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Abstract: In this work, we studied the CO2 absorption mechanism by nonaqueous solvent comprising
hindered amine 2-[(1,1-dimethylethyl)amino]ethanol (TBAE) and ethylene glycol (EG). The NMR
and FTIR results indicated that CO2 reacted with an -OH group of EG rather than the -OH of
TBAE by producing hydroxyethyl carbonate species. A possible reaction pathway was suggested,
which involves two steps. In the first step, the acid–base reaction between TBAE and EG generated
the anion HO-CH2-CH2-O-; in the second step, the O− of HO-CH2-CH2-O− attacked the C atom
of CO2, forming carbonate species.
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1. Introduction

In recent decades, the amount of carbon dioxide (CO2), the main heat-trapping gas, accumulated
in the air, has reached an unbelievable level, which is viewed as the main contributor to global warming
causing severe environmental problems such as the rising atmospheric temperature, intense heat
waves and drought. The vast majority of atmospheric CO2 is mainly emitted from industrial activities
by burning fossil fuels such as coal and oil to produce electricity [1]. An urgent demand to curb
the atmospheric CO2 concentration to avoid a climate disaster has driven industry and the scientific
community to explore efficient CO2 capture technologies. A current popularly used method for CO2

capture in industry is the amine-based scrubbing process, which mainly utilizes the aqueous solution
of alkanolamine to chemically absorb CO2 [2]. However, amine-based sorption systems have several
drawbacks, such as high solvent volatility and equipment corrosion as well as high energy penalty of
absorbent regeneration [3,4]. To develop new and efficient sorption systems capable of addressing the
above-mentioned drawbacks is one of the main challenges in the field of carbon capture and storage.

In recent years, nonaqueous solvent blends formed by amine and a conventional organic solvent
have been developed as promising alternatives to the aqueous amine absorbents, because they can
provide the advantage of reducing the energy cost during the regeneration steps while retaining high
CO2 capacity [5]. At present, many nonaqueous systems were studied to capture CO2, such as the
mixture of alcohol and amidines [6], alkanolamine solutions such as monoethanolamine (MEA) and
2-amino-2-methyl-1-propanol (AMP) in ethanol or ethylene glycol (EG) [7–14], and the amine-based
deep eutectic solvents [15–17].

Im and co-authors reported that the sterically hindered amine 2-[(1,1-dimethylethyl)amino]ethanol
(TBAE) in EG solution could capture CO2 by forming zwitterionic carbonate species, and they believe
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that CO2 reacted with the -OH group of TBAE rather than reacted with the -OH group of EG [18].
However, Xie and co-authors reported that CO2 reacted with EG by forming hydroxyethyl carbonate
species and the zwitterionic carbonate species produced from the reaction between CO2 and TBAE
was not the main product when CO2 was captured by the solution of TBAE in EG, which is supported
by quantum chemical calculations and mass spectrometry [19]. In other words, the results reported
by these two groups contradicted each other. Therefore, in this work, in order to clarify the reaction
between CO2 and TBAE-EG absorbent, we studied the CO2 absorption mechanism again using Nuclear
Magnetic Resonance (NMR) and Fourier Transform Infrared Spectrometer (FTIR) spectroscopies.
Our results suggested that CO2 reacted with the -OH group of EG with the formation of a carbonate
species (Scheme 1), not with the -OH group of TBAE, which was consistent with the results reported
by Xie [19]. The details of our investigation can be found in the following section.
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Scheme 1. The reaction of CO2 with amine 2-[(1,1-dimethylethyl)amino]ethanol (TBAE) and ethylene
glycol (EG).

