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Abstract: The regioselective synthesis of cis and trans stereoisomers of variously functionalized
octahydro[1,2,4]triazolo[4,3-a]quinazolin-5-ones was performed. The 2-thioxopyrimidin-4-ones used in
the synthesis reacted with hydrazonoyl chlorides in a regioselective manner to produce the angular
regioisomers [1,2,4]triazolo[4,3-a]quinazolin-5-ones rather than the linear isomers [1,2,4]triazolo[4,3-a]
quinazolin-5-ones. The synthesis process took place with electronic control. The angular regiochemistry
of the products was confirmed by X-ray experiments and two-dimensional NMR studies.

Keywords: regioselective reactions; hydrazonoyl chlorides; 2-thioxopyrimidin-4-ones; [1,2,4]triazolo
[4,3-a]quinazolin-5-ones

1. Introduction

The [1,2,4]triazolo[4,3-a]pyrimidinone scaffold has been known to exhibit a wide range of
pharmacological activities such as antitumor, anti-inflammatory, antimicrobial, and antifungal activity,
as well as macrophage activation [1–9].

A reaction between hydrazonoyl chlorides decorated with different functionalities [10–12] and
2-thioxopyrimidin-4-ones is an efficient strategy for incorporating the [1,2,4]triazolo moiety into
[1,2,4]triazolo[4,3-a]pyrimidinones [13,14].

Recently, we reported that 2-thioxopyrimidin-4-one constructed on the norbornene skeleton
gave an angular regioisomer ([1,2,4]triazolo[4,3-a]pyrimidin-7(1H)-one), functionalized with various
hydrazonoyl chlorides, as the sole product of the reaction [15]. This was in contrast to findings observed
previously, where [1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one, the linear regioisomer, was the sole product
of the reaction [16–21].

Herein, we report the extension of our research for the regioselective synthesis of novel
cis- and trans-octahydro[1,2,4]triazolo[4,3-a]quinazolin-5-ones 4a–g and 5a–g via the reaction of
cyclohexane-fused cis- or trans-2-thioxopyrimidin-4-ones 1 and 2 with hydrazonoyl chlorides 3a–g,
taking place under electronic control. Moreover, X-ray and two-dimensional NMR studies were used
to prove the stereochemistry of the products.
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2. Results and Discussion

Cyclohexane-fused cis- and trans-2-thioxopyrimidin-4-one 1 and 2 were prepared according to
previously described procedures [22]. The thioxopyrimidinone derivatives 1 or 2 thus prepared were
reacted with the hydrazonoyl chlorides 3a–g bearing varied functionalities in dioxane in the presence
of triethylamine as a base under reflux conditions (Scheme 1). According to the reaction mechanism
depicted in Scheme 2, the angular regioisomers [1,2,4]triazolo[4,3-a]quinazolin-5(3H)-one 4a–g and
5a–g and linear regioisomers [1,2,4]triazolo[4,3-a]quinazolin-5(3H)-one 6a–g and 7a–g were expected
to be formed. The outcome of the reactions depends on the involvement of the tautomeric structures I
or II of the cyclohexane-fused 2-thioxopyrimidin-4-ones 1 and 2. The reactions proceeded through
S-alkylation [17–21] to give S-alkylated products A followed by Smiles rearrangement [23], affording
intermediates B, which cyclized in situ under the employed reaction conditions via the elimination of
hydrogen sulfide gas to give the desired products 4a–g and 5a–g [20]. As evidenced by TLC and NMR
spectroscopy, the transformations took place in a regioselective manner, producing the corresponding
angular regioisomers as the sole products.
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Scheme 2. Proposed reaction pathways to form angular and linear regioisomers.

