, the combination of antifungal
and non-antifungal agents, and the use of nanoparticles and anti-virulence therapy.

Keywords: fungal infections; antifungal resistance; marine natural products; new antifungal approaches

1. Introduction

Fungi are a ubiquitous group of organisms occurring in a wide variety of habitats and ecological
niches. They can be found in various environments: tropical forests, grasslands, deserts, coastal areas,
ocean deeps, seas, freshwaters, and polar regions [1–5]. They are essential for many ecosystems,
being important decomposers that contribute to the degradation of organic matter, with a fundamental
role in ecological and biogeochemical processes. It is evident that fungi have a great role for
human society. Fungi are used in medicine industry to obtain important drugs such as antibiotics,
immunosuppressant, vitamins, steroids, and alkaloids. Genetically modified fungi can also be used
as bio-factories for the production of numerous enzymes with the most diverse biotechnological
applications [6–8]. However, some fungi can harm human life, causing many infections that can be
classified into superficial/subcutaneous (dermatophytosis, pityriasis versicolor, and sporotrichosis)
and systemic mycoses (candidiasis, aspergillosis, and cryptococcosis). These can target any type of
tissue or organ and causing, for example, bone, lung, and neurological injuries [9].
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The discovery of antifungal agents has allowed significant advances in medical care enabling the
control and cure of fungal infections, altering their natural evolution. However, the development of
resistance to antifungals and the fungal infections growth in the immunocompromised population
have contributed, in recent decades, to the increase in the appearance and severity of these infections,
resulting in an important cause of hospital death [10]. Systemic fungal infections are particularly
common in immunocompromised patients, which accommodate not only those infected with the
human immunodeficiency virus (HIV) but also transplanted and cancer patients [11,12]. Although most
infections appear superficially, i.e., on the skin, hair, nails or mucous membranes, some fungal species,
under conditions of the fragility of the immune system, are capable of causing systemic infections
that can lead to death [11]. Invasive fungal infections are considered a serious threat to public health,
being responsible for about 1.5 million deaths per year with a mortality rate until 90%, which is associated
with species belonging to Candida, Aspergillus, Cryptococcus, Pneumocystis, Mucor, and Rhizopus
genera [10–13]. In the genus Candida, C. albicans is the main cause of fungal infections, accounting for
between 50 and 70% of cases. However, recent epidemiological data have revealed an increase in species
resistant to most or all classes of antifungals called Candida non-albicans. These species have emerged
from primary (intrinsic) resistance mechanisms or the development of secondary (acquired) resistance
through the inappropriate use of antifungal agents [14–16]. Regarding Aspergillus spp., a change in
epidemiology has also been observed in the last two decades resulting from the selective pressure
exerted by the indiscriminate use of antifungals and the increase in immunocompromised patients,
with intensification in the identification of emerging Aspergillus non-fumigatus and cryptic species
resistant to various classes of antifungals, particularly to azoles [16,17]. Due to the significant increase
in the number of resistant and multi-resistant strains, particularly in Candida spp. and Aspergillus spp.,
there is an urgent clinical need to discover and develop new antifungal agents to enable the renewal of
the therapeutic arsenal and thus control the appearance of new resistances [11,12,18].

In the treatment of systemic mycoses, antifungals can be limited to four classes—polyenes, azoles,
flucytosine, and echinocandins—in which they are distinguished by the mode of action (Figure 1),
bioavailability, formulation, pharmacological interactions, and adverse effects [11,19].
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Figure 2 represents the year of discovery and/or introduction to the market of the different
antifungals. At the moment, no new class has been approved by the European Medicine Agency (EMA)
or the Food and Drug Administration (FDA), which poses a problem, because the current antifungals
agents are not sufficiently active and safe, and they exhibit some toxicity and undesirable adverse
effects [10,13]. The appearance of a second generation of azoles and, more recently, of echinocandins
are two important milestones in the efficacy of antifungal therapy. The discovery of new antifungal
agents has mainly been associated to the screening of large libraries of small molecules of natural,
synthetic, or semi-synthetic products [10,11,13].
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The development of antifungals agents is a very challenging strategy, since there are physiological
similarities between fungal cells and human cells, being responsible for toxicity. The disinvestment
of the pharmaceutical industry, which focuses mostly on other more profitable areas, and the lack
of economic incentives are other factors that have led to a shortage of new antifungal agents.
Therefore, the development of new antifungals has been gradual compared to the development of
new antibacterial agents [10,11,13,20,21]. A new antifungal agent should have few pharmacological
interactions, adequate pharmacokinetic and pharmacodynamic properties, fungicidal nature instead
of fungistatic action, and a broad spectrum of activity against resistant and multi-resistant pathogenic
fungi, preferably having a new mechanism of action that could reduce or prevent resistance and toxicity
in the host. To discover such an agent, it is necessary to identify new fungal-specific targets that are
essential for their fungal growth, and that the antifungal could be capable of eliminating fungal cells
and not human cells [10–12]. Nevertheless, not all molecules that exhibit antifungal activity can be
optimized for the development of new antifungal agents due to undesirable characteristics [12].

Marine biodiversity corresponds to the variety of organisms found in marine and oceanic
ecosystems, comprising more than 250,000 species described and infinity of other species to be
discovered yet. These organisms can live in environments of extreme variation in pressure, luminosity,
salinity, and temperature, being able to produce secondary metabolites that help in their survival.
These unique metabolites can constitute a vast source of beneficial bioactive products in human health.
In the last five decades, more than 13,000 bioactive marine natural products have been identified
presenting various biological activities such as antibacterial, antidiabetic, antifungal, anti-inflammatory,
and anticancer [22,23]. The prospecting for new antifungals of marine origin, different from those
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commercially available, with more effective pharmacokinetic and pharmacodynamic properties is
already a reality, which will help in the treatment of human fungal diseases, mainly those caused by
resistant and multi-resistant fungi.

From this point of view, this review will highlight new natural products isolated from diverse
marine organisms and their antifungal activities, thus providing an overview of marine compounds
with in vitro potential as antifungal agents. Recent and documented perspectives for potential
applications of marine antifungal compounds will also be highlighted, including a new alternative
target with a new mechanism of action, the interaction between antifungal and non-antifungal agents,
and the use of nanoparticles and anti-virulence therapy, as a way to increase the activity of antifungals
currently available, achieve the synergistic effect, and/or inhibit the formation of virulence factors,
specifically of biofilms. These new strategies could enrich the pipeline of the treatment of fungal
human infections and, consequently, resolve the limited number of therapeutic options related to the
lack of new antifungals agents, obtain more diverse potential targets for action and solutions to combat
the resistance acquired by many strains of pathogenic fungi.