2. Results and Discussions

The interaction between CO2 and the TBAE-EG system are characterized using NMR and FTIR
spectra. The 1H and 13C NMR spectra of TBAE-EG system before and after CO2 absorption can be seen
in Figure 1. As shown in Figure 1a, two new peaks at 3.17 (H-1) and 3.43 (H-2) ppm can be found in the
1H NMR spectrum of TBAE-EG after absorption, and three new peaks appeared at 60.4 (C-1), 66.5 (C-2)
and 158.6 (C-3) ppm in the 13C NMR spectrum after absorption (Figure 1b). The new peaks in the
NMR spectra cannot be explained if CO2 reacted with the -OH group of TBAE to form zwitterionic
carbonate species.
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In order to explain the new peaks in the NMR spectra, the 2D NMR spectra of 1H-13C Heteronuclear
Single Quantum Coherence (HSQC) and 1H-13C Heteronuclear Multiple Bond Correlation (HMBC)
of the TBAE-EG system after CO2 uptake were studied. As shown in 1H-13C HSQC spectroscopy
(Figure 2a), H-1 and H-2 correlated with C-1 and C-2, respectively. In the 1H-13C HMBC spectroscopy
(Figure 2b), the C-3 carbon did not correlate with the H-d hydrogen of TBAE, indicating that CO2 did
not react with the -OH group of TBAE, and there was also no correlation between the C-3 carbon and
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the H-c hydrogen of TBAE, indicating CO2 was not attached the amine group of TBAE. The HMBC
results revealed that CO2 did not directly react with TBAE. Therefore, CO2 should react with EG,
the other species in the TEAE-EG system, which was supported by the HMBC results. As presented in
Figure 2b, the C-3 carbon correlated with the H-2 hydrogen and the C-1 carbon also correlated with the
H-2 hydrogen, suggesting that CO2 directly reacted with the -OH group of EG by forming a carbonate
species. The peaks of C-1 and C-2 can be ascribed to the carbon atoms of the carbonate species
derived from EG, which were similar to those found in the AMP-EG-based nonaqueous solution after
carbon capture [9]. The C-3 carbon was the carbonyl carbon in the EG-derived carbonate species [20].
Moreover, the peak of C-b carbon attached to the N atom of TBAE shifted downfield from 50.0 to
55.8 ppm after CO2 absorption, which indicates that the amine group of TBAE also plays a role in
CO2 capture. On the basis of the above results, it can be concluded that CO2 reacted with the -OH of
EG by producing carbonate species and the amine group of TBAE obtains a proton after CO2 uptake.
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The FTIR spectra of the TBAE-EG system with and without CO2 were also studied. Two new
peaks can be observed at 1635 and 1290 cm−1 (Figure 3), which can be ascribed to the asymmetric
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and symmetric carbonyl stretching frequency of C=O in R-O-COO− species [6]. However, the two
peaks were different from those of TBAE-CO2 adduct (1641 and 1295 cm−1) reported by Im and
co-authors [18], suggesting that CO2 was bonded to the O atom of EG, not the O atom of TBAE.
Therefore, the FTIR results confirmed again the reaction between CO2 and -OH of EG.
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On the basis of the above discussion, we think that the reaction pathway involves two steps
(Scheme 2). At first, there was an acid–base reaction between TBAE and EG, forming the anion
HO-CH2-CH2-O−, the conjugate base of EG. The equilibrium constant (Keq) of the acid-base reaction
can be obtained using the following equations: (see [18,21]).

pKeq = pKa (EG) − pKa ([TBAEH]+) = 4.0. (1)

Keq = 1.0 × 10−4 (2)
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In the second step, the anion HO-CH2-CH2-O− reacted with CO2 to form the carbonate species.
It is reasonable to anticipate that the proton of the OH group of TBAE can transfer to the