The steric structure of the angular regioisomers was evidenced with information acquired through
various instrumental techniques, namely, 1H-NMR, 13C-NMR, and two-dimensional NMR including
NOESY (neighboring Overhauser effect spectroscopy correlation), HMBC (heteronuclear multiple



Molecules 2020, 25, 5673 3 of 8

bond correlation), and X-ray crystallographic analysis. The 1H-NMR spectra of the products formed
by the hydrazonoyl chloride ethyl esters 3a–f show a more multiplicated signal pattern corresponding
to the CH2 moiety of the ester functional group (Supplementary Materials), which suggests the steric
proximity of the ester group and the cyclohexane skeleton. Moreover, the NOESY spectra exhibit
a mutual correlation between the hydrogens of CH2 and cyclohexane. In addition, the HMBC spectra
show a mutual correlation between H-9a and C-1, which are separated by three bonds in the angular
regioisomers. However, this correlation cannot exist in the linear regioisomers, because the C-3 and
H-9a atoms are separated by five bonds (Figure 1a). Last but not least, the 13C-NMR spectra reveal
the signal of the carbonyl carbon of the pyrimidinone ring residue at nearly 176 ppm. These chemical
shift values are similar to those of annelated pyrimidinones of type A rather than those of type B
(Figure 1b) [24]. Finally, the X-ray crystallographic analysis of 5b provided conclusive evidence for
the angular regiochemistry of the products (Figure 2).
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On the basis of the above evidence, the angular structures 4a–g and 5a–g were assigned for
the products, and, consequently, the linear structures 6a–g and 7a–g could be rejected.
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The regioselectivity of these reactions delivering the angular regioisomers was ascribed to
electronic factors rather than steric factors. That is, since the tautomeric form I is electronically and
energetically predominant, the reaction proceeds through tautomeric form I and leads to the formation
of the angular regioisomer (Scheme 2).

3. Materials and Methods

3.1. General Methods

NMR analyses were performed at 500.20 MHz for 1H-NMR and at 125.62 MHz for 13C-NMR
in CDCl3 at room temperature, using a Bruker AV NEO Ascend 500 spectrometer (Bruker Biospin,
Karlsruhe, Germany) with a Double Resonance Broad Band Probe (BBO). Tetramethylsilane (TMS)
was used as an internal standard. The reactions were monitored by thin-layer chromatography (TLC)
using aluminum sheets coated with silica gel (POLYGRAM®SIL G/UV254, Merck, Kenilworth, NJ,
USA). The TLC plates were visualized under UV light. The melting points were measured using
a Hinotek-X4 micro melting point apparatus (Hinotek, Ningbo, China).

The cyclohexane-fused cis- and trans-2-thioxopyrimidin-4-ones 1 and 2 were prepared from
the corresponding amino esters according to reported procedures [25–27]. The hydrazonoyl chlorides
2a–h were synthesized according to procedures reported previously [27,28].

X-ray diffraction data were collected on a Rigaku Oxford Diffraction Supernova diffractometer
using Cu Kα radiation, measured at a temperature of 120 K using a crystal of 5b immersed in
cryo-oil and mounted in a loop. The CrysAlisPro [29] software package was used for cell refinement
and data reduction. An analytical absorption correction (CrysAlisPro) was applied to the intensities
before structure solution. The structure was solved by an intrinsic phasing method (SHELXT [30,31]).
Structural refinement was carried out using the SHELXL [30] software with the SHELXLE [31] graphical
user interface. Hydrogen atoms were positioned geometrically and constrained to ride on their parent
atoms, with C–H = 0.95–1.00 Å and Uiso = 1.2–1.5·Ueq (parent atom). The crystallographic details are
summarized in Table S1.

3.2. Synthesis of Cis- and Trans-[1,2,4]triazolo[4,3-a]quinazolin-5(3H)-one 4a–g and 5a–g

A mixture of 0.5 mmol of cyclohexane-fused 2-thioxopyrimidin-4-one 1 or 2 and 0.5 mmol of
hydrazonoyl chloride (3a–g) in dioxane (10 mL) was treated at reflux temperature in the presence of
100 µL of triethylamine (TEA) for 5–7 h. The reactions were monitored by TLC (n-hexane/EtOAC = 1:1
as the eluent) until completion. After solvent evaporation under reduced pressure, the residue was
dissolved in CHCl3 (20 mL), followed by extraction with water (3 × 10 mL). The CHCl3 solution was
dried on Na2SO4, the solvent was evaporated, and the residue was purified by column chromatography
using n-hexane/EtOAC = 1:1 as the eluent.