2. Marine Natural Products as New Antifungal Candidates

Up to now, several compounds derived from secondary metabolites and isolated from marine
organisms exhibited antifungal activity. Of all the marine organisms investigated, sponges are
recognized as the main prolific source of secondary metabolites with antifungal properties, followed
by bacteria and fungi. The chemical diversity of the bioactive compounds produced by these
microorganisms is remarkable and, therefore, it can be considered essential for the discovery and
development of new agents for the treatment and prevention of various fungal infections [24–28].
Sea cucumbers are also considered a rich source of bioactive and distinct secondary metabolites, of
which triterpene glycosides (saponins) are evident. Since they have unique characteristics, involving
great chemical diversity, low toxicity, high efficiency with few adverse effects, and a wide spectrum of
antifungal activity, these natural products have gained a lot of attention, making them more favorable
as leading compounds for the discovery of other new agents [29]. Thus, in the following sections,
compounds with promising antifungal activity produced by marine microorganisms involving sponges,
bacteria, fungi, and sea cucumbers will be highlighted.

2.1. Sponge-Derived Compounds

Aurantosides belong to a class of molecules produced by sponges of the genera Theonella,
Homophymia, and Siliquariaspongia, which chemically present a tetramate ring with a mono-
or dichlorinated long conjugated polyene chain and a N-glycosidic portion of one to three
monosaccharides [30,31]. The study of the sponge Theonella swinhoei resulted in the extraction of three
known aurantosides G–I (1–3) and a new aurantoside J (4) (Figure 3), which were tested for antifungal
activity against C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and Fusarium solani. Compound 1
demonstrated moderate inhibition against all strains with MIC90 = 4–16 mg/L, and compound 3 was
the only one that exhibited potent action with MIC90 values of 0.125–0.5 and 2 mg/L for Candida spp.
and F. solani, respectively. Given the results obtained from compound 3, it was found that the three
sugar chains attached to the tetramate ring by the nitrogen atom, as well as the C18 polyene chain,
were important descriptors for inhibiting the growth of the five fungal strains [30].

Although there are many reports of aurantosides discovered on sponges of the genus Theonella,
a new derivative of tetramic acid glycoside, called aurantoside K (5) (Figure 4), was isolated from
a marine sponge of the Meophlus sp. This compound showed strong antifungal inhibition under
a broad spectrum of pathogenic fungi: Amphotericin B (AmB)-resistant C. albicans and wild-type
C. albicans with minimum inhibitory concentration (MIC) values of 31.25 and 1.95 mg/L, respectively,
and C. neoformans, A. niger, Rhizopus sporangia, Penicillium sp., and Sordaria sp. with zones of inhibition
of 14, 28, 21, 31, and 29 mm, respectively at 100 µg/disc [31].
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Three new linear polyketides called woodylides A–C (6–8) (Figure 5), collected on the Xisha islands
in the China Sea from the sponge Plakortis simplex, were evaluated for their antifungal activity against
C. albicans, C. neoformans, Nannizzia gypsea (formerly Microsporum gypseum), and Trichophyton rubrum,
with AmB and fluconazole as positive controls. Compounds 6 and 8 exhibited moderate action with
IC50 values of 3.67 and 10.85 mg/L against C. neoformans, respectively, unlike compound 7, which was
not active. For the remaining fungi, compounds 6 and 8 showed weak activity and due to the lack of
compound 7, it was not possible to test their antifungal inhibition [32].
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The genus Theonella is associated with biologically active peptides with immense structural
diversity. In this way, a polar active portion of the organic extract of the sponge Theonella swinhoei was
studied, which provided the isolation of theonellamide G (9) (Figure 6). This new bicyclic glycopeptide
showed potent antifungal activity against wild-type C. albicans and AmB-resistant C. albicans with IC50

values of 4.49 and 2.0 µM, respectively. For wild-type, AmB was used as a positive control with an
IC50 = 1.48 µM [33].
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Seven new formamido-diterpenes, cavernenes A–D (10–13), kalihinenes E,F (14,15),
and kalihipyran C (16), along with five known compounds, kalihipyran A (17), 15-formamidokalihinene
(18), 10-formamido-kalihinene (19), and kalihinenes X,Y (20,21) (Figure 7), were isolated from the
sponge Acanthella cavernosa. All compounds were tested for antifungal activity against C. albicans,
C. glabrata, C. parapsilosis, A. fumigatus, C. neoformans, N. gypsea, and T. rubrum. Ketoconazole was
used as a positive control with MIC ≤ 0.25 mg/L for all the tested strains. Compound 18 inhibited the
growth of N. gypsea and T. rubrum with MIC values of 8 and 32 mg/L, respectively, and compound 19
showed action against C. albicans, C. neoformans, N. gypsea, and T. rubrum at concentrations of 8, 8, 8,
and 4 mg/L, respectively. Given the results obtained, it was found that the isonitrile group is relevant
for antifungal activity [34].
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Since 1982, with the discovery of the first aaptamine from the marine sponge Aaptos aaptos,
several derivatives have been isolated from sponges belonging to the genera Suberites, Luffariella,
Hymeniacidon, Suberea, and Xestospongia. Nevertheless, the genus Aaptos remains the main rich source
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of aaptamine alkaloids as bioactive secondary metabolites. Thus, numerous aaptamine derivatives
with five new substances (22–26) and three known substances (27–29) (Figure 8) were extracted from
the marine sponge Aaptos aaptos. All compounds, except 22 and 23 due to a lack of quantity, were tested
for antifungal inhibition of C. albicans, C. glabrata, C. parapsilosis, C. neoformans, N. gypsea, and T. rubrum,
in which fluconazole was used as a positive control. Compound 28 inhibited the growth of all studied
fungi, except C. glabrata, at concentrations of 32, 64, 32, 16, and 4 mg/L, respectively. Compound 29
showed a strong action against C. neoformans, N. gypsea, and T. rubrum with MIC values of 64, 32,
and 8 mg/L, respectively. The remaining compounds showed weak antifungal activity considering the
tested fungi (MIC > 64 mg/L) [35].
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Until 2017, about 70 saponins were isolated from sponges, in which some of them, when submitted
to different bioassays, revealed biological activities of great interest. The first study of the sponge
Poecillastra compressa, by Bowebank in 1866, allowed finding seven new compounds, poecillastrosides
A–G (30–36) (Figure 9). Later, these steroidal glycosides were tested for their ability to inhibit the
growth of the fungus A. fumigatus, in which only compounds 33 and 34 exhibited activity with MIC90

values of 6 and 24 mg/L, respectively, concluding that the carboxylic acid present in C-18 plays an
essential role in antifungal action [36].
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Preliminary studies with hydroalcoholic and organic extracts of the marine sponges Haliclona viscosa
and Cinchyrella tarentina show potential antifungal activity against five phytopathogenic fungi:
F. oxysporum f. sp. melonis, F. oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. ciceris, Botrytis cinerea,
and Penicillium digitatum [37]. Subsequently, a new derivative of sphingosine, called haliscosamine
(37) (Figure 10), was isolated from Haliclona viscosa and showed significant in vitro activity against
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C. albicans (MIC90 = 0.4–0.8 mg/L), C. tropicalis (MIC90 = 0.4–0.8 mg/L), and C. neoformans (MIC90 =

0.2–0.4 mg/L) [38].
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Figure 10. Structure of haliscosamine (37).

