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Abstract: Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is
rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational
exchanges between two preexisting conformations of 2,2′,4,4′-tetramethoxyl biphen[3]arene (MeBP3)
macrocycle. Structures of these two conformations are both observed in solid state, and characterized
by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond
to solvents, temperatures, guest binding and acid/base addition. The current system may have a role
to play in the construction of molecular switches and other stimuli-responsive systems.
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1. Introduction

In nature, conformational exchanges are widely involved in various kinds of biological processes [1].
In chemistry, controlled conformational exchanges of single molecules present an opportunity to
control the molecular world [2]. For example, overcrowded alkenes were designed and synthesized
to construct molecular switches, and their conformations can be changed predictably in response to
lights [3], redox processes [4,5], temperatures [6], etc. On the other hand, molecular switches can also
be constructed by host-guest complexes [7–10]. For supramolecular receptors, controlled and large
amplitude conformational interconversions have been observed upon binding a guest molecule [11–17]
or an ion [18–20], but the reversibly conformational exchanges of macrocycles beyond their host-guest
properties have been rarely discussed [21–27].

Synthetic macrocycles often have simple structures and fast conformational exchange kinetics [28],
which are hard to detect by common kinetic techniques. Although conformational interconversions of
macrocyclic acceptors can be observed in molecular recognition processes [29–36], slow exchanges
of coexisting conformations of macrocycles have been rarely reported [37]. Developing slow
conformational exchange systems of macrocycles can not only apply in the design and synthesis
of molecular machines and devices [2,7–10] but also function as an important tool for host-guest
binding mechanism analysis [37]. The assignment of the binding mechanism is often inconclusive
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in synthetic supramolecular systems because of the fast exchange kinetics [38,39]. Very recently,
Jiang et al. demonstrated the strict analysis of the binding mechanism based on a macrocycle with slow
conformational exchange [37].

Here, we report the stimuli-responsive conformational exchanges of 2,2’,4,4’-tetramethoxyl
biphen[3]arene (MeBP3) [40–46]. The conformational exchanges between two conformers of MeBP3
were slow on the NMR timescale, and we successfully differentiated them in the 1H NMR and 13C
NMR spectra of MeBP3. 1H-13C HMQC and HMBC spectra were employed to identify these two
conformers and assign the 1D NMR signals. Particularly, stimuli-responsive conformational exchanges
can be realized by solvent effect, temperature variation, guest binding and acid/base addition.

2. Results

2.1. Conformations Analysis

MeBP3 contains three 2,2′,4,4′-tetramethoxyl biphenyl sidewalls and three methylene linkers,
which is structurally similar to those synthetic macrocyclic arenes like calix[n]arenes [28,30,47–49],
resorc[4]arene [50], cyclotribenzylene [51], pillar[n]arenes [52–54] and other biphen[n]arenes [40–46].
Theoretically, there are two representative conformations for MeBP3, due to flipping of the biphenyl
sidewalls (Figure 1a, MeBP3-I and MeBP3-II). For MeBP3-I, three biphenyl units are arranged in
the same orientation, and flipping of one biphenyl panel of MeBP3-I can produce MeBP3-II [55].
Conformer MeBP3-I has D3 symmetry and thus should give rise to two singlets in 1H NMR for their
aromatic signals. Conformer MeBP3-II has C2 symmetry and six singlets in the aromatic regions. If the
exchanges between two conformers are slow on the NMR timescale, we can differentiate them in the
NMR spectra of MeBP3.
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In the 1H NMR spectrum of MeBP3 (2.0 mM), one set of two broad singlets and the other set of six
broad singlets in the aromatic regions were observed (Figure 2a), indicating that MeBP3-I and MeBP3-II
are coexisting in CDCl3. Two sets of broad singlets indicate that single bonds in biphenyl units rotate
fast, but the overall exchanges between MeBP3-I and MeBP3-II were slow on the NMR timescale at
room temperature. The 13C NMR spectrum of MeBP3 in CDCl3 was tested; six carbon signals for
MeBP3-I and 18 carbon signals for MeBP3-II in the aromatic regions were observed (Figure 2b). 1H-13C
HMQC and HMBC were employed to assign the 1D NMR spectra (Figures S6–S9). The minor species
was assigned to MeBP3-II, while the major species was assigned to MeBP3-I, and their percentages
were calculated according to the integrals in 1H NMR spectrum, which are 73% for MeBP3-I and 27%
for MeBP3-II at 25 ◦C in CDCl3. We examined the 1H NMR spectra of MeBP3 in CDCl3 at a high
concentration of 100 mM (Figures S1 and S2). No obvious concentration effect was observed on the
distribution of conformers.
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Figure 2. (a) Partial 1H NMR spectrum (500 MHz, 25 ◦C, 2.0 mM) of MeBP3 in CDCl3; (b) Partial 13C
NMR spectrum (125 MHz, 25 ◦C, 100 mM) of MeBP3 in CDCl3.

