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Abstract: The 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) derivatives, viz. the
already reported 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide (DAPTA=O,
1), the novel 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide (DAPTA=S, 2),
and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se, 3), have been
synthesized under mild conditions. They are soluble in water and most common organic solvents and
have been characterized using 1H and 31P NMR spectroscopy and, for 2 and 3, also by single crystal
X-ray diffraction. The effect of O, S, or Se at the phosphorus atom on the structural features of the
compounds has been investigated, also through the analyses of Hirshfeld surfaces. The presence of
1–3 enhances the activity of copper for the catalytic azide-alkyne cycloaddition reaction in an aqueous
medium. The combination of cheaply available copper (II) acetate and compound 1 has been used as
a catalyst for the one-pot and 1,4-regioselective procedure to obtain 1,2,3-triazoles with high yields
and according to ‘click rules’.

Keywords: P ligands; water-soluble ligands; homogeneous catalysis; click chemistry; DAPTA; CuAAC

1. Introduction

Decreasing the environmental impact of noxious organic solvents on industrial-scale applications
constitutes one of the most imperative research topics in response to the growing environmental
and sustainability concerns. Solvent-free chemical processes might seem to be an attractive
alternative, but solvents play a tremendous role in controlling the equilibrium and rates of reactions.
Alternative “green solvents” have been developed, such as bioethanol, glycerol, polyethylene
glycol, 2-methyltetrahydrofuran, ethyl lactate, dihydrolevoglucosenone (cyrene), supercritical fluids,
and ionic liquids [1,2]. Water is the best choice among them due to its environmental compatibility,
high abundance, nonflammability and nontoxicity. Besides the environmental impact, the rapid
development of aqueous-phase catalysis is attributed to several advantages including: (1) facile and
efficient separation of the water-soluble catalyst from the organic reactants and products by simple
phase separation, (2) easy recyclability of the catalyst using the aqueous catalytic phase, and (3) mild
reaction conditions [3–5].
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Considerable efforts have been directed towards developing metal complexes with hydrosoluble
ligands, in particular phosphines [3]. Moreover, 1,3,5-triaza-7-phosphaadamantane (PTA) and
derivatives are recognized as one of the most useful types of water soluble phosphines for
coordination chemistry [6,7]. The di-N-acylated derivative of PTA, 3,7-diacetyl-1,3,7-triaza-5-
phosphabicyclo[3.3.1]nonane (DAPTA; Figure 1), has acquired the most significant attention when
compared to the other PTA analogues due to its incomparable high solubility in water (7.4 M) [8].
Several transition metal complexes bearing DAPTA ligands have been synthesized and used in
aqueous-phase catalysis [9].
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Figure 1. 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA).

The only P-substituted derivative of DAPTA that has been obtained so far is the oxidized
analogue, 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide (DAPTA=O). It was prepared
by Siele in 1977, [10] by the acylation of 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O)
with acetic anhydride (Scheme 1). DAPTA=O is a highly water-soluble and stable compound.
However, its coordination properties and applications in catalysis remained unexplored until
our group has recently reported the copper {[Cu(µ-CH3COO)2(κO-DAPTA=O)]2} and sodium
{[Na(µ-1κOO′;2κO-DAPTA=O)(MeOH)]2(BPh4)2} complexes, with the former being catalytically
active for alcohol oxidation and nitro-aldol condensation in aqueous media [11].
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Scheme 1. Synthesis of DAPTA=O by acylation of PTA=O.

No other studies of this P-functionalization of DAPTA have been reported [9]. Due to
the increasing demands for a larger variety of water-soluble ligands for catalytic applications
in aqueous media, we have chosen to investigate the functionalization of DAPTA for this
purpose. Herein, we report the synthesis of DAPTA=O (1) by direct oxidation of DAPTA, and the
new water-soluble compounds, viz. 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide
(DAPTA=S; 2), and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se;
3). These compounds were characterized in solution by 1H and 31P-NMR spectroscopy, and in the
solid state by single crystal X-ray diffraction (SCXRD) analysis. To pursue our interest in the copper
catalyzed azide-alkyne cycloaddition (CuAAC) reaction [12–14], compounds 1–3 were used for in-situ
catalyst generation for CuAAC in aqueous media. For comparative purposes, the study was extended
to the well-defined Cu(II) complex [Cu(µ-CH3COO)2(κO-DAPTA=O)]2 (4) [11].

2. Results and Discussion

2.1. Synthesis and Characterization of 1–3

Oxidation of DAPTA with hydrogen peroxide in ethanol leads to the formation of DAPTA=O
(1) in 79% yield (Scheme 2, route I). Reaction of DAPTA with sulphur or selenium in methanol,
under ultrasonic irradiation for 1h and at room temperature afforded DAPTA=S (2) or DAPTA=Se (3)
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in good yields, 94 and 64%, respectively (Scheme 2, routes II and III). Compounds 1–3 exhibit high
solubility in water, dimethyl sulfoxide, methanol, and chloroform, whereas they are not soluble in
diethyl ether, benzene, and hexane.
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Scheme 2. Synthesis of compounds 1–3.

All compounds were characterized by elemental analysis, NMR (1H, 31P{1H}) spectroscopies and
ESI-MS, which support the proposed formulations. In addition, their structures were authenticated by
SCXRD analysis. The obtained crystal structure of 1 was in agreement with that already reported [8].

