Electronic Supplementary Information

Multiple Stimuli-responsive Conformational Exchanges of Biphen[3]arene Macrocycle

Yiliang Wang¹†, Liu-Pan Yang²†, Xiang Zhao¹, Lei Cui¹, Jian Li¹, Xueshun Jia¹, Jianhui Fang¹ and Chunju Li^{1,3,*}

- ¹ School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China; steven93916@126.com; zhaoxiang_shu@163.com; cuilei15@usst.edu.cn; lijian@shu.edu.cn; xsjia@mail.shu.edu.cn; jhfang@shu.edu.cn
- ² Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen 518055, China; yanglp@sustech.edu.cn
- ³ Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China; cjli@shu.edu.cn
- * Correspondence: cjli@shu.edu.cn; † these two authors contributed equally to this paper

1. Materials and Methods

2,2',4,4'-tetramethoxy biphen[3]arene (MeBP3) was synthesized according to our previous report¹. Secondary ammonium guest **1**⁺·BArF⁻ was synthesized according to the literature². ¹H NMR (acquisition time = 3.17s, relaxation delay = 1.00s) and ¹³C NMR (acquisition time = 1.09s, relaxation delay = 2.00s) spectra were recorded on a Bruker AV500 instrument. ¹H-¹³C HMQC spectrum, ¹H-¹³C HMBC spectrum and 2D NOESY NMR spectrum were recorded on a Bruker AVANCE III HD 600 MHz spectrometer. Variable-temperature ¹H NMR (acquisition time = 2.19s, relaxation delay = 5.00s) spectra were recorded on a JEOL JNM-ECZ400SL NMR spectrometer.

2. Copies of ¹H NMR and ¹³C NMR spectra of MeBP3.

Figure S1 ¹H NMR spectrum (500 MHz, 25 °C, 2.0 mM) of MeBP3 in CDCl₃.

Figure S3 ¹³C NMR spectrum (125 MHz, 25 °C, 100 mM) of MeBP3 in CDCI₃.

Figure S4 ¹H NMR spectrum (500 MHz, 25 °C, 2.0 mM) of MeBP3 in DMSO-*d*₆.

3. Structures assignment and ¹H-¹³C HMQC/HMBC NMR & 2D NOESY NMR spectra.

Figure S5 Chemical structures of two conformers of MeBP3.

Figure S6 Partial ¹H-¹³C HMQC NMR spectrum (600 MHz, 25 °C, 100 mM) of MeBP3 in CDCl₃ (aromatic regions).

Figure S7 Partial ¹H-¹³C HMQC NMR spectrum (600 MHz, 25 °C, 100 mM) of MeBP3 in $CDCI_3$ (methoxyl & methylene regions).

Figure S8 Partial ¹H-¹³C HMBC NMR spectrum (600 MHz, 25 °C, 100 mM) of MeBP3 in $CDCI_3$ (aromatic regions to aromatic regions).

Figure S9 Partial ¹H-¹³C HMBC NMR spectrum (600 MHz, 25 °C, 100 mM) of MeBP3 in CDCl₃ (aromatic regions to methoxyl-methylene regions).

Figure S10. 2D NOESY (600 MHz, 298 K) spectrum of MeBP3 in $CDCI_3$ with a mixing time of 80 ms.

4. Copies of Variable-temperature ¹H NMR Spectra.

Figure S11 Variable-temperature ¹H NMR spectra of MeBP3 in CDCI₃ (400 MHz, 2.0 mM).

7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 $4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 \delta$ (ppm)

Figure S12 Variable-temperature ¹H NMR spectra of MeBP3 in CD_2CI_2 (400 MHz, 2.0 mM).

Figure S13 Variable-temperature ¹H NMR spectra of MeBP3 in acetone- d_6 (400 MHz, 2.0 mM).

Figure S14 Variable-temperature ¹H NMR spectra of MeBP3 in acetonitrile- d_3 (400 MHz, 2.0 mM).

Figure S15 Variable-temperature ¹H NMR spectra of MeBP3 in toluene- d_8 (400 MHz, 2.0 mM).

Figure S16 Variable-temperature ¹H NMR spectra of MeBP3 in xylene- d_{10} (400 MHz, 2.0 mM).

6. Tables of mole ratio of conformer I and conformer II ([I]/[II]).

		CDCI ₃	CD_2CI_2	CD ₃ CN	acetone-d ₆	xylene-d ₁₀	toluene-d ₈
-60ª	MeBP3-I	74%	92%	-	88%	-	39%
	MeBP3-II	26%	8%	-	12%	-	61%
-45	MeBP3-I	72%	92%	-	88%	-	-
	MeBP3-II	28%	8%	-	12%	-	-
-40	MeBP3-I	_b	-	90%	-	-	73%
	MeBP3-II	-	-	10%	-	-	24%
-30	MeBP3-I	72%	92%	-	89%	-	-
	MeBP3-II	28%	8%	-	11%	-	-
-25	MeBP3-I	-	-	90%	-	-	-
	MeBP3-II	-	-	10%	-	-	-
-20	MeBP3-I	-	-	-	-	86%	85%
	MeBP3-II	-	-	-	-	14%	15%
-15	MeBP3-I	73%	91%	-	89%	-	-
	MeBP3-II	27%	9%	-	11%	-	-
0	MeBP3-I	74%	90%	90%	88%	85%	85%
	MeBP3-II	26%	10%	10%	12%	15%	15%
10	MeBP3-I	-	-	89%	-	-	-
	MeBP3-II	-	-	10%	-	-	-
15	MeBP3-I	74%	89%	-	88%	-	-
	MeBP3-II	26%	11%	-	12%	-	-
25	MeBP3-I	73%	87%	86%	88%	80%	85%
	MeBP3-II	27%	13%	14%	12%	20%	15%
40	MeBP3-I	-	-	87%	88%	85%	92%
	MeBP3-II	-	-	13%	12%	15%	8%
50	MeBP3-I	>95%	-	-	>95%	-	-
	MeBP3-II	<5%	-	-	<5%	-	-
55	MeBP3-I	-	-	>95%	-	-	-
	MeBP3-II	-	-	<5%	-	-	-
60	MeBP3-I	-	-	-	-	>95%	>95%
	MeBP3-II	-	-	-	-	<5%	<5%
70	MeBP3-I	-	-	>95%	-	-	-
	MeBP3-II	-	-	<5%	-	-	-
80	MeBP3-I	-	-	-	-	>95%	>95%
	MeBP3-II	-	-	-	-	<5%	<5%
100	MeBP3-I	-	-	-	-	>95%	>95%
	MeBP3-II	-	-	-	-	<5%	<5%
110	MeBP3-I	-	-	-	-	>95%	-
	MeBP3-II	-	-	-	-	<5%	-