(5aR*,9aS*)-Ethyl 5-oxo-3-phenyl-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-
carboxylate (4a): 69%, m.p. 223–225 ◦C 1H NMR (500 MHz, CDCl3) δ = 8.09 (d, J = 7.7, 2H), 7.45
(t, J = 8.0, 2H), 7.33 (t, J = 7.4, 1H), 5.08–4.98 (m, 1H, H-4a), 4.58–4.45 (m, 2H, CH2CH3), 2.92 (d, J = 4.2,
1H), 2.68 (d, J = 12.5, 1H), 2.03 (d, J = 9.5, 1H), 1.86 (d, J = 10.9, 1H), 1.47 (t, J = 7.1, 3H, CH2CH3),
1.51–1.41 (m, 5H). 13C NMR (126 MHz, CDCl3) δ = 176.0(C=O), 156.3 (C=O), 153.2(C), 136.85(C),
136.3(C), 129.1(CH), 127.8(CH), 121.8(CH), 63.3(OCH2), 55.4(CH), 55.2(CH), 38.2(CH2), 28.8(CH2),
24.7(CH2), 24.6(CH2), 21.22(CH), 14.29, 14.1(CH3).

(5aR*,9aS*)-Ethyl 5-oxo-3-(p-tolyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-
carboxylate (4b): 62%, m.p. 263–264 ◦C. 1H NMR (500 MHz, CDCl3) δ = 7.94 (d, J = 8.5, 2H), 7.24
(d, J = 8.3, 2H), 5.10–4.95 (m, 1H, H-4a), 4.52 (pd, J = 7.6, 3.6, 1H, CH2CH3), 2.91 (d, J = 5.5, 1H,
H-8a), 2.68 (d, J = 12.2, 1H), 2.37 (s, 3H, p-tolyl), 2.03 (d, J = 12.1, 1H), 1.86 (d, J = 11.1, 1H), 1.47
(t, J = 7.1, 3H, CH2CH3). 1.62–1.4 (m, 4H). 13C NMR (126 MHz, CDCl3) δ = 176.1(C=O), 156.4(C=O),
153.1(C), 137.9(C), 136.6(C), 133.9(C), 129.7(CH), 121.7(CH), 63.3(OCH2), 55.3(CH), 38.1(CH), 28.8(CH2),
24.7(CH2), 24.6(CH2), 21.3 (CH2), 21.11(CH3, p-tolyl), 14.13(CH2CH3).
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(5aR*,9aS*)-Ethyl 5-oxo-3-(4-nitrophenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-
carboxylate (4c): 61%, m.p. 262–265 ◦C. 1H NMR (500 MHz, CDCl3) δ = 8.51 (d, J = 9.3, 2H), 8.33
(d, J = 12.2, 2H), 5.07 (ddd, J = 11.3, 6.5, 4.4, 1H), 4.60–4.49 (m, 2H, CH2CH3), 2.95 (d, J = 6.0, 1H), 2.68
(d, J = 8.0, 1H), 2.05 (d, J = 12.5, 1H), 1.88 (d, J = 10.2, 1H), 1.50 (t, J = 7.1, 3H, CH2CH3), 1.63–1.43
(m, 5H). 13C NMR (126 MHz, CDCl3) δ = 176.0(C=O), 156.0(C=O), 155.6(C), 146.0(C), 141.4(C), 137.6(C),
124.8(CH), 121.2(CH), 77.3(OCH2), 77.0(CH), 76.8(CH), 63.7(CH2), 55.5(CH), 38.2(CH), 28.8(CH2),
24.6(CH2), 24.5(CH2), 21.1(CH2), 14.11(CH3).

(5aR*,9aS*)-Ethyl 5-oxo-3-(4-methoxyphenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-
1-carboxylate (4d): 69%, m.p. 215–216 ◦C. 1H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 9.1 Hz, 2H), 6.96
(d, J = 9.1 Hz, 2H), 5.15–4.92 (m, 1H), 4.67–4.39 (m, 2H, CH2CH3), 3.83 (s, 3H), 2.93 (d, J = 5.7 Hz, 1H),
2.68 (d, J = 12.2 Hz, 1H), 2.03 (d, J = 12.5 Hz, 1H), 1.86 (d, J = 12.5 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H,
CH2CH3). 1.62–1.4 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 175.9(C=O), 159.1(C=O), 156.3(C), 152.9(C),
136.6(C), 129.2(C), 123.7(CH), 114.3(CH), 63.3(OCH2), 55.6(OCH3), 55.4(CH), 38.2(CH), 28.8(CH2),
24.7(CH2), 24.62, 2(CH2).25, 1(CH2).14.1(CH3).