A sesquiterpenoid quinone, epi-ilimaquinone (38) (Figure 11), was isolated from the Fijian
marine sponge, Hippospongia sp. This compound exhibited antifungal activity against AmB-resistant
C. albicans (MIC = 125 mg/L), but it had no appreciable effect against C. albicans, C. neoformans, A. niger,
Penicillium spp., Rhizopus sporangia, and Sordaria spp. [39].
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2.2. Bacteria-Derived Compounds

Bioassay guided fractionation from culture broths of the marine bacterial strain closely
related to Streptomyces zhaozhouensis CA-185989 resulted in the extraction of three new
polycyclic tetramic acid macrolactams, isoikarugamycin (39), 28-N-methylikaguramycin (40),
and 30-oxo-28-N-methylikaguramycin (41), and four known molecules, ikarugamycin (42), MKN-003B
(43), 1H-indole-3-carboxaldehyde (44), and phenylethanoic acid (45) (Figure 12). Compounds 39, 40,
and 42 showed potent antifungal activity against A. fumigatus, with MIC values in the range 4–8 mg/L,
and against C. albicans, with MIC = 2–4 mg/L for compound 39 and MIC = 4 mg/L for compounds 40
and 42. The remaining compounds were not active when tested at a concentration of 64 mg/L. With the
MIC values obtained for the compounds 39, 40, and 42, it was found that the ethyl group plays an
essential role in the antifungal action in the family of polycyclic tetramate macrolactams, since the
existence of a carbonyl group in the ethyl side chain at C-16 is associated with an increase in the MIC,
even though the N-methylation of the nitrogen atom of the tetramic acid portion does not affect the
activity [40].
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Filamentous marine cyanobacteria are one of the sources of bioactive secondary metabolites
that naturally gain a lot of popularity in the study of marine natural products. Currently,
there are numerous compounds from strains of cyanobacteria, mainly from the genera Lyngbya,
Oscillatoria, and Symploca [41]. Lobocyclamides A–C (46–48) (Figure 13) are peptides isolated from
Lyngbya confervoides that revealed significant activity against C. glabrata and C. albicans, in which the
compounds 46 and 47 showed MIC values of 91 and 30–100 mg/L, respectively. The existence of
mixtures consisting of compounds 46 and 47 (1:1) allowed investigating an important synergistic effect
with great antifungal activity (MIC = 10–30 mg/L) compared to any of the pure isolated compounds [42].
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A new polyketide compound, called forazoline A (49) (Figure 14), was isolated from
Actinomadura spp., which was cultivated from the tunicate Ecteinascidia turbinata. Forazoline A exhibited
potential antifungal effects in vitro (MIC < 16 mg/L) and in vivo against C. albicans. Furthermore,
an in vitro combination treatment with forazoline A and AmB exhibited a synergistic antifungal effect,
suggesting a parallel or complementary mechanism of action between these compounds [43].
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2.3. Fungi-Derived Compounds

Macrolides are a class of polyketides often discovered in organisms of marine origin with an
important antifungal role [44]. In the 13-membered macrolides, two new compounds, melearoride
A,B (50,51), and five known compounds, PF1163A (52), B (53), D (54), H (55), and F (56) (Figure 15),
were isolated from a strain of a marine-derived fungus, Penicillium meleagrinum var. viridiflavum.
The evaluation of antifungal activity against C. albicans demonstrated the inhibition of fungal growth
for 52, 53, 55, and 56 at concentrations of 1, 2, 16, and 8 mg/L, respectively, while for 50, 51, and 54,
no activity at a concentration of 32 mg/L was observed. It was also found that the hydroxyethyl
group was essential for the activity of 52 and 53, since they presented activity against C. albicans,
unlike 50 and 51, which showed weak antifungal action. Since the fungus understudy is resistant to the
azole class, tests were carried out with fluconazole, in which the results showed that all compounds,
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including those that did not show activity, exhibited a synergistic effect with this commercialized
antifungal [45].Molecules 2020, 25, x FOR PEER REVIEW 10 of 27 
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The chemical study of the tunicate-derived fungus Penicillium spp. CYE-87 resulted in the extraction
of a new compound with the 1,4-diazepane skeleton, terretrione D (57), together with the five known ones,
methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (58), tryptamine (59), indole-3-carbaldehyde (60),
3,6-diisobutylpyrazin-2(1H)-one (61), and terretrione C (62) (Figure 16). Of all the isolated compounds,
only compounds 57 and 62 were moderately active against C. albicans with MIC = 32 mg/L [46].
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Figure 16. Structures of compounds 57–62.

Pimarane diterpenes are considered one of the secondary metabolites of great interest produced
by the marine-derived fungus Eutypella, as they present a great structural variety and a wide range
of pharmacological activities. Thus, Eutypella spp. D-1 was investigated in the Artic polar region,
which subsequently led to the isolation of three new pimarane diterpene, eutypellenoids A–C (63–65),
and a known compound, eutypenoid C (66) (Figure 17). All compounds were tested for their antifungal
activity against C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. neoformans, and N. gypsea, in which
fluconazole, posaconazole, and voriconazole were used as positive controls. Only the compound 63
revealed activity against Candida spp., with MIC values of 8, 16, 8, and 32 mg/L, respectively [47].
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In the intertidal zones of the Yellow Sea in Qingdao, China, 141 strains of fungi were discovered
from various marine plants, especially Alternaria sp. and Fusarium sp. Since these species are associated
with metabolites with different biological activities, the selection of F. equiseti and Alternaria spp.
from a screening of 31 identified strains led to the extraction of two new anthraquinone derivatives
67 and 68, and two perylenequinones, stemphyperlenol (69) and alterpeylenol (70) (Figure 18).
The compounds were tested for antifungal activity against a wide spectrum of six pathogenic fungi:
Alternaria alternata, Alternaria brassicicola, Phytophthora parasitica var. nicotianae, Diaporthe medusaea,
A. niger, and Pestallozzia theae. Compounds 67 and 68 demonstrated moderate action under Pestallozzia
theae with MIC = 31.3 mg/L, while compound 69 inhibited not only the growth of Pestallozzia theae,
but also of Alternaria brassicicola with MIC values of 7.81 and 125 mg/L, respectively, in which they
were identical to the positive control, carbendazim [48].
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A new 4-hydroxy-2-pyridone alkaloids, didymellamide A (71) (Figure 19), was isolated from the
marine fungus Stagonosporopsis cucurbitacearum. This compound was able to inhibit the growth of
azole-resistant C. albicans J2-36 (MIC = 3.1 mg/L), azole-sensitive C. albicans J1-97 (MIC = 3.1 mg/L),
C. glabrata J-92 (MIC = 3.1 mg/L), and C. neoformans Mpu-B (MIC = 1.6 mg/L). This study proposes that
the didymellamide A hydroxamic acid fraction plays an important role in antifungal activity [49].
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Figure 19. Structure of didymellamide A (71).