Table S1 Percentages of MeBP3-I & MeBP3-II in different solvents and temperatures.

^a: °C; ^b: didn't test.

7. NMR Titration Experiment.

To determine the association constants of $1^+ \subset MeBP3-I$ (K_1) and $1^+ \subset MeBP3-II$ (K_2), NMR titrations were done with solutions which had a constant concentration of MeBP3 and varying concentrations of 1^+ . Using the nonlinear curve-fitting method, the association constant was obtained for each host-guest combination from the following equations³: δ_{obs}

$$=\frac{2(K_{1}+KK_{2})\delta_{F}+\delta_{B}K_{1}\{-(1+K+(K_{1}+KK_{2})([H]_{t}-[G]_{t}))+\sqrt{(1+K+(K_{1}+KK_{2})([H]_{t}-[G]_{t}))^{2}+4(K_{1}+KK_{2})(1+K)[G]_{t}\}}}{2(K_{1}+KK_{2})+K_{1}\{-(1+K+(K_{1}+KK_{2})([H]_{t}-[G]_{t}))+\sqrt{(1+K+(K_{1}+KK_{2})([H]_{t}-[G]_{t}))^{2}+4(K_{1}+KK_{2})(1+K)[G]_{t}\}}}$$

 δ_{obs}

$$=\frac{2(K_1/K+K_2)\delta_{\rm F}+\delta_{\rm B}K_2\{-(1+1/K+(K_1/K+K_2)([{\rm H}]_{\rm t}-[{\rm G}]_{\rm t}))+\sqrt{(1+1/K+(K_1/K+K_2)([{\rm H}]_{\rm t}-[{\rm G}]_{\rm t}))^2+4(K_1/K+K_2)(1+1/K)[{\rm G}]_{\rm t}}}{2(K_1/K+K_2)+K_2\{-(1+1/K+(K_1/K+K_2)([{\rm H}]_{\rm t}-[{\rm G}]_{\rm t}))+\sqrt{(1+1/K+(K_1/K+K_2)([{\rm H}]_{\rm t}-[{\rm G}]_{\rm t}))^2+4(K_1/K+K_2)(1+1/K)[{\rm G}]_{\rm t}}}}$$

Where [H]_t and [G]_t are the total concentration of the host and the guest, respectively; δ_{obs} is the chemical shifts of the proton of interest; δ_F and δ_B are the chemical shifts of the proton of interest in their free and bound states. The association constants was calculated by using the nonlinear curve-fitting method.

3.704 6.698 6.692 6.686 6.680 6.674 6.668 6.662 6.656 6.650 6.644 6.638 6.632 6.626 6.62 δ (ppm)

Figure S17 Partial ¹H NMR spectra (500 MHz, CDCl₃, 25 °C) of MeBP3 (H₆ of conformer I) at a concentration of 1.0 mM upon addition of 1^+ . From bottom to top, the concentration of 1^+ was 0.0, 0.1, 0.3, 0.4, 0.6, 0.8, 1.2, 2.0, 3.5, 5.8, 10.6 17.2 & 25.4 mM.

7.33 7.30 7.27 7.24 7.21 7.18 7.15 7.12 7.09 7.06 7.03 7.00 6.97 6.94 6.91 6.88 6.85 6.8 $\overline{\delta}$ (ppm)

Figure S18 Partial ¹H NMR spectra (500 MHz, CDCl₃, 25 °C) of MeBP3 (H₆ of conformer II) at a concentration of 1.00 mM upon addition of 1^+ . From bottom to top, the concentration of 1^+ was 0.0, 0.1, 0.3, 0.4, 0.6, 0.8, 1.2, 2.0, 3.5, 5.8, 10.6 17.2 & 25.4 mM.

Figure S19 The non-linear curve-fitting (NMR titrations) for the complex of **1**⁺ and conformer I & II, $K_1 = (3.50 \pm 0.54) \times 10^3 \text{ M}^{-1}$ and $K_2 = (2.27 \pm 0.18) \times 10^3 \text{ M}^{-1}$.

8. References

(1) Y. Wang, K. Xu, B. Li, L. Cui, J. Li, X. Jia, H. Zhao, J. Fang and C. Li, Angew. Chem. Int. Ed. 2019, 58, 10281-10284.

(2) M. D. Rosa, C. Talotta, C. Gaeta, A. Soriente, P. Neri, S. Pappalardo, G. Gattuso, A. Notti, M. F. Parisi and I. Pisagatti, *J. Org. Chem.* 2017, *82*, 5162–5168.
(3) L.-P.Yang, L. Zhang, M. Quan, J. S. Ward, Y.-L. Ma, H. Zhou, K. Rissanen and W.

Jiang, Nat. Commun. 2020, 11: 2740.