(5aR*,9aS*)-Ethyl 5-oxo-3-(4-chlorophenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-
1-carboxylate (4e): 68%, m.p. 239–241 ◦C. 1H NMR (500 MHz, CDCl3) δ = 8.12 (d, J = 9.0, 2H), 7.42
(d, J = 9.1, 2H), 5.04 (ddd, J = 11.3, 6.5, 4.4, 1H), 4.62–4.45 (m, 2H,CH2CH3), 2.92 (d, J = 6.0, 1H), 2.68
(d, J = 7.5, 1H), 2.03 (d, J = 12.4, 1H), 1.86 (d, J = 10.3, 1H), 1.48 (t, J = 7.1, 3H, CH2CH3), 1.69–1.41
(m, 5H). 13C NMR (126 MHz, CDCl3) δ = 176.0(C=O), 156.2(C=O), 153.1(C), 136.9(C), 134.9(C), 133.4(C),
129.3(CH), 122.7(CH), 63.5(OCH2), 55.4(CH), 38.1(CH), 28.8(CH2), 24.6(CH2), 24.6(CH2), 21.2(CH2),
14.1(CH3).

(5aR*,9aS*)-Ethyl 5-oxo-3-(4-(trifluoromethyl)phenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]
quinazoline-1-carboxylate (4f): 62%, m.p. 202–206 ◦C. 1H NMR (500 MHz, CDCl3) δ= 8.56 (dd, J = 8.3, 3.0,
1H), 8.27 (s, 1H), 7.62–7.58 (m, 2H), 5.20–4.89 (m, 1H), 4.66–4.39 (m, 2H, CH2CH3), 2.94 (d, J = 3.8, 1H),
2.68 (d, J = 9.9, 1H), 2.05 (dd, J = 8.7, 3.7, 1H), 1.87 (d, J = 10.2, 1H), 1.74 (s, 1H), 1.50 (t, J = 7.1,
3H, CH2CH3), 1.61–1.41 (m, 4H). 13C NMR (126 MHz, CDCl3) δ = 176.02 (C=O), 156.16(C=O),
153.38(C), 137.2(C), 136.84(C), 131.7(q, J = 38 Hz, CCF3), 129.9(CH), 124.3(q, J = 3.5 Hz, CHCCF3),
123.5(q, J = 273 Hz, CF3), 118.2(q, J = 4 Hz, CHCCF3), 63.6(OCH2), 55.4(CH), 38.2(CH), 28.8(CH2),
24.6(CH2), 24.6(CH2), 21.2(CH2), 14.1(CH3).

(5aR*,9aS*)-1-Acetyl-3-(p-tolyl)-5a,6,7,8,9,9a-hexahydro[1,2,4]triazolo[4,3-a]quinazoline-5(3H)-one (4g):
66%, m.p. 196–198 ◦C. 1H NMR (500 MHz, CDCl3) δ = 7.96 (d, J = 8.5, 2H), 7.27 (d, J = 7.0, 2H), 5.13–5.00
(m, 1H), 2.92 (d, J = 2.3, 1H), 2.69 (s, 3H, COCH3), 2.66 (d, J = 7.7, 1H), 2.39 (s, 3H, CH3, p-tolyl), 1.98
(d, J = 12.3, 1H), 183 (br, 2H), 1.62–1.45 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 188.1(C=O), 176.0(C=O),
153.6(C), 141.4(C), 138.1(C), 133.9(C), 129.8(CH), 121.6(CH), 55.0(CH), 38.2(CH2), 28.6(COCH3), 26.5,
24.6(CH2), 24.5(CH2), 21.3(CH2), 21.1(CH3, p-tolyl).