We obtained two single-crystals of MeBP3 containing CH3CN molecules or cis-1,2-dichloroethene
(cis-DCE) molecules in unit cells [39], namely, “CH3CN@MeBP3” and “cis-DCE@MeBP3” [46],
respectively. The single-crystal X-ray diffraction data suggested that the structure of MeBP3 in
CH3CN@MeBP3 could be assigned to MeBP3-I, while the structure of MeBP3 in cis-DCE@MeBP3 was
MeBP3-II (Figure 1b). In the solid state, MeBP3-I exhibits a triangular topology, and three biphenyl
sidewalls define a cavity suitable for the linear guests with 5.43 Å diameters [39]. Flipping one biphenyl
sidewall in MeBP3-I to the other side can produce MeBP3-II, which was observed in cis-DCE@MeBP3.

2.2. Solvent and Temperature Effects in Conformational Exchanges

Molecular conformations are closely related to solvents and temperatures. We therefore tested the
conformational exchanges of MeBP3 in different solvents and temperatures. MeBP3-I and MeBP3-II
also coexist in CD2Cl2, acetone-d6, acetonitrile-d3, toluene-d8 and xylene-d10, but their percentages were
different (for MeBP3-I is 87%, 88%, 86%, 85% and 80%, respectively) at room temperature (Figure 3b).
However, in high polarity solvent such as DMSO-d6, no signals for MeBP3-II were observed (Figure S4).
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Variable-temperature 1H NMR spectra were also examined in different solvents. At relatively
high temperatures (≥50 ◦C), only signals for MeBP3-I were observed in all selected solvents (Figure 3c,
Figures S11–S16 and Table S1), suggesting that MeBP3-I is more thermodynamically stable than
MeBP3-II. Decreasing the temperatures of MeBP3’s toluene-d8 solution from 100 ◦C to −60 ◦C led to
gradual transformations of the chemical equilibrium (Figure 3c). For example, at 25 ◦C, the percentage of
MeBP3-I was 85%, while the percentage of MeBP3-II was 61% at −60 ◦C. That is, in low polarity solvent
of toluene-d8, the chemical equilibrium leaned toward the MeBP3-II at low temperatures. However,
at high temperatures, MeBP3-I was the dominant species (Table S1). In contrast, in mid-polarity solvents
such as CDCl3, CD2Cl2, acetone-d6 and acetonitrile-d3, MeBP3-I was always the main conformer
(Table S1). One possible reason is that the temperature-triggered conformational exchange is a
solvation-driven process, CDCl3, CD2Cl2, acetone-d6 and acetonitrile-d3 can solvate MeBP3, thereby
freezing the changes of chemical equilibrium [21].