Two xanthones and structurally-related compounds, 7-epiaustdiol (72), 8-O-methylepiaustdiol
(73), stemphyperylenol (74), skyrin (75), secalonic acid A (76), emodin (77), and norlichexanthone
(78) (Figure 20), were isolated from the endophytic fungus Talaromyces spp. ZH-154, associated with
mangrove plants, Kandelia candel (L.) Druce, collected in the South China Sea. All compounds were
tested for antifungal inhibition against C. albicans, A. niger, and F. oxysporum f. sp. cubense, with nystatin
used as a positive control. Compound 76 showed potent antifungal activity against all fungal strains
tested. Notably, this compound showed inhibitory activity to A. niger with MIC = 6.25 mg/L, which is
lower than nystatin (MIC = 25.0 mg/L) [50].
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Figure 20. Structures of xanthones and structurally related compounds (72–78).

The dithiodiketopiperazine derivatives represent a unique class of secondary fungal metabolites
that usually contain two methythio groups or a disulfide bridge, in which, normally, the sulfur atom
is attached to a-positions of the cyclic dipeptide. The chemical investigation of the fungal strain
Penicillium adametzioides AS-53, a fungus isolated from an unidentified sponge, made it possible
to extract two new dithiodiketopiperazine derivatives, peniciadametizines A,B (79,80), and two
known substances, brasiliamide A (81) and viridicatumtoxin (82) (Figure 21). Compounds 79 and 80
were evaluated against four plant pathogenic fungi: Alternaria brassicae, Colletotrichum gloeosporioides,
F. graminearum, and Gaeumannomyces spp. Both compounds demonstrated selective antifungal activity
against Alternaria brassicae with MIC values of 4 and 32 mg/L, respectively, in comparison with AmB
showing a MIC = 1.0 mg/L [51].
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Figure 21. Structures of dithiodiketopiperazine derivatives (79–82).

Fungi of the genus Pestalotiopsis are widely distributed around the world originating biologically
active natural products. In the Xisha Islands of China, the fungal strain Pestalotiopsis heterocornis
was discovered from the sponge Phakellia fusca, leading to the isolation of four new substances,
pestaloisocoumarins A,B (83,84), isopolisin B (85), and pestalotiol A (86), which together with four
known substances, gamahorin (87), pestalachloride B (88) and E (89), and a mixture of pestalalactone
atropoisomers (90a/90b) (Figure 22), were submitted to antifungal activity evaluations against C. albicans,
C. parapsilosis, and C. neoformans, being the antifungal AmB used as control with MIC ≤ 2.0 mg/L for the
tested strains. Isocoumarins 83, 84, and 87 showed significantly weak activity with MIC = 100 mg/L
against most of the fungi tested. Compounds 88, 89, and 90a/90b were inactive at 100 mg/L [52].
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2.4. Sea Cucumber-Derived Compounds

Four new compounds, variegatusides C–F (91–94), were isolated together with three known
triterpene glycosides, variegatusides A,B (95,96), and holothurin B (97) (Figure 23) from the sea
cucumber Stichopus variegates Semper. The compounds were tested for antifungal activity against
C. albicans, C. parapsilosis, C. tropicalis, C. pseudotropicalis, C. neoformans, and N. gypsea, with ketoconazole,
fluconazole, and itraconazole as positive controls. All the compounds studied showed selective
activities except for compounds 92 and 93, which revealed significant fungal growth inhibitory
activities against the six species. Compound 92 exhibited activity with MIC80 values of 3.4, 3.4, 13.6,
3.4, 6.8, and 3.4 mg/L, respectively, while compound 93 showed MIC80 values of 25 mg/L for C. albicans
and 12.5 mg/L for the remaining fungi [53].
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Two triterpenoid glycosides, holothurin A (98) and echinoside A (99) (Figure 24), were isolated
from sea cucumber holothurian Pearsonothuria graeffei from the Red Sea, Egypt. The partial crude and
purified extract from sea cucumber containing mainly these compounds was screened for antifungal
activity against three clinical isolates of C. albicans (Candida 580, Candida 581, and Candida MEO47228),
and the purified fraction showed good antifungal activity (24 h LC50 = 10 mg/L) [54].
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Table 1 puts in evidence the chemical classes, sources, MIC values, and spectra of activities
of the most remarkable compounds. It is interesting to highlight the synergic effects shown by a
mixture formed by compounds 46 and 47, compound 49 with AmB, and compounds 50–56 with
fluconazole, and the effects against multi-resistant strains of C. albicans. Curiously, several secondary
metabolites belong to the chemical class of polyketides, making it possible to establish a common
structure–activity relationship (SAR), and marine sources have proved to be quite diverse. The most
interesting compound appears to be Aurantoside I (3), as it revealed an excellent growth inhibition
of all tested strains (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and F. solani). Of particular
interest is the activity shown against F. solani, since this strain is highly pathogenic and resistant to
most antifungals available on the market. As all the studied compounds (aurantosides G–J, 1–4) have
a C18 polyene chain, the role of the sugar portion in the modulation of antifungal activity stands out.
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Table 1. The general characteristic of the marine natural products with antifungal activity.

