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Abstract: Research advances in electropolishing, with respect to the field of metalworking,
have afforded significant improvements in the surface roughness and conductivity properties
of aluminum polished surfaces in ways that machine polishing and simple chemical polishing cannot.
The effects of a deep eutectic medium as an acid-free electrolyte were tested to determine the potential
energy thresholds during electropolishing treatments based upon temperature, experiment duration,
current, and voltage. Using voltammetry and chronoamperometry tests during electropolishing
to supplement representative recordings via atomic force microscopy (AFM), surface morphology
comparisons were performed regarding the electropolishing efficiency of phosphoric acid and
acid-free ionic liquid treatments for aluminum. This eco-friendly solution produced polished surfaces
superior to those surfaces treated with industry standard acid electrochemistry treatments of 1 M
phosphoric acid. The roughness average of the as-received sample became 6.11 times smoother,
improving from 159 nm to 26 nm when electropolished with the deep eutectic solvent. This result
was accompanied by a mass loss of 0.039 g and a 7.2 µm change in step height along the edge of the
electropolishing interface, whereas the acid treatment resulted in a slight improvement in surface
roughness, becoming 1.63 times smoother with an average post-electropolishing roughness of 97.7 nm,
yielding a mass loss of 0.0458 g and a step height of 8.1 µm.

Keywords: ionic liquid; electrochemical polishing; choline chloride; phosphoric acid; surface
characterization; atomic force microscopy

1. Introduction

Electrochemical polishing (electropolishing) is the controlled corrosion of metal surfaces [1–3].
The concept behind this mechanism of corroding metals with liquids is to yield a reduction in the
surface roughness of the polished metals [4,5]. Another major benefit of electropolishing over surface
buffing alternatives is the practical application of reducing surface roughness and impurities to nearly
negligible quantities on polished surfaces [6,7]. Currently, large quantities of surface-polished products
are being treated with hazardous chemical solutions [8–10]. Phosphoric and sulfuric acid mixtures
account for a plurality of these acid electropolishing treatments in pure metals and alloys [11,12].

The benefits of electrochemical polishing have gained notoriety, being determined to be an
ideal method for improving a metal’s optimum roughness while also greatly improving electrical
conductivity [6,7,12]. Many acid treatments currently utilized for electropolishing metal surfaces
provide an ideal mirror finish by removing the exposed surface layer of the sheet metal. However,
acid solutions provide this clean electropolished finish to the metal at the expense of hydrogen

Molecules 2020, 25, 5712; doi:10.3390/molecules25235712 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-1454-7421
http://dx.doi.org/10.3390/molecules25235712
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/23/5712?type=check_update&version=2


Molecules 2020, 25, 5712 2 of 8

contamination [4,9,12]. The removal of hydrogen contamination generally entails the use of
high-temperature treatments in excess of 800 ◦C for several hours in vacuo [13].

High-purity metal samples of aluminum were tested to determine the effectiveness of an industry
standard acid solution of 1 M phosphoric acid and an ionic liquid medium composed of ethylene
glycol and choline chloride mixed in a 2:1 molar ratio. Previous studies demonstrated the effectiveness
of various conformities of this ionic liquid with stainless steel and other alloys [1,5,10]. It was the aim
of this investigation to optimize the electrochemistry tests to produce a superior polish of this ionic
liquid and to weigh the benefits of this ionic liquid against an industry standard 1 M phosphoric acid
electropolishing treatment.

2. Results

The general mechanism of the electropolishing of metal surfaces in this study using the ionic
liquid deep eutectic solvent electrolyte is represented in Figure 1. The optimum conditions for the
steady electropolishing of aluminum metals with the ionic liquid were revealed to be 2 V for 900 s via
linear sweep voltammetry, as shown in Figure 2. Set to progress at a scan rate of 20 mVs−1 from 0 to
8 V, the effects of electropolishing became erratic and irreproducible beyond 4 V. A point of inflection
present at 0.098 A/cm2 in the linear sweep voltammogram indicated the optimum conditions for
chronoamperometry for ionic liquid treatments in aluminum samples with a current range of 0.092 to
0.11 A/cm2 (Figure 2A). Chronoamperograms of the high-purity aluminum samples were run during
the polishing process using phosphoric acid at an average current of 3.51 A/cm2 and at 1.08 A/cm2

with the ionic liquid eutectic (Figure 2B). Mass comparison of the original weight of aluminum prior to
electropolishing reported a difference of 0.039 g when compared with the post-polishing weight of
5.79 g for aluminum polished via the ionic liquid method (Table 1).
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Figure 1. Schematic conceptualization of anodic leveling of aluminum surfaces via atomic force
microscopy (AFM) at different phases of the study: (A) before electropolishing, and (B) after
electropolishing treatments with the ionic liquid, with representative 2D surface profiles depicted
(C) before, (D) during, and (E) after experiments.