2.3. Guest-Binding and Acid/Base Addition in Conformational Exchanges

Suitable guests may efficiently switch the conformations of acceptors [29–36]. According to
MeBP3’s cavity size (5.43 Å) [40] and π-electron rich characteristics [40–46], a linear secondary
ammonium guest 1+ was chosen to study the binding properties of the macrocycle. As shown in
Figure 4, in the 1H NMR spectrum of host-guest 1:1 mixtures, no signals for MeBP3-II were found,
showing that the conformational exchanges were fixed in the presence of 1+. Meanwhile, the proton
signals of 1+ shifted upfield dramatically (for example, ∆σ = −0.40 ppm for the protons at 2.94 ppm),
suggesting that an interpenetrated complex was formed. In other words, MeBP3-I can bind 1+ efficiently,
and the host-guest association can fix the conformational exchanges. Furthermore, no signals for
free guest and free MeBP3 were detected, suggesting that the guest exchange kinetics of complex
1+ ⊂MeBP3 was fast on the NMR timescale. This is in contrast to the slow interconversion kinetics
between two conformers.
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NMR titration experiments were employed to measure the association constants (K1, K2) between
two conformers of MeBP3 and 1+ [37]. When we gradually titrated 1+ into a CDCl3 solution of MeBP3
(1.0 mM, Figures S17 and S18), the obvious shifts were observed in both two conformers’ 1H NMR
signals, showing that 1+ can be recognized by both MeBP3-I and MeBP3-II. Nonlinear curve-fitting
(Figure S19) gave the association constants of K1 = (3.50 ± 0.54) × 103 M−1 (1+ ⊂ MeBP3-I) and
K2 = (2.27 ± 0.18) × 103 M−1 (1+ ⊂MeBP3-II), respectively, which further indicated that MeBP3-I can
bind 1+ more efficiently.

As mentioned above, the host-guest association can fix the conformational exchanges at room
temperature, and the macrocycle favored the conformer MeBP3-II at low temperature intoluene-d8.
Next, we investigated the influence of guest-binding toward conformational exchanges in the toluene-d8

solution of MeBP3 at −60 ◦C. Upon addition of 1.2 equivalents (eq.) of 1+, the 1H NMR (Figure 5b)
spectra of MeBP3 suggested that the conformational exchanges were nearly fixed. In both instances the
absence of resonances in the aromatic regions of 1H NMR signals suggested that the MeBP3-II nearly
disappeared. Then, we expected that the 1+ can be deprotonated with the assistance of organic base
n-Pr3N, which would dissociate the host-guest complex and resume the conformational exchanges.
Upon further addition of 1.5 eq. n-Pr3N, the NMR spectrum almost recovered the resonances for a
mixture of MeBP3-I and MeBP3-II (Figure 5b). After that, with the addition of 1.8 eq. CF3COOH,
no 1H NMR signals for MeBP3-II were found in the mixture solution (Figure 5b). The re-protonation of
dibutylamine re-associated the host-guest complex and fixed the conformational exchanges. That is,
the conformational exchanges between MeBP3-I and MeBP3-II can be responsive to the guest binding
and acid/base addition. This result also suggests that the exchange kinetics of host-guest complex is
faster than the conformational exchange.
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3. Discussion

In conclusion, we investigated the multiple stimuli-responsive conformational exchanges of
2,2′,4,4′-tetramethoxyl biphen[3]arene. Two preexisting conformers of MeBP3 were found in solutions
with slow conformational interconversions. Structures of these two conformers were fully characterized
by 1H-13C HMQC and HMBC NMR spectra. Besides, solvents, temperatures, guest binding and
acid/base addition can dramatically influence the conformational exchanges. In relatively high
temperatures, conformer MeBP3-I is the dominant species in all solutions, for example, percentage
of MeBP3-I is >95% in CDCl3, acetone-d6, toluene-d8 and xylene-d10. In contrast, MeBP3-II is the
main conformation in MeBP3’s toluene-d8 solution at −60 ◦C (61%). Secondary ammonium guest 1+

can enter the cavity of MeBP3 and fix the conformational exchanges, even at −60 ◦C in toluene-d8,
whereas only MeBP3-I was observed in the host-guest mixture’s solution. The addition of acid/base
can resume/re-fix the conformational interconversions of MeBP3 in the host-guest mixture’s solution.
This slow conformation-exchange system may have a role to play in the binding mechanism analysis,
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molecular switches and stimuli-responsive materials. Studies directed to exploring these possibilities
are underway.