(5aR*,9aR*)-Ethyl 5-oxo-3-phenyl-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-carboxylate
(5a): 65%, m.p. 203–206 ◦C. 1H NMR (500 MHz, CDCl3) δ 8.04 (d, J = 7.6 Hz, 2H), 7.48–7.41 (m, 2H),
7.33 (t, J = 7.4 Hz, 1H), 4.58–4.44 (m, 2H, CH2CH3), 4.08–3.97 (m, 1H), 2.82 (d, J = 7.5 Hz, 1H), 2.50
(d, J = 13.0 Hz, 1H), 2.30–2.21 (m, 2H), 1.94 (t, J = 9.2 Hz, 1H), 1.46 (t, J = 7.1 Hz, 3H, CH2CH3), 1.54–1.35
(m. 4H). 13C NMR (126 MHz, CDCl3) δ 176.7(C=O), 157.5(C=O), 153.3(C), 138.9(C), 136.2(C), 129.1(CH),
127.7(CH), 121.7(CH), 63.8(OCH2), 58.2(CH), 43.4(CH), 31.2(CH2), 25.4(CH2), 25.0(CH2), 24.2(CH2),
14.0. (CH3).

(5aR*,9aR*)-Ethyl 5-oxo-3-(p-tolyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-carboxylate
(5b): 67%, m.p. 213–214 ◦C 1H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.2 Hz,
2H), 4.71–4.35 (m, 2H, CH2CH3), 4.17–3.87 (m, 1H), 2.82 (d, J = 7.4 Hz, 1H), 2.50 (d, J = 10.5 Hz, 1H),
2.37 (s, 3H), 2.32–2.19 (m, 1H), 1.93 (t, J = 7.3 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H, CH2CH3). 1.47–1.132
(m, 4H). 13C NMR (126 MHz, CDCl3) δ 176.7(C=O), 157.5(C=O), 153.2(C), 138.7(C), 137.8(C), 133.8(C),
129.7(CH), 121.7(CH), 63.7(CH2), 58.2(CH), 43.4(CH), 31.2(CH2), 25.4(CH2), 25.1(CH2), 24.2(CH2),
21.1(CH3, p-tolyl), 14.0(CH3).
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(5aR*,9aR*)-Ethyl 5-oxo-3-(4-nitrophenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-1-
carboxylate (5c): 71%, m.p. 255–258 ◦C. 1H NMR (500 MHz, CDCl3) δ 8.47–8.42 (m, 2H), 8.34–8.27
(m, 2H), 4.54 (qq, J = 10.8, 7.2 Hz, 2H, CH2CH3), 4.14–3.97 (m, 1H), 2.90–2.70 (m, 1H), 2.50 (dd, J = 17.3,
6.6 Hz, 1H), 2.33–2.20 (m, 1H), 1.96 (dd, J = 11.5, 6.0 Hz, 2H), 1.49 (t, J = 7.2 Hz, 3H, CH2CH3), 1.56–1.34
(m, 4H). 13C NMR (126 MHz, CDCl3) δ 176.5(C=O), 157.2(C=O), 153.5(C), 145.9(C), 141.3(C), 139.7(C),
124.8(CH), 121.0(CH), 64.1(OCH2), 58.2(CH), 43.3(CH), 31.1(CH2), 25.3(CH2), 24.9(CH2), 24.1(CH2),
14.0(CH3).

(5aR*,9aR*)-Ethyl 5-oxo-3-(4-methoxyphenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-
1-carboxylate (5d): 69%, m.p. 204–206 ◦C 1H NMR (500 MHz, CDCl3) δ 7.92–7.85 (m, 2H), 6.99–6.91
(m, 2H), 4.58–4.41 (m, 2H, CH2CH3), 4.06–3.98 (m, 1H), 3.83 (s, 3H), 2.83 (dt, J = 15.4, 7.6 Hz, 1H),
2.51 (d, J = 12.8 Hz, 1H), 2.28–2.20 (m, 1H), 1.93 (t, J = 7.9 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H, CH2CH3),
1.53–1.25 (m,4H). 13C NMR (126 MHz, CDCl3) δ 176.7(C=O), 159.0(C=O), 157.5(C), 153.1(C), 138.7(C),
129.3(C), 123.6(CH), 114.3(CH), 63.7(OCH2), 58.3(CH), 55.6(CH), 43.4(OCH3), 31.2(CH2), 25.4(CH2),
25.1(CH2), 24.2(CH2), 14.0(CH3).