Table 1. Average electropolishing rate (µg/s) calculations for each electrolyte for each metal sample
over a 900 s treatment.

Medium Mass Before (g) Mass After (g) Mass Differential (g) Surface Degradation Rate (µg/s)

Deep Eutectic 5.83 5.79 0.039 43.77
Phosphoric Acid 5.85 5.80 0.045 50.88
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Figure 2. Linear sweep voltammograms (A) for both polishing agents with aluminum samples stepped
from 0 to 4 V at a constant scan rate of 20 mVs−1. The dashed line indicates the ideal voltage utilized
for chronoamperometry. (B) Chronoamperometry for phosphoric acid (3.51 A/cm2) and the ionic liquid
eutectic (1.08 A/cm2) with high-purity aluminum samples.

Prior to electropolishing, the aluminum measured a root mean square roughness average
of 159 ± 9 nm, while after polishing treatments with the ethylene glycol and choline chloride
solution yielded a roughness of 26 ± 2 nm via atomic force microscopy (AFM) (Table 2, Figure 3).
The relative smoothing efficiency with the ionic liquid revealed a roughness difference of 132 nm for
aluminum acid-free polishing for an overall electropolishing efficiency of 83.2% (Table 2). Step height
measurements disclosed the division between the polished and unpolished regions to be comparable
with a weight difference of 7.2 µm (Table 3).

Table 2. Roughness average (Ra) in nm for each metal post and prior to treatment with the respective
solutions noted at 70 ◦C for 900 s. Calculated differences determined % smoothing efficiency (SE) for
each sample.

Medium Ra Before (nm) Ra After (nm) Ra Difference (nm) % Ra SE *

Deep Eutectic Solvent 159.3 26.6 132.6 83.2
Phosphoric Acid 159.1 97.7 61.3 38.5

* All Smoothing Efficiency measurements reported as a %.
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Table 3. Average recorded step heights in µm for each metal after treatment with the respective
electrolytes at 70 ◦C for 900 s.

Medium Step Height (µm)

Deep Eutectic Solvent 7.2
Phosphoric Acid 8.1

Phosphoric acid polishing treatments for the aluminum samples demonstrated a peak value of
0.286 A/cm2 at 1 V with a local minimum of 0.23 A/cm2 immediately following at 1.5 V according to the
linear sweep voltammetry analysis (Figure 2A). This yielded a current range of 0.23 to 0.25 A/cm2 for
chronoamperometry (Figure 2B) as the linear sweep progressed from 0 to 8 V at a scan rate of 20 mVs−1

(Figure 2). Upon completion of this cursory scan, the optimum conditions for chronoamperometry
could be ascertained to be similar to those for the ionic liquid (at 2 V), while the current density range
was greater for the acid treatments. With a composite mass of 5.85 g prior to electrochemical treatment,
a mass loss of 0.045 g was calculated (p < 0.001; 3.405 × 10−6) after the post-electropolishing weight
yielded a mass of 5.80 g (Table 1).

Post-treatment roughness measurements reported a root mean square roughness of 97 ± 6 nm
(Figure 4), indicating that a low smoothing efficiency rating of 38.5% was achieved (Table 3).
Upon comparative observation between aluminum 3D topography and AFM roughness statistics,
a focused smoothness of 6 nm was achieved for a region 1/16th of the 10 × 10 µm region sampled
via AFM (Figure 4). This revealed that the overall smoothness of the sample was marred by
intermittent peaks and the bubbling that often occurs with pitting at low current densities during
electropolishing. A representative example contrasted the two aluminum samples shown in the AFM
console view, where additional evidence of this bubbling greatly affected electropolishing efficiency
when surface roughness was concerned (Figure 5). Step height measurement indicated that phosphoric
acid electropolishing etched an average of 8.1 µm of aluminum from the surfaces of the treated
samples (Table 3).Molecules 2020, 25, x FOR PEER REVIEW 5 of 8 
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Figure 4. Atomic force microscopy of aluminum post-electropolishing with phosphoric acid in (A) 2D
and (B) 3D—recording an average roughness of 97 ± 6 nm by utilizing the root mean square method
for calculation. A 10 × 10 µm recording region was utilized.
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and (B) 1 M phosphoric acid, both on a 20 µm scale.