Compound Chemical Class Source Activity References

Aurantoside G (1) Peptide Sponge Theonella swinhoei C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis
(MIC90 8, 8, 4, and 4 mg/L) [30]

Aurantoside I (3) Peptide Sponge Theonella swinhoei C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and F. solani
(MIC90 0.5, 0.125, 0.5, 0.5, and 2 mg/L) [30]

Aurantoside K (5) Peptide Sponge Meophlus sp.
AmB-R and WT C. albicans (MIC 31.25 and 1.95 mg/L); C. neoformans,

A. niger, Rhizopus sporangia, Penicillium sp., and Sordaria sp.
(Ø inhibition 14, 28, 21, 31, and 29 mm)

[31]

Woodylide A (6) Polyketide Sponge Plakortis simplex C. neoformans (IC50 3.67 mg/L)
C. albicans, N. gypsea, and T. rubrum (MIC 32 mg/L) [32]

Woodylide C (8) Polyketide Sponge Plakortis simplex C. neoformans (IC50 10.85 mg/L); N. gypsea and T. rubrum (MIC 32 mg/L) [32]

Theonellamide G (9) Peptide Sponge Theonella swinhoei AmB-R and WT C. albicans (IC50 4.49 and 2.0 µM) [33]

15-Formamido-kalihinene (18) Terpene Sponge Acanthella cavernosa N. gypsea and T. rubrum (MIC 8 and 32 mg/L) [34]

10-Formamido-kalihinene (19) Terpene Sponge Acanthella cavernosa C. albicans, C. neoformans, N. gypsea, and T. rubrum (MIC 8, 8, 8,
and 4 mg/L) [34]

Aaptamine (24) Alkaloid Sponge Aaptos aaptos C. parapsilosis (MIC 32 mg/L) [35]

Aaptamine (25) Alkaloid Sponge Aaptos aaptos N. gypsea (MIC 64 mg/L) [35]

Aaptamine (26) Alkaloid Sponge Aaptos aaptos N. gypsea (MIC 64 mg/L) [35]

Aaptamine (27) Alkaloid Sponge Aaptos aaptos N. gypsea (MIC 64 mg/L) [35]

Aaptamine (28) Alkaloid Sponge Aaptos aaptos C. albicans, C. parapsilosis, C. neoformans, N. gypsea, and T. rubrum
(MIC 32, 64, 32, 16, and 4 mg/L) [35]

Aaptamine (29) Alkaloid Sponge Aaptos aaptos C. neoformans, N. gypsea, and T. rubrum (MIC 64, 32, and 8 mg/L) [35]

Poecillastroside D (33) Steroid Sponge Poecillastra compressa A. fumigatus (MIC90 6 mg/L) [36]

Poecillastroside E (34) Steroid Sponge Poecillastra compressa A. fumigatus (MIC90 24 mg/L) [36]

Haliscosamine (37) Polyketide Sponge Haliclona viscosa C. albicans, C. tropicalis, and C. neoformans
(MIC90 0.4–0.8, 0.4–0.8, and 0.2–0.4 mg/L) [38]

Epi-ilimaquinone (38) Polyketide Sponge Hippospongia sp. AmB-R C. albicans (MIC 125 mg/L) [39]
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Table 1. Cont.

Compound Chemical Class Source Activity References

Isoikarugamycin (39) Polyketide Bacteria Streptomyces
zhaozhouensis C. albicans and A. fumigatus (MIC 2–4 and 4–8 mg/L) [40]

28-N-methylikaguramycin (40) Polyketide Bacteria Streptomyces
zhaozhouensis C. albicans and A. fumigatus (MIC 4 and 4–8 mg/L) [40]

Ikarugamycin (42) Polyketide Bacteria Streptomyces
zhaozhouensis C. albicans and A. fumigatus (MIC 4 and 4–8 mg/L) [40]

Lobocyclamide A (46) Peptide Cyanobacterium Lyngbya
confervoides

C. albicans (MIC 91 mg/L)
Synergism with mixture of 46 and 47 against C. albicans

(MIC 10–30 mg/L)
[42]

Lobocyclamide B (47) Peptide Cyanobacterium Lyngbya
confervoides

C. albicans (MIC 30-100 mg/L)
Synergism with mixture of 46 and 47 against C. albicans

(MIC 10–30 mg/L)
[42]

Forazoline A (49) Polyketide Bacteria Actinomadura spp. C. albicans (MIC < 16 mg/L); Synergism with AmB [43]

PF1163A (52) Polyketide Fungus Penicillium meleagrinum
var. viridiflavum

Azole-resistant C. albicans (MIC 1 mg/L)
Synergism with fluconazole against the azole-resistant C. albicans [45]

PF1163B (53) Polyketide Fungus Penicillium meleagrinum
var. viridiflavum

Azole-resistant C. albicans (MIC 2 mg/L)
Synergism with fluconazole against the azole-resistant C. albicans [45]

PF1163H (55) Polyketide Fungus Penicillium meleagrinum
var. viridiflavum

Azole-resistant C. albicans (MIC 16 mg/L)
Synergism with fluconazole against the azole-resistant C. albicans [45]

PF1163F (56) Polyketide Fungus Penicillium meleagrinum
var. viridiflavum

Azole-resistant C. albicans (MIC 8 mg/L)
Synergism with fluconazole against the azole-resistant C. albicans [45]

Terretrione D (57) Alkaloid Fungus Penicillium sp. CYE-87 C. albicans (Ø inhibition 17 mm and MIC 32 mg/L) [46]

Terretrione C (62) Alkaloid Fungus Penicillium sp. CYE-87 C. albicans (Ø inhibition 19 mm and MIC 32 mg/L) [46]

Eutypellenoid A (63) Terpene Fungus Eutypella sp. D-1 C. albicans, C. glabrata, C. parapsilosis and C. tropicalis
(MIC 8, 16, 8, and 32 mg/L) [47]

Anthraquinone (67) Polyketide Fungus Fusarium equiseti Pestallozzia theae (MIC 31.3 mg/L) [48]

Anthraquinone (68) Polyketide Fungus Fusarium equiseti Pestallozzia theae (MIC 31.3 mg/L) [48]

Stemphyperlenol (69) Polyketide Fungus Alternaria sp. Pestallozzia theae and Alternaria brassicicola (MIC 7.81 and 125 mg/L) [48]
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Table 1. Cont.

