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Abstract: Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy has 

been used to determine the nitrate content in aqueous solutions. However, the conventional water 

deduction algorithm indicated considerable limits in the analysis of samples with low nitrate 

concentration. In this study, FTIR-ATR spectra of nitrate solution samples with high and low 

concentrations were obtained, and the spectra were then pre-processed with deconvolution 

curve-fitting (without water deduction) combined with partial least squares regression (PLSR) to 

predict the nitrate content. The results show that the typical absorption of nitrate (1200−1500 cm−1) 

did not clearly align with the conventional algorithm of water deduction, while this absorption 

was obviously observed through the deconvolution algorithm. The first principal component of 

the spectra, which explained more than 95% variance, was linearly related to the nitrate content; 

the correlation coefficient (R2) of the PLSR model for the high-concentration group was 0.9578, and 

the ratio of the standard deviation of the prediction set to that of the calibration set (RPD) was 4.22, 

indicating excellent prediction performance. For the low-concentration group model, R2 and RPD 

were 0.9865 and 3.15, respectively, which also demonstrated significantly improved prediction 

capability. Therefore, FTIR-ATR spectroscopy combined with deconvolution curve-fitting can be 

conducted to determine the nitrate content in aqueous solutions, thus facilitating rapid 

determination of nitrate in water bodies with varied concentrations. 

Keywords: nitrate; water bodies; Fourier transform attenuated total reflection; deconvolution; 

curve-fitting; partial least squares 

 

1. Introduction 

The main forms of nitrogen in aquatic ecosystems are total nitrogen, ammonium nitrogen 

(NH4+–N), and nitrate nitrogen (NO3−–N and NO2−–N) [1]. In recent years, excess nitrogen in water 

bodies, especially NO3−–N, has led to major ecological problems [2]. In addition, NO3−–N in 

drinking water can be converted to NO2−–N by the commensal bacteria in the mouth and digestive 

tract, which is harmful to the health of adults and children. Their long-term consumption can cause, 

for example, cancer of the digestive and excretory systems [3,4]. Therefore, there is a need to 
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develop techniques that rapidly detect NO3−–N in water bodies to prevent water eutrophication and 

promote human health management. 

Conventional methods for measuring NO3−–N in water include reduction distillation, 

colorimetry, and the use of ion-specific electrodes [5,6], which are time-consuming and tend to 

produce secondary pollution. As a fast and nondestructive analysis method, infrared spectroscopy 

has many advantages, such as a simple analytical process, low cost, high efficiency, and no 

chemical reagent consumption [7–9]. It has recently been used to rapidly determine nitrate nitrogen 

levels in water. Previous studies have indicated that mid-infrared attenuated total reflection 

(FTIR-ATR) spectroscopy can be conducted for the rapid quantitative analysis of nitrate in solutions. 

The results show that the intensity of the characteristic absorption peak of N-O vibration in nitrate 

(1200–1500 cm−1) was proportional to the NO3−–N concentration. They used this relationship to 

establish a partial least squares (PLS) model that predicted the nitrate nitrogen content [10]. Shaviv 

et al. used FTIR-ATR to determine NO3−–N in deionized water and in soil solutions [11]. Although 

these studies used FTIR-ATR to detect nitrate nitrogen in water, it was problematic to determine 

NO3−–N with low concentrations (such as lower than 20 mg L−1) in aqueous solutions due to the 

significant interference from strong water absorption. 

In previous studies, for soil solution and vegetable samples with high concentrations of NO3−–

N, direct water deduction was generally used to remove the interference [12–14]. However, for the 

spectral analysis of low-concentration nitrate samples, water deduction causes large errors. 

Therefore, the spectral data must be pre-processed effectively to obtain useful information. 

Deconvolution is a mathematical procedure and a signal processing method typically conducted in 

many fields such as pattern recognition, seismology, system identification, electromagnetic 

scattering, and tomography [15]. The application of deconvolution in spectral processing has also 

proven to be effective. Deconvolution techniques can be used to enhance the resolution beyond the 

instrumental limit and significantly improve the signal-to-noise ratio [16,17]. In addition, to obtain 

useful, accurate and reliable information, spectral deconvolution could be associated with the 

Gaussian fit of the absorption spectra to adjust the Gaussian mathematical curves and obtain the 

corresponding characteristic absorption from overlapped peaks in a complex spectrum [18,19]. 