4. Materials and Methods

2,2′,4,4′-tetramethoxy biphen[3]arene (MeBP3) was synthesized according to our previous report [39].
Secondary ammonium guest 1+·BArF− was synthesized according to the literature [29]. 1H NMR
(acquisition time = 3.17 s, relaxation delay = 1.00 s) and 13C NMR (acquisition time = 1.09 s, relaxation
delay = 2.00 s) spectra were recorded on a Bruker AV500 instrument (Bruker Daltonics Inc., Rheinstetten,
Germany). 1H-13C HMQC spectrum, 1H-13C HMBC spectrum and 2D NOESY NMR spectrum were
recorded on a Bruker AVANCE III HD 600 MHz spectrometer (Bruker Daltonics Inc., Rheinstetten,
Germany). Variable-temperature 1H NMR (acquisition time = 2.19 s, relaxation delay = 5.00 s) spectra
were recorded on a JEOL JNM-ECZ400SL NMR spectrometer (JEOL, Akishima-shi, Japan).

Supplementary Materials: The following are available online. Figure S1: 1H NMR spectrum (500 MHz, 25 ◦C,
2.0 mM) of MeBP3 in CDCl3., Figure S2: 1H NMR spectrum (500 MHz, 25 ◦C, 100 mM) of MeBP3 in CDCl3,
Figure S3: 13C NMR spectrum (125 MHz, 25 ◦C, 100 mM) of MeBP3 in CDCl3, Figure S4: 1H NMR spectrum
(500 MHz, 25 ◦C, 2.0 mM) of MeBP3 in DMSO-d6, Figure S5: Chemical structures of two conformers of MeBP3,
Figure S6: Partial 1H-13C HMQC NMR spectrum (600 MHz, 25 ◦C, 100 mM) of MeBP3 in CDCl3 (aromatic regions),
Figure S7: Partial 1H-13C HMQC NMR spectrum (600 MHz, 25 ◦C, 100 mM) of MeBP3 in CDCl3 (methoxyl
and methylene regions), Figure S8: Partial 1H-13C HMBC NMR spectrum (600 MHz, 25 ◦C, 100 mM) of MeBP3
in CDCl3 (aromatic regions to aromatic regions), Figure S9: Partial 1H-13C HMBC NMR spectrum (600 MHz,
25 ◦C, 100 mM) of MeBP3 in CDCl3 (aromatic regions to methoxyl-methylene regions), Figure S10: 2D NOESY
(600 MHz, 298 K) spectrum of MeBP3 in CDCl3 with a mixing time of 80 ms, Figure S11: Variable-temperature
1H NMR spectra of MeBP3 in CDCl3 (400 MHz, 2.0 mM), Figure S12: Variable-temperature 1H NMR spectra of
MeBP3 in CD2Cl2 (400 MHz, 2.0 mM), Figure S13: Variable-temperature 1H NMR spectra of MeBP3 in acetone-d6
(400 MHz, 2.0 mM), Figure S14: Variable-temperature 1H NMR spectra of MeBP3 in acetonitrile-d3 (400 MHz,
2.0 mM), Figure S15: Variable-temperature 1H NMR spectra of MeBP3 in toluene-d8 (400 MHz, 2.0 mM), Figure S16:
Variable-temperature 1H NMR spectra of MeBP3 in xylene-d10 (400 MHz, 2.0 mM), Figure S17: Partial 1H NMR
spectra (500 MHz, CDCl3, 25 ◦C) of MeBP3 (H6 of conformer I) at a concentration of 1.0 mM upon addition of 1+.
From bottom to top, the concentration of 1+ was 0.0, 0.1, 0.3, 0.4, 0.6, 0.8, 1.2, 2.0, 3.5, 5.8, 10.6, 17.2 and 25.4 mM,
Figure S18: Partial 1H NMR spectra (500 MHz, CDCl3, 25 ◦C) of MeBP3 (H6 of conformer II) at a concentration of
1.00 mM upon addition of 1+. From bottom to top, the concentration of 1+ was 0.0, 0.1, 0.3, 0.4, 0.6, 0.8, 1.2, 2.0,
3.5, 5.8, 10.6, 17.2 and 25.4 mM, Figure S19: The non-linear curve-fitting (NMR titrations) for the complex of 1+

and conformer I and II, K1 = (3.50 ± 0.54) × 103 M−1 and K2 = (2.27 ± 0.18) × 103 M−1, Table S1: Percentages of
MeBP3-I and MeBP3-II in different solvents and temperatures.
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