3. Discussion

The phosphoric acid-facilitated aluminum polishing produced an electropolishing rate of 50.8 µg/s,
which is a notably faster rate of electropolishing than the ionic liquid rate of 43.7µg/s (Table 1). While this
evidence appears favorable for the acid-polishing electrolyte, surface roughness—the primary purpose
of electropolishing—was not nearly as effective for phosphoric acid, which produced an aluminum
metal roughness of 97 ± 6 nm after electropolishing (Figure 4). This was calculated to an average
difference of 61 nm etched from working electrode surfaces (Table 2). Step height measurements
revealed that an average of 8.1 µm of aluminum material was etched away from the working electrode
surface during electropolishing procedures with phosphoric acid (Table 3). When contrasted with the
smaller figure of 7.2µm returned from the ionic liquid electrolyte treatments (Table 3), it became apparent
that treatments with phosphoric acid on aluminum were indeed more efficient at etching based on
experiment duration and the calculated electropolishing rates from Table 1. The aluminum treatments
with choline chloride and ethylene glycol had an electropolishing rate of 43.7 µg/s, whereas the
phosphoric acid treatments had the superior rate of 50.8 µg/s (Table 2) [14].

This faster rate of polishing comes with the caveat of a poor surface polish in terms of overall
roughness [15]. With the ionic liquid treatment of aluminum demonstrating a visibly superior
roughness, with an average roughness of 26 ± 2 nm (Figure 3), when compared to the roughness of
97 ± 6 nm for phosphoric acid treatments (Figure 4), the roughness average for the acid solution has
a faster polishing rate at the detriment of surface polishing efficiency (Table 2). As this smoothing
efficiency is the desired design for electropolishing, the acid solution is clearly less capable than the
ionic liquid mixture for creating a smooth surface (Figure 5) [14,16].

For the 900 s experiment duration, a chemical reaction occured at the anode immersed in the ionic
liquid due to the oxidation of Al and the formation of AlCl3 (Equation (1)).

Al→ 3e− + Al3+ 3Cl−
→ AlCl3 (1)

We observed the presence of trimethylamine, ethanol, ethylene glycol, and other products, with the
incidence of trimethylamine being accounted for by Hoffman elimination of the choline base as choline
hydroxide (Equation (2)):

(CH3)3NCH2CH2OH + −OH→ N(CH3)3 + H2O + HOCH2 = CH2 ↔ O = CH2CH3 (2)

The reduction reaction at the cathode (counter electrode) involves the decomposition of choline
by formation of a choline radical via the acceptance of an electron:

(CH3)3NCH2CH2OH +e−
→ [(CH3)3NCH2CH2OH] →N(CH3)3 + CH2CH2OH (3)
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Thus, the transient choline radical, depicted in parentheses (Equation (3)), results from the
addition of an electron from the anode at the cathode, and quickly decomposes into trimethylamine [2].
A review of the literature also indicates that the residual pitting on the surface of the metal not only
affects surface reflectivity, but is also likely to affect conductivity due to increased surface area [12,17].
The plentiful abrasions and bumps generated during the electropolishing procedure (clearly visible in
the AFM imagery) are a result of bubbles that formed on the metal’s surface during electropolishing.
With significant proportions of the metal surface being deteriorated per second, the bubbling that
occurs at the cathode can often leave these marks as they pop on the metal’s surface, sometimes marring
the newly treated surface (Figure 5B) [12,18].

This exchange is heavily recorded in the electropolishing literature, and hydrogen evolution at the
cathode (counter electrode) is a potential driver for this type of pitting. The bubbles tended to form at
points in the range when low current densities occurred in the electropolishing procedure. This tended
to happen towards the end of the trial, when most of the originally protruding surfaces to be polished
had been removed [19]. When this occurred, the associated chronoamperogram reported a slow and
steady decline, as the remaining surface area available to be electropolished slowly decreased at the
rate recorded in Table 1.