Thus, the objective of this study was to use FTIR-ATR to rapidly determine both high and low 

concentrations of nitrate in aqueous solutions through the spectra pretreatment of deconvolution 

curve-fitting, combined with principal component analysis (PCA) and partial least squares 

regression (PLSR), which could provide a new alternative option for the rapid determination of 

varied nitrate concentrations in water. 

2. Materials and Methods 

2.1. Materials 

The test reagents were KNO3 (analytical reagent grade, AR, purchased from Nanjing Ronghua 

Apparatus Co., Ltd., Nanjing, China) and deionized water. High and low nitrate concentrations 

(NO3−–N) were prepared separately, in which the high-concentration group included 

concentrations of 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mg L−1 and the low-concentration 

group included 0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 mg L−1. 

2.2. Spectra Recording 

An FTIR-ATR instrument (Nicolet 6700) was used (Thermo Fisher Scientific, Waltham, MA, 

USA), with a DTG detector, and the attenuated total reflection accessory was a 45 °C ZnSe ATR 

(Bruker, Karlsruhe, Germany). When recording the FTIR-ATR spectra, the nitrate solutions were 

directly added to the ATR crystal tank and the nitrate solution of each concentration was measured 

four times. The spectral scan range was set to 500–4000 cm−1 and 32 repeated scans were 

continuously recorded, with a resolution of 4 cm−1 and a mirror velocity of 0.4747 cm s−1. 
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2.3. Pretreatment of Spectral Data 

2.3.1. Water Deduction 

The FTIR-ATR spectra were pre-processed with a Savitzky–Golay filter to reduce noise and 

improve the signal-to-noise ratio [20,21]. MATLAB 2016a (The MathWorks, Natick, MA, USA) was 

used to deduct the absorption peaks of water with the reference band (wavenumber range of 1500–

2200 cm−1); then, PCA and PLS analysis were subsequently conducted. 

2.3.2. Deconvolution Curve-Fitting (without Water Deduction) 

For all solutions, smoothing, baseline correction, and deconvolution curve-fitting (Gaussian) of 

the spectra within the range 1200–1500 cm−1 were performed through the Peakfit 4.12 software 

(SeaSolve Software Inc. San Jose, CA, USA). The objective of deconvolution was to separate each 

peak from the comprehensive information in the spectrum [22,23]. The details of the deconvolution 

process are demonstrated in the supplementary materials (Figures S1–S3). Briefly, the principles are 

as follows: 

Y(x) = ΣFi(x) (1) 

where Y is the spectrum; x is the wavenumber; i (1, 2, 3, … n) is the number of isolated peaks; F is 

the expansion function or the kernel function of deconvolution. The Gaussian function is used as 

the kernel function: 
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where a0, a1, and a2 represent the peak amplitude, position, and width, respectively, and x and y are 

the wavenumber and absorption intensity, respectively. 

2.4. Model Evaluation 

The following equations were used to calculate RMSE, RPD, and R2 in order to evaluate the 

performance of the models in the validation set as following: 
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where �� and ��� are the measured and predicted nitrate levels of ith samples, respectively, �� is the 

mean of the measured nitrate, and n is the number of samples. High values of R2 and RPD along 

with a low RMSE value indicated a robust and accurate model. RPDV values of <1.4 were poor; ≥1.4 

and <1.8 were fair and allowed the model prediction to be used for assessment and correlation; ≥1.8 

and <2.0 were good, in which case quantitative predictions were possible; ≥2.0 and <2.5 were very 

good for quantitative analysis; and ≥2.5 were excellent [24,25]. 

3. Results and Discussion 

3.1. FTIR-ATR Spectra of Nitrate 

The FTIR-ATR spectra of the high- and low-concentration groups of nitrates showed the same 

spectral appearance (Figure 1). Two strong absorption peaks appeared in the range of 3000–3800 

and 1500–1800 cm−1, which are characteristic absorptions of water, indicating that absorptions by 

water greatly interfered with the absorptions of nitrate in the spectra. The characteristic absorptions 
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of nitrate appeared in the range 1200–1500 cm−1, but it was difficult to observe directly because its 

intensity was much weaker than that of water. 

 

Figure 1. Fourier transforms mid-infrared attenuated total reflectance (FTIR-ATR) spectra of nitrate 

solutions. (a) High-concentration group; (b) low-concentration group. 