amino group by forming zwitterionic species (CH3)3-C-N+(H2)-CH2-CH2-O− in TBAE-EG absorbent,
which may react with CO2 to form zwitterionic carbonates. However, NMR results did not show
any signals of zwitterionic carbonates, suggesting that the reaction pathway forming zwitterionic
carbonates was not preferable in the TBAE-EG system. In order to further confirm the reaction between
CO2 and EG, we studied the reaction between CO2 and a nonaqueous solvent consisting of superbase
1,5-diazabicyclo [5.4.0]-5-undecene (DBU) and EG. As reported in the literature, CO2 reacted with the
-OH group of alcohol when CO2 was absorbed by the DBU–alcohol mixtures [22]. The 1H and 13C
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NMR spectra of DBU solution (30 wt%) in EG before and after CO2 absorption were shown in Figure S1.
There were two new peaks at 3.15 and 3.39 ppm in the 1H NMR spectra of DBU-EG after absorption
(Figure S1a). Three new peaks appeared at 60.0 (C-1), 65.8 (C-2) and 157.9 (C-3) ppm in the 13C NMR
after absorption (Figure S1b). These new peaks in the DBU-EG-CO2 system were consistent with those
in the TBAE-EG-CO2 system, suggesting that CO2 reacted with EG. These results again suggested that
the CO2 absorption mechanism of TBAE-EG presented in this work was understandable.

The desorption of CO2 was also investigated. CO2 captured by TBAE-EG can be desorbed at
80 ◦C and the results were characterized by NMR and FTIR. As shown in the 1H and 13C NMR spectra
of TBAE-EG after CO2 desorption (Figure S2), the peaks of carbonate anions cannot be observed,
suggesting CO2 was released after heating. The asymmetric and symmetric carbonyl stretching
frequencies clearly disappeared in the FTIR spectra (Figure S3) after CO2 desorption, indicating again
the reaction between CO2 and TBAE-EG was reversible. The results reported by Im and co-authors [18]
also showed the good reversibility of TBAE-EG solvent for CO2 capture.

3. Conclusions

The results indicated that CO2 reacted with -OH group of EG in nonaqueous solvent consisting of
TBAE and EG rather than reacting with -OH group of TBAE when CO2 was captured by the mixture
consisting of TBAE and EG. We believe the confirmation of the absorption mechanism is very important
to the design of new nonaqueous absorption systems in the future.

4. Experimental Sections

4.1. Materials and Characterization

TBAE (98%) and EG (99.5%) were purchased from J&K Scientific Ltd (Beijing, China).
CO2 (≥99.99%) and N2 (≥99.99%) was supplied by Beijing ZG Special Gases Sci. and Tech. Co. Ltd
(Beijing, China). DBU (98%) was obtained from Alfa Aesar (Shanghai, China).

The FTIR spectra were recorded on a PerkinElmer Frontier spectrometer (PerkinElmer Corp.,
Waltham, MA, USA). 1H NMR (600 MHz) and 13C NMR (151 MHz) data were obtained from a Bruker
spectrometer (Bruker Biospin, Karlsruhe, Germany) and DMSO-d6 was used as the external reference.
The NMR spectrometer was equipped with a 5 mm PABBO probe. The experiment temperature was
25 ◦C. For the 1H NMR experiment, the relaxation delay was 1.0 s, and the acquisition time was 2.75 s.
In the 13C NMR experiment, the relaxation delay was 2.0 s, and the acquisition time was 0.92 s. For the
HMBC experiment, the relaxation delay was 1.5 s, and the acquisition time was 0.18 s. For the HSQC
experiment, the relaxation delay was 1.5 s, and the acquisition time was 0.18 s.

4.2. Absorption of CO2

The method of CO2 absorption was similar to that reported by Im and co-authors. TBAE solution
(30 wt%) in EG (~2 g) was added into a glass tube with a diameter of 10 mm equipped with a rubber lid.
At first, the tube was partially placed into an oil bath at 100 ◦C and N2 (50 mL/min) was bubbled into
the solution through a needle for 10 min to remove any volatile compounds. Then, CO2 (50 mL/min)
was bubbled into the solution in the tube at 40 ◦C for 60 min, and the weight of the tube during
absorption was recorded using a balance (±0.1 mg).

Supplementary Materials: The following are available online. Figure S1: The 1H (a) and 13C NMR (b) spectra of
DBU-EG before and after CO2 absorption, Figure S2: The 1H (a) and 13C NMR (b) spectra of TBAE-EG after CO2
desorption, Figure S3: The FTIR spectra of TBAE-EG after CO2 desorption.
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have read and agreed to the published version of the manuscript.
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