(5aR*,9aR*)-Ethyl 5-oxo-3-(4-chlorophenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]quinazoline-
1-carboxylate (5e): 68%, m.p. 240–245 ◦C. 1H NMR (500 MHz, CDCl3) δ 8.07 (d, J = 8.9 Hz, 2H), 7.41
(d, J = 8.9 Hz, 2H), 4.51 (qq, J = 10.8, 7.1 Hz, 2H, CH2CH3), 4.06–3.95 (m, 1H), 2.79 (d, J = 7.7 Hz, 1H),
2.49 (d, J = 12.5 Hz, 1H), 2.25 (t, J = 12.2 Hz, 1H), 1.94 (t, J = 8.7 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H, CH2CH3),
1.53–1.26 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 176.4(C=O), 157.4(C=O), 153.2(C), 139.0(C), 134.9(C),
133.2(C), 129.2(CH), 122.6(CH), 63.8(OCH2), 58.3(CH), 43.4(CH), 31.2(CH2), 25.4(CH2), 25.0(CH2),
24.2(CH2), 14.0(CH3).

(5aR*,9aR*)-Ethyl 5-oxo-3-(4-(trifluoromethyl)phenyl)-3,5,5a,6,7,8,9,9a-octahydro-[1,2,4]triazolo[4,3-a]
quinazoline-1-carboxylate (5f): 70%, m.p. 173–175 ◦C. 1H NMR (500 MHz, CDCl3) δ 8.60–8.42 (m, 1H), 8.22
(d, J = 0.6 Hz, 1H), 7.66–7.50 (m, 2H), 4.60–4.36 (m, 2H, CH2CH3), 4.13–3.93 (m, 1H). 2.80 (d, J = 8.0 Hz,
1H), 2.50 (d, J = 13.0 Hz, 1H), 2.34–2.19 (m, 1H), 1.95 (t, J = 8.4 Hz, 2H), 1.48 (t, J = 7.2 Hz, 3H, CH2CH3),
1.55–1.23 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 176.6(C=O), 157.3(C=O), 153.4(C), 139.3(C), 136.8(C),
131.7 (q, J = 33 Hz, C-CF3), 129.9, 124.8, 124.1 (q, J = 3.6 Hz, CHCCF3), 123.4 (q, J = 271 Hz, CF3), 118.1
(q, J = 3.7 Hz), 64.0(OCH2), 58.2(CH), 43.4(CH), 31.2(CH2), 25.3(CH2), 25.0(CH2), 24.2(CH2), 14.0(CH3).

(5aR*,9aR*)-1-Acetyl-3-(p-tolyl)-5a,6,7,8,9,9a-hexahydro[1,2,4]triazolo[4,3-a]quinazoline-5(3H)-one (5g):
67%, m.p. 158–162 ◦C 1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.2 Hz,
2H), 4.06–3.98 (m, 1H), 2.92 (d, J = 8.5 Hz, 1H), 2.71 (s, 3H), 2.49 (d, J = 13.2 Hz, 1H), 2.39 (s, 3H),
2.25 (t, J = 13.5 Hz, 1H), 1.92 (d, J = 11.0 Hz, 2H), 1.49 (dd, J = 24.4, 14.6 Hz, 1H), 1.42–1.22
(m, 3H). 13C NMR (126 MHz, CDCl3) δ 187.9(C=O), 176.8(C=O), 153.7(C), 144.2(C), 138.0(C), 133.8(C),
129.7(CH), 121.6(CH), 58.5(COCH3), 43.6(CH), 31.9(CH2), 27.6(CH), 25.5(CH2), 25.2(CH2), 24.3(CH2),
21.1(CH3, p-tolyl).

4. Conclusions

Herein, we report the unexpected regioselectivity of the reaction between 2-thioxopyrimidin-4-ones
with hydrazonoyl chlorides to produce the angular regioisomers [1,2,4]triazolo[4,3-a]quinazolin-5-ones,
rather than the linear isomers [1,2,4]triazolo[4,3-a]quinazolin-5-ones. The transformations are controlled
by electronic factors of 2-thioxopyrimidin-4-one. This phenomenon was exploited in the synthesis
of the novel stereoisomeric octahydro[1,2,4]triazolo[4,3-a]quinazolin-5-ones 4a–g and 5a–g starting
from cis or trans cyclohexane-fused 2-thioxopyrimidin-4-one 1 or 2, respectively. The stereochemistry
of the products was assigned on the basis of one- and two-dimensional NMR spectra and by X-ray
measurements providing conclusive evidence.

Supplementary Materials: NMR spectra of all the synthesized compounds and crystallographic data for 5b are
available online.
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