The spectra of the nitrate solutions of the two concentration groups, after deducting the signal 

arising from water, are shown in Figure 2a,b. For both the groups, the characteristic peak intensities 

at different nitrate concentrations did not follow a consistent trend, which mainly resulted from the 

interference of water absorption. The spectra ranging from 1200 to 1500 cm−1 (Figure 2c,d) were then 

deconvoluted, and the absorption intensity of NO3− was visually proportional to the NO3−–N 

concentration; therefore, the characteristic peaks within this range could be used for the 

quantitative analysis of NO3−–N in solutions. Comparing the nitrate spectra obtained with the water 

deduction and deconvolution (without water deduction), it showed that deducting water could not 

effectively reduce the signal interference, while deconvolution could significantly extract the 

characteristic peaks of nitrate. 

 

Figure 2. Characteristic absorption bands of nitrate solutions through water deduction ((a) 

high-concentration group; (b) low-concentration group; n = 44) and deconvolution from raw spectra 

((c) high-concentration group; (d) low-concentration group; n = 48). 
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3.2. Principal Component Analysis 

PCA was conducted on the spectra within the range 1200–1500 cm−1. For high- and 

low-concentration groups, the first two principal components of both the concentration groups 

accounted for more than 80% of the spectral information within the range 1200–1500 cm−1. Thus, 

PC1 and PC2 can be used to represent variations in the spectra. However, the scores of these two 

principal components did not show an obvious and consistent trend. This may have been caused by 

interference from water or the systematic environment. This might have also occurred because the 

scores of each component used for mapping only contained information about the original 

independent variables, without taking into account the relationship between independent and 

dependent variables [26], which reduced the model’s robustness and prediction capability [27–29]. 

A second PCA of the spectra, within the range 1200–1500 cm−1, was conducted after deconvolution. 

The results showed that PC1 of the high-concentration group reached 99.52% and that of the 

low-concentration group was 99.39% (Figure 3a,b, respectively). The NO3−–N concentration showed 

a regular distribution in the PC1 area, wherein the plot shifted to positive values of PC1 as the 

NO3−–N concentration of the solution increased. 

 

Figure 3. Principal component distribution of FTIR-ATR spectra of the nitrate solution after 

deconvolution ((a) high-concentration group; (b) low-concentration group). 

3.1. Prediction of Nitrate Nitrogen in Water with Water Deduction 

PLSR was used to model the 1200–1500 cm−1 region of the spectra, and the overall dataset was 

divided into a training set (75% of the overall set) and a testing set (25% of the overall set) using 

random division. The cross-validation method was used to determine the optimal number of PLS 

factors. As shown in Figure 4a, the optimal number of PLS factors in the high-concentration group 

was 7, which corresponds to the minimum of RMSECV [13]; therefore, the first seven PLS factors 

were used to construct the PLSR model. Figure 4b,c show the distributions of the real and predicted 

values of the training and testing sets, respectively. The linear regression coefficient (R2) of the 

measured and predicted values of NO3−–N in the training set was 0.9756, representing a significant 

correlation. The R2 of the prediction set was 0.8325, and the RPD value was 1.86 (Table 1). 
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Figure 4. Distribution and model evaluation of the partial least squares (PLS) factor (a,d), training 

set ((b,e); n = 33), and testing set ((c,f); n = 11) of the partial least squares regression (PLSR) 

prediction model (without water deduction) for high nitrate solutions (a–c) and low nitrate 

solutions (d–f). Note: RMSECV, root mean square error in cross validation; RMSEC, root mean 

square error of calibration; RMSEP, root mean square error of prediction. 

Table 1. Number of optimal PLS factors and model evaluation results of the PLSR model with and 

without water deduction. 