Pitting tended to occur at low current densities, or when the current applied through the 2 cm2

exposed surface of the metal was flowing over a decreasing surface area as the sample was being
polished. This pitting is relatively inevitable, as the objective of electropolishing is to always have less
surface area than prior to treatment [17]. We expect that this decreased surface area will result in an
overall smoother surface. For this to occur, however, the protruding peaks must electropolish at a faster
rate than the average surface upon which the roughness average calculation is based, while polishing
significantly faster than any recesses in the working electrode surface. Provided that all of these
interactions occur appropriately at the metal’s surface and at the proper prescribed rates, an efficient
electropolishing treatment can be achieved [19].

4. Materials and Methods

Electrochemical tests made use of an industry standard 1 M phosphoric acid mixture for acid
treatments. Acid-free treatments were carried out using an ionic liquid composed of choline chloride
(Acros Organics 99%, Pittsburgh, PA, USA) and ethylene glycol (Sigma-Aldrich 99.8%, St. Louis,
MO, USA); both chemicals were used as received. The ionic liquid mixture was created by stirring the
two components together at a component ratio of 2 ethylene glycol: 1 choline chloride at 70 ◦C until a
homogeneous colorless liquid emerged. This ionic liquid’s effects on electropolishing the metal surfaces
of interest were analyzed using the necessary machines. Voltammetry and chronoamperometry
tests were conducted using a Gamry PCI4-G750 potentiostat (Gamry Instruments, Warminster,
PA, USA) and controlled using the accompanying framework and e-chem Analyst (v. 5.5) software
(Gamry Instruments, Warminster, PA, USA).

The electropolishing procedure made use of a platinum cathode (counter electrode) plate with
a silver wire reference for the experimental setup. Both electrodes were degreased using deionized
water and acetone to preserve the purity of samples during testing. The working electrode was
abraded with 150 grit glass paper, rinsed, and dried prior to each recorded measurement to ensure
reproducible voltammetric effects. Electrochemical measurements were performed at 70 ◦C with a
constant scan rate of 20 mVs−1 used in voltammetric experiments. Surface analysis was carried out
using a Dimension 3100 Nanoscope IV Scanning Probe Microscope, by Bruker Scientific Instruments
(Billerica, MA, USA) manufactured by Digital Instruments with software version 6.12 in tapping mode.
Step height measurements were recorded in µm via the Alpha Step 200 by Tencor Instruments (Milpitas,
CA, USA). A KH-1300 HIROX digital microscope (Tokyo, Japan) was utilized for optical comparison
to produce representative images scaled to 1600 × 1200 pixels. After completion of each experiment,
weight was recorded for calculations of mass loss due to electrochemical etching.
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Samples of high-purity aluminum (99.98%) were bored from supplied sheets (3 mm thickness) and
labeled for use. In each test, samples of each respective metal were taped with polyimide film tape to
restrict electrochemical activity to polish a 1 cm2 region on both the front and back faces of each metal
sample. This resulted in a 2 cm2 region of polishing for each sample when calculating current density.
Metal samples were then immersed in the electropolishing solution of choice, such that the regions for
polishing were completely immersed. Aluminum samples were submitted to a cursory linear sweep
voltammetry test to determine optimum voltage conditions to set for running chronoamperometry
over a 900 s polishing sequence. Aluminum samples were tested with both the 1 M phosphoric acid
and acid-free electropolishing solutions, upon which resulting data were managed via spreadsheet.

5. Conclusions

It was determined that the phosphoric acid electrolyte mixture etched at a faster rate than the ionic
liquid electropolishing treatments. This distinction is likely to be the reason that the global industry has
made it and other acid solutions the standard for electropolishing. The disadvantage of this fast rate of
polishing is that this acid-based method of electropolishing facilitates extensive hydrogen evolution at
the working metal cathode (counter electrode), causing pitting at low current densities, or bubbling
that ultimately mars the treated surfaces of acid-polished samples. The occurrence of overpotentials
causes the roughness of samples to yield more favorable results in terms of average roughness with the
utilization of the deep eutectic medium composed of ethylene glycol and choline chloride as compared
to the acid treatment components.

Regarding replacement of the industry standard 1 M phosphoric acid mixture, it is likely that
the ionic liquid mixture could replace phosphoric acid as an efficient electrolyte for polishing, on the
grounds that smoother surfaces are generated. The ionic liquid mixture provides the added benefits
of recyclability without the loss of electropolishing efficiency to the nonhazardous components of
which the chemical is composed. Thus, it represents an ecologically friendly supplement for the
electropolishing of aluminum metals.
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