Compound Chemical Class Source Activity References

Didymellamide A (71) Alkaloid Fungus
Stagonosporopsis cucurbitacearum

Azole-resistant C. albicans J2-36, azole-sensitive C. albicans J1-97,
C. glabrata J-92, and C. neoformans Mpu-B (MIC 3.1, 3.1, 3.1,

and 1.6 mg/L)
[49]

Secalonic acid A (76) Polyketide Fungus Talaromyces sp. ZH-154 C. albicans, A. niger and F. oxysporum f. sp. cubense
(MIC 6.25, 6.25, and 12.5 mg/L) [50]

Peniciadametizine A (79) Polyketide Fungus Penicillium adametzioides
AS-53 Alternaria brassicae (MIC 4.0 mg/L) [51]

Peniciadametizine B (80) Polyketide Fungus Penicillium adametzioides
AS-53 Alternaria brassicae (MIC 32 mg/L) [51]

Pestaloisocoumarin A (83) Lactone Fungus Pestalotiopsis heterocornis C. albicans, C. parapsilosis, and C. neoformans (MIC 100 mg/L) [52]

Pestaloisocoumarin B (84) Lactone Fungus Pestalotiopsis heterocornis C. neoformans (MIC 100 mg/L) [52]

Gamahorin (87) Lactone Fungus Pestalotiopsis heterocornis C. parapsilosis and C. neoformans (MIC 100 mg/L) [52]

Variegatuside D (92) Terpene Sea cucumber
Stichopus variegates

C. albicans, C. parapsilosis, C. tropicalis, C. pseudotropicalis, C. neoformans,
and N. gypsea (MIC80 3.4, 3.4, 13.6, 3.4, 6.8, and 3.4 mg/L) [53]

Variegatuside E (93) Terpene Sea cucumber
Stichopus variegates

C. albicans, C. parapsilosis, C. tropicalis, C. pseudotropicalis, C. neoformans,
and N. gypsea (MIC80 25, 12.5, 12.5, 12.5, 12.5, and 12.5 mg/L) [53]

Holothurin A (98) Terpene Sea cucumber
Pearsontrhuria graeffei C. albicans (24 h LC50 = 10 mg/L) [54]

Echinoside A (99) Terpene Sea cucumber
Pearsontrhuria graeffei C. albicans (24 h LC50 = 10 mg/L) [54]

MIC: Minimum inhibitory concentration; MIC80: Minimum concentration that inhibits 80% of the tested strains; MIC90: Minimum concentration that inhibits 90% of the tested
strains; Ø inhibition: Diameter of inhibition; IC50: Half maximal inhibitory concentration; LC50: Concentration that causes the death of 50%. C. albicans: Candida albicans; C. glabrata:
Candida glabrata; C. parapsilosis: Candida parapsilosis; C. tropicalis: Candida tropicalis; C. pseudotropicalis: Candida pseudotropicalis; AmB-R: Amphotericin B-resistant; WT: Wild-type; A. fumigatus:
Aspergillus fumigatus; A. niger: Aspergillus niger; C. neoformans: Cryptococcus neoformans; N. gypsea: Nannizzia gypsea; F. solani: Fusarium solani; F. oxysporum: Fusarium oxysporum; T. rubrum:
Trichophyton rubrum.
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3. Prospects for the Application of Marine Antifungal-Derived Compounds

The current therapeutic arsenal of antifungals leads to the rapid emergence of pathogenic fungi
resistant and multi-resistant to antifungal agents, and consequently, it aggravates the treatment and/or
prevention of fungal infections. Therefore, it is essential to look for new antifungal targets, as well as
to explore new approaches. In this chapter, recent developments correlated with marine antifungal
compounds will be presented as examples of new perspectives of application: new mechanisms of
action, the combination of antifungal and non-antifungal agents, and the use of anti-virulence therapy
and nanoparticles.

3.1. New Mechanisms of Action

Dolastatin 10 (100) (Figure 25) is a natural product isolated from the Indian Ocean from the sea
hare Dolabella auricularia. At the moment, studies have shown that dolastatin 10 and its derivatives
are essentially derived from the sea hare’s diet of marine cyanobacteria, in particular Symploca sp. [55].
This linear peptide of three unique amino acid units proved to be able to inhibit the microtubules assembly
and tubulin-dependent guanosine triphosphate binding by interfering in the formation of tubulin and
thus interrupting cell division by mitosis and inducing apoptosis. Dolastatin 10 (100) and four other
analog peptides (101–104) (Figure 25), obtained from 100 by structural modifications, showed specific
fungicidal activity against ATCC strains and clinical isolates (including fluconazole-resistant strains) of
C. neoformans with MIC50 = 0.195 mg/L and MIC90 = 0.39 mg/L [56,57].
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3.2. Anti-Virulence Therapy

The growing number of pathogenic fungal strains that have become resistant to the conventionally
used commercial antifungals constitute the main barrier in the treatment of these infections. Within this
scenario, an innovative proposal for the effective control of the emergence and spread of fungal
pathogens is the anti-virulence therapy. This strategy aims to selectively disarm the main virulence
mechanisms of the pathogen. Among the advantages of using anti-virulence therapy, the following
stand out: the development of new antifungal drugs that aim act at different targets and have new
mechanisms of action; no interference with the host’s natural microbiota; and to exercise little selection
pressure for drug resistance mutations, which has become a major drawback for C. albicans [58].
The filamentation process has been the main target of these studies, which were already validated at
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the genetic level, for the development of anti-virulence approaches in the treatment of candidiasis,
even in immunocompromised patients. The search for specific inhibitors through the implementation
of high-throughput screening, for subsequent in vitro and in vivo tests, has been the approach used in
this pipeline for the development of new antifungal strategies.

Compounds sorbicillin (105) and 3-methyl-N-(2′-phenelethyl)-butyrylamide (106) (Figure 26),
extracted from a crude extract of a deep-sea strain Streptomyces olivaceus SCSIO T05, demonstrated a
potent ability to block the morphological transition (yeast-hyphae) reducing the formation of hyphae,
the activity of adhesion to human cells (initial step for the formation of biofilm), and, consequently,
the virulence of C. albicans. In addition, compound 106 showed a significant inhibitory effect in in vivo
mouse oral mucosal models and in the expression levels of some specific promoters, such as HWP1,
TEC1, ALS1, IFD6, and CSH1, which are associated with cell adhesion and the formation of hyphae.
These preliminary results suggest that an anti-virulence strategy could potentially be used for the
clinical treatment of candidiasis [59].
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Another example of a marine natural product showing an antibiofilm effect is carboxymethyl
chitosan. Chitin is the main structural component of the exoskeleton of marine invertebrates and the
cell walls of fungi. Currently, the main commercial sources of this natural polysaccharide of great
abundance and importance are shrimp and crab [60–62]. The partial deacetylation of chitin provides the
formation of chitosan, which is a biocompatible, biodegradable, and non-toxic polymer widely studied
for applications in the fields of biomedical, food, biotechnology, cosmetics, and pharmaceuticals.
Chitosan has attracted a lot of attention due essentially to its diverse biological activities, such as
antimicrobial and antioxidant activity. It is known that in fungi, chitosan acts at the level of plasma
membranes and cell walls, chelating traces metals and inhibiting messenger RNA (mRNA) synthesis.
Chitosan has proven to be highly active against C. albicans, and therefore, it can be considered as a
potential anti-candidiasis agent. However, chitosan has some limitations, namely the solubility in
water associated with its structural rigidity that makes it impossible to be applied in systems that
require greater solubility and drug release rate. The low solubility of chitosan can be improved by
hydrophilic modifications, such as the carboxymethylation that originates the carboxymethyl chitosan
(CMC) derivative [61,63,64]. In vitro studies have shown that CMC has a strong inhibitory effect on
C. albicans, C. tropicalis, C. krusei, C. parapsilosis, and C. glabrata, presenting a more prominent antifungal
activity than chitosan. In addition, it has been demonstrated that CMC can inhibit the growth of
biofilm, so it has been used in the area of medicine to prevent the formation of biofilms occurred during
fungal infections on the surface of implanted devices [65]. However, in vivo studies are needed to
prove the antifungal action of the CMC coating on silicone medical prostheses [66]. It has also found
that CMC can be used as a gauze coating material, since the diameter of growth inhibition of the
gauze coated with CMC was 0.30 cm, which is distinctly different compared to the zone of inhibition
produced by the gauze coated with chitosan (0.12 cm) [61,64].