Treatment 
Statistical 

Parameters 

High-Concentration 

Group 

Low-Concentration 

Group 

Water deduction 

Correlation 

coefficient (R2) 
0.8325 0.7932 

RPD 1.86 1.75 

Optimized PLS factor 7 4 

Without water 

deduction 

Correlation 

coefficient (R2) 
0.9578 0.9865 

RPD 4.22 3.15 

Optimized PLS factor 5 3 

RPD is an important model evaluation parameter in infrared spectrum analysis; it is the ratio 

of the standard deviation (SD) of a sample to the root mean square error (RMSE). Generally, when 

RPD > 1.8, quantitative detection can be conducted. An RPD between 2 and 2.5 indicates a good 

quantitative prediction model, while one higher than 3 suggests excellent model prediction 

performance [30,31]. Therefore, this model can be applied for the rapid quantitative determination 

of high NO3−–N concentrations in water bodies. The optimal number of PLS factors in the 

low-concentration group was 4 (Figure 4d); thus, the PLSR model was built using the first four 

factors. The distributions of the true and predicted values of the training and testing sets are shown 

in Figure 4e,f, respectively. The evaluation index (R2) of the training set was 0.9221, suggesting a 

significant correlation. However, the R2 of the testing set was much lower at only 0.7932 and RPD 

also decreased to 1.75, which is lower than the minimum standard of 1.8 for quantitative detection. 

These results show that the predictive performance of this model is poor and that the model is not 

suitable for detecting low concentrations of NO3−–N in water. 
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3.3. Prediction of Nitrate Nitrogen in Water with Deconvolution (without Water Deduction) 

Similarly, PLSR was also used to model the characteristic bands of NO3−–N, within the 1200–

1500 cm−1 region, obtained by deconvolution curve-fitting. The overall dataset was divided into a 

training set (75% of the overall set) and a testing set (25% of the overall set) using random division. 

Cross-validation was used to obtain the optimal number of principal components in the high- and 

low-concentration groups and then, to establish PLSR models. For the high-concentration group, 

the optimal number of PLS factors was 5 (Figure 5a). The R2 of real and predicted values of nitrate 

nitrogen in the training set and testing set were 0.9723 and 0.9578 (Figure 5b,c), respectively, 

implying a significant correlation. The RPD value was 4.22 (Table 1), which was higher than 3, 

suggesting that the model had an excellent predictive capability. The optimal number of principal 

components in the low-concentration group model was 3 (Figure 5d), the correlation coefficients (R2) 

in the training set and testing set were 0.9853 and 0.9865 (Figure 5e,f), respectively, and the RPD 

was 3.15 (Table 1), indicating an excellent predictive performance. The above results showed that in 

both concentration groups, the PLSR model established based on spectra deconvolution (without 

water deduction) achieved better performance than the model established with water deduction, 

which indicated that deconvolution peak-fitting could effectively reduce water interference to 

extract useful spectral information. 

In the process of linear multivariate calibration analysis, the limit of detection (LOD) could be 

estimated by 3σ or 3σ/m [32]. σ was the standard deviation of the predicted concentration, which 

could be replaced with RMSE, and m was the fitting-curve slope of the model (using the real value 

as the X-axis and the predicted value as the Y-axis). The m value of the high concentration group 

model was 0.6236, and the RMSEP was 1.025 (Figure 5c), so the 3σ was 3.075 and the 3σ/m was 4.931. 

In the low concentration group, the m was 0.7122, and RMSEP was 0.2031 (Figure 4f); therefore, the 

3σ and 3σ/m were 0.6039 and 0.8491, respectively. 

Figure 5. Distribution and model evaluation of the PLS factor (a,d), training set ((b,e); n = 36), and 

testing set ((c,f); n = 12) of the PLSR prediction model with deconvolution (without water deduction) 

for high nitrate solutions (a–c) and low nitrate solutions (d–f). Note: RMSECV, root mean square 

error in cross validation; RMSEC, root mean square error of calibration; RMSEP, root mean square 

error of prediction. 

4. Conclusions 

In this study, combined with the PLSR model, FTIR-ATR spectroscopy was applied to detect 

nitrate in high- and low-concentration solutions, with deconvolution algorithm (without water 



Molecules 2020, 25, 5838 8 of 9 

 

deduction) comparing with conventional water deduction algorithms. In both the high- and 

low-concentration groups, the PLSR model based on the non-deduction of water (deconvolution 

curve-fitting) performed significantly higher prediction accuracy than the model established by 

deducting water to quantitatively predict nitrate nitrogen, which provided a more effective analysis 

method for the rapid determination of different concentrations of nitrate in water bodies. 

Supplementary Materials: The following are available online. Figure S1: The process of deconvolution, Figure 

S2: Second derivative of nitrate absorption. (a), high-concentration group with the range of 0–100 mg L−1; (b), 

low-concentration group with the range of 0–20 mg L−1. Figure S3: The equilibrium of electron clouds in nitrate. 
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