3.3. Combination of Antifungal and Non-Antifungal Agents

A strategy to overcome the emergence of resistant and multi-resistant fungi is the combination of
antifungal agents present on the market. However, antifungal combination therapy is associated with
harmful effects. To circumvent the high costs, the serious adverse effects, and the contradictory results
of the reported synergistic or antagonistic activity associated with many antifungal combinations,
the combination of antifungal with non-antifungal agents stands out. A common example of this



Molecules 2020, 25, 5856 20 of 27

approach is the combined use of fluconazole with other classes of non-antifungals, such as antibacterials,
heat shock protein 90 inhibitors, and calcineurin inhibitors. In vitro studies revealed that many of
the combinations demonstrated a synergistic effect and an increased susceptibility to strains resistant
to existing antifungals, mainly in C. albicans. Examples of possible combination of antifungals and
marine-derived compounds are presented.

3.3.1. Combination with Efflux Pumps Inhibitors

One of the main potential mechanisms of the observed synergistic activity is presumed to comprise
the blocking of fungal plasma membrane efflux pumps. The active pumping of antifungals from the
intracellular to the extracellular medium through efflux pumps leads to a subsequent reduction in the
intracellular antifungal concentration resulting in resistance. Thus, a viable strategy for overcoming
antifungal resistance is to inhibit efflux pumps [67–69]. Unnarmicin A (107) and unnarmicin C (108)
(Figure 27) are candidate inhibitors of the resistance mechanism, namely efflux pumps. These natural
compounds (also from marine sources) showed a synergistic effect with fluconazole, which potentiated
the antifungal activity against azole-resistant C. albicans, and thus can be considered as potential
adjuvants in antifungal therapy. Thus, these results lead to the conclusion that marine inhibitors of
efflux pumps are promising compounds and can be of help in reversing the problem of antifungal
resistance [69,70].
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3.3.2. Combination with Compounds that Induce the Reactive Oxygen Species Formation

Candida spp. are the main fungal pathogens responsible for infections in both the mucosa and deep
tissues. The pathogenicity of these yeasts is attributed to certain virulence factors, and recent studies
suggest that most invasive infections produced by Candida spp. are associated with the formation and
growth of biofilms in host tissues and medical devices. Furthermore, biofilms are identified to have
more antifungal resistance compared to planktonic cells, and therefore, they play an important role in
the perpetuation of infections [71,72]. Currently, there are few antifungals, such as miconazole, AmB,
and echinocandins, which are also effective against fungal biofilms. These antifungals, in addition
to their demonstrated and main mechanism of action, also revealed ability to inhibit biofilms by
stimulating reactive oxygen species (ROS) production in both planktonic and biofilm cells. Thus,
a promising approach to control biofilm formation is the induction of ROS. Miconazole is capable
of affecting C. albicans biofilms; nonetheless, for high concentrations, the presence of persistent cells
resistant to the action of miconazole was observed due to the activity of superoxide dismutases with
a consequent reduction of ROS [73–75]. Considering polyenes, AmB and AmB lipid formulations
showed to be effective against mature C. albicans biofilms, and they had high activity in a model
of central venous catheter in rabbits and mice. However, as seen with miconazole, the treatment
of biofilms requires higher concentrations of AmB [75–77]. Finally, echinocandins (anidulafungin,
caspofungin, and micafungin) also showed activity against Candida biofilms; similar activity for biofilms
and planktonic cells was reported, with caspofungin being the echinocandin most effective. However,
so far, there are still no reports on the induction of ROS in fungal biofilms by this class [75,77,78].
Recently, new metabolites isolated from several sources showed as a specific or additional mechanism
of action the accumulation of ROS and, subsequently, the induction of apoptosis in fungal pathogens.



Molecules 2020, 25, 5856 21 of 27

One example is the marine polyunsaturated fatty acids, which is a class newly identified with inhibitory
action against biofilms formation from C. albicans and C. dubliniensis. In particular, stearidonic acid
(18:4 n-3), eicosapentaenoic acid (20:5 n-3), and docosapentaenoic acid (22:5 n-3) were able to inhibit the
mitochondrial activity of biofilms and affect the cell morphology of biofilms from both strains [75,79].
Fluconazole is an antifungal that is widely used in the treatment and prophylaxis of fungal infections
that shows reduced ability to induce ROS; its combination with molecules capable of stimulating the
ROS production could result in a synergistic effect. Although the induction of ROS and, eventually,
the occurrence of apoptosis in fungal cells can be considered a very promising approach for the
treatment and/or prevention of Candida biofilms, further studies are needed to evaluate the relationship
between the mode of action and the presence of ROS [75].

3.4. Nanoparticles

Some current antifungal agents present major obstacles, such as hydrophobic character, toxicity,
pharmacological interactions, low aqueous solubility, and low oral bioavailability, which limit their
clinical benefits. Thus, the development of drug delivery systems is a promising strategy for
improving the performance and safety profile of antifungals, maintaining or increasing their therapeutic
efficacy, and overcoming many of these associated limitations. Of the many drug delivery systems
currently under investigation, nanoparticles have emerged as an innovative way that is capable
of minimizing undesirable adverse effects and overcoming many of the unfavorable properties of
antifungals. Due to a wide range of advantageous and captivating characteristics, involving reduced
size, variability, improved stability, multifunctionality, biocompatibility, directing target tissues,
and the possibility of increasing the penetration of antifungal agents through the skin, nanocarriers
were hypothesized to assist in the treatment of invasive fungal infections. Liposomes, solid lipid
nanoparticles, and nanostructured lipid carriers are some of the most studied lipid-based nanocarriers
for the delivery of antifungals on the treatment of invasive mycoses in numerous clinical trials. A visible
example of the application of nanoparticles as a tool for drug delivery systems is with AmB, where the
use of formulations based on nanoparticles, such as AmB lipid complex, AmB colloidal dispersion,
and liposomal AmB, demonstrated minimal or no toxicity, maintaining its broad-spectrum antifungal
activity. However, the study of nanoformulations in the antifungal area has been very gradual, unlike in
the field of cancer diagnosis and therapy, with AmB being almost the only commercially available
antifungal in different nanoparticle formulations. This situation is mainly due to the divestment of
the pharmaceutical industry and the lack of economic incentives, as the production of nanoparticles
involves a high cost, due to the limitations of the nanoparticles themselves, such as low physical
stability and pharmacokinetic/biodistribution profiles, and the poor correlation between in vitro
and in vivo trials [80,81]. Studies revealed that conjugated systems of antifungals, such as azoles
and AmB, and metallic nanoparticles, mainly prepared from metals such as Ag, Pt, Au, and Pd,
have a synergistic action. This is the case of the combination of silver nanoparticles (Ag-NPs) with
fluconazole and itraconazole. The use of a marine mangrove extract (Rhizophora mucronata) and
silver nitrate allowed synthesizing nanoparticles that revealed an inhibitory and fungicidal effect,
and when conjugated with fluconazole and itraconazole, it significantly increased the activity against
C. albicans and A. fumigatus. Thus, it can be suggested that these formulations have a synergistic
effect when associated with azoles [82]. Magnesium oxide nanoparticles (MgO-NPs), prepared from a
marine brown algae Sargassum wighitii, were also found as effective agents against pathogenic fungi.
In comparison with fluconazole (positive control), nanoparticles demonstrated a potent inhibition
against A. fumigatus, A. niger, and F. solani, being A. fumigatus less susceptible [83]. Given their
biocompatibility and stability in adverse conditions, these metal oxide nanoparticles have been applied
for the relief of heart burns and the regeneration of bones and used as antitumor and antibacterial
agents. Since seaweeds/marine algae are easily accessible and of great associated effectiveness, their use
in the synthesis of nanoparticles has become an essential and predominant recent step. These results
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suggest that the use of marine-derived associated-nanoparticles systems may be a promising approach
for the treatment of fungal infections.

4. Conclusions

This review focuses on new bioactive compounds from marine sources and new perspectives for
their antifungal application. Currently, there are many challenges in the treatment and prevention
of fungal infections due to the increase in the number of cases and the emergence of resistance
(primary, secondary, and biofilm formation) to the few antifungal agents available in clinical practice.
In addition, the unfavorable characteristics of current antifungals have led to the need to seek new
treatment options.

Given that the marine environment represents a huge and still unexplored source of secondary
metabolites with a wide structural variety and a wide range of pharmacological activities,
natural products with potential in vitro antifungal activity isolated from numerous marine sources
were addressed. In this review, it is worth highlighting a combination formed by compounds 46 and
47, compound 49 with AmB, and compounds 50–56 with fluconazole, which exhibited a synergistic
effect with greater antifungal action than any of the isolated compounds. Almost all of the compounds
mentioned inhibited the growth of a diversity of fungal species, with special attention to compounds 1,
3, 5, 9, 19, 37, 39, 40, 42, 49, 52, 53, 55, 56, 63, 71, 76, and 92 that showed potent activity against strains
of C. albicans. Although several promising marine natural products to antifungal agents have been
found, their development has been progressive, as this is a very time-consuming process, and the
amount of products derived in particular from sponges is limited due to cost and biodiversity, as well
as the difficulty in synthesizing them chemically.

Understanding the pathogenic processes of fungi contributed to the discovery of new targets
and, consequently, new inhibitors, making new targets a good alternative to develop new antifungals.
However, this strategy remains challenging, because fungal cells share a high physiological similarity
with human cells and, thus, several targets involved in the cell membrane and the biosynthesis of
proteins or deoxyribonucleic acid (DNA) are not specific to fungi. The inhibition of microtubule
assembly is a new potential target and, consequently, it is a new mechanism of action used to combat the
proliferation of fungi and infections. The results obtained suggest that the application of its inhibitor,
such as dolastatin 10 (100), will be able to block the growth of even strains of resistant pathogenic fungi.
However, it is necessary to continue to discover, evaluate, and optimize more promising inhibitors,
although many antifungal targets with therapeutic potential have already been found and identified in
clinical trials. Currently, studies focused on increasing the activity of antifungals, especially fluconazole,
have revealed a combination therapy of antifungal and non-antifungal agents as an option to deal with
the problems associated with the treatment of invasive fungal infections and antifungal resistance,
and it may become a way to solve the limited therapeutic arsenal of antifungals. Although the
mechanism of action of commercial antifungals has already been extensively investigated, some of
these when combined with marine compounds that inhibit efflux pumps exhibit a synergistic effect.
This situation proves to be another interesting strategy for combating antifungal resistance. On the
other hand, the direction of the oxidative defense system of pathogenic fungi can also be a powerful tool
for increasing the activity of antifungals currently available in therapy and allowing dosage reduction,
given that ROS induction is correlated with fungicidal activity. In addition, ROS has been shown to be
a promising application to overcome the formation of biofilms in the development of invasive fungal
infections. Therefore, the discovery of compounds that can act by this mechanism, associated or not
with the existing antifungals, can help in the fight against fungal infections related or not with biofilms.
Chitosan is a polymer of great interest in antifungal therapy as a possible anti-candidiasis agent, given
the potent activity revealed on C. albicans. A remarkable solution that improves the solubility in water
of chitosan is derivatization by carboxymethylation as a hydrophilic modification to produce CMC.
This derivative presents greater antifungal activity in comparison to chitosan, a broad spectrum of
action in Candida spp., and the ability to interfere in the formation of biofilms. Although there are
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some effective antifungal agents, their therapeutic benefits are limited by high toxicity or undesirable
physicochemical properties. The use of nanoparticle formulations such as antifungal delivery systems
can overcome these limitations. Another innovative strategy for the effective control of the emergence
and spread of fungal pathogens is the anti-virulence therapy, which aims to disarm the virulence
mechanisms of the pathogen, with fungi filamentation being the main target of study. Preliminary
results suggest that this application could potentially be used to treat certain forms of candidiasis;
however, more studies must be carried out to prove their real effectiveness.
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