The 1H and 31P{1H} NMR spectroscopic data were obtained in DMSO-d6 (see Supplementary
Figures S1, S2, S4, S5, and S7). In all cases, the observation of four resonances for the acyl groups
in the 1H NMR spectra and three independent signals in the 31P{1H} NMR indicates the presence
of the compounds in solution in three rotameric forms (Figure 2). The 1H NMR spectrum of 3
(Supplementary Figure S7) shows four singlets for the acyl groups at 2.07, 2.02, 1.97 and 1.94 ppm,
with an integration ratio of 1:2.6:7.8:7.8. The resonances at 2.07 and 2.02 ppm are assigned to the two
syn isomers (minor) of the compound, where each signal represents the equivalent acetyl groups in the
same isomer. The pair of more intense signals at 1.97 and 1.94 ppm represent the two non-equivalent
acetyl groups of the anti isomer (major). The 31P{1H} NMR spectrum of 3 (Figure 3) shows three singlets,
namely those at −10.98 and −13.9 for the syn isomers, and that at −14.06 ppm for the anti isomer.
The intense ratio is 2.6:1:15.6, which is in fair agreement with that observed in the 1H NMR spectrum.
The calculated first order 77Se−31P coupling constant (1JSe−P) is of 934 Hz. It is well established
that the observation of 1JSe−P values for phosphine-based compounds allows the assessment of the
phosphorus basicity. With DAPTA=Se having a 1JSe−P value higher than that of its PTA analogue
(1,3,5-triaza-7-phosphaadamantane-7-selenide, PTA=Se, 760 Hz), [15] it appears that DAPTA is a
weaker σ donor when compared to PTA. Similarly, the 1H and 31P{1H} NMR spectra in DMSO-d6 for
compounds 1 and 2 (Supplementary Figures S1, S2, S4, and S5) are consistent with the presence of the
three rotamers in each case, with the anti isomer being the major component.
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Figure 3. 31P{1H} NMR spectrum of DAPTA=Se (3) in DMSO-d6 (500 MHz).

31P{1H} NMR experiments were also performed in D2O (for compounds 1 and 2; Figures S3 and
S6) and in CDCl3 (for compound 3). In all cases, the existence of the three rotamers was confirmed by
the presence of three 31P resonances.

In all cases, the 1H NMR spectrum shows seven sets of signals arising from the ten aliphatic
methylene protons, observed between 5.6 to 3.2 ppm. Their splitting patterns are traceable through the
diastereotopic nature of the NCH2N and PCH2N moieties. These resonances were assigned based on
COSY experiments. Figure 4 shows a comparison of the 1H NMR spectra of DAPTA and of compounds
1–3 in DMSO-d6 in the 5.7–3.0 ppm region. A comparison of the 31P{1H} NMR spectra these compounds
in the same solvent is depicted in Supplementary Figure S9.
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2.2. Single Crystal X-ray Diffraction Analysis

Single crystals of 2 and 3 were obtained from methanol solution by slow evaporation at room
temperature. Compound 2 crystalized in the orthorhombic space group Pbcn, and 3 in the monoclinic
space group P21/n. Crystallographic data and structure refinement details are provided in Table S1.
Thermal ellipsoid representations are depicted in Figure 5. Table 1 shows the selected bond distances
and angles for compounds 2 and 3 and, for comparative reasons, those of DAPTA and DAPTA=O (1)
obtained from their reported SCXRD structures [8].
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Figure 5. ORTEP diagrams of compounds 2 (left) and 3 (right) with displacement ellipsoids shown at
50% probability level and atom numbering schemes. H-atoms are omitted for clarity.

Table 1. Selected bond distances (Å) and angles (◦).

DAPTA [8] 1 [8] 2 3

P-O 1.491(3) P1-S1 1.9524(7) P1-Se1 2.096(1)
P-C 1.71(1) P-C 1.797(3) P1-C1 1.824(3) P1-C1 1.821(7)

1.74(1) 1.817(3) P1-C2 1.812(2) P1-C2 1.817(4)
1.74(2) 1.828(3) P1-C3 1.819(2) P1-C3 1.824(5)

N4-C5 1.471(3) N1-C4 1.486(6)
N3-C5 1.448(3) N2-C4 1.447(8)
N3-C4 1.452(3) N2-C5 1.429(6)
N5-C4 1.469(3) N3-C5 1.482(5)
N4-C8 1.356(4) N1-C6 1.350(6)
N5-C6 1.359(3) N3-C8 1.362(6)
C6-O6 1.227(3) C6-O1 1.221(6)
C8-O7 1.212(4) C8-O2 1.211(6)

S1-P1-C1 114.61(9) Se1-P1-C1 114.1(2)
S1-P1-C2 119.89(8) Se1-P1-C2 120.8(2)
S1-P1-C3 112.98(9) Se1-P1-C3 112.8(2)

C-P-C 93.8(7) C-P-C 100.4(1) C1-P1-C2 100.3(1) C1-P1-C2 100.0(2)
98.4(7) 100.7(1) C2-P1-C3 99.9(1) C2-P1-C3 100.0(2)

104.0(7) 106.8(1) C1-P1-C3 107.3(1) C1-P1-C3 107.3(2)
C4-N3-C5 115.8(2) C4-N1-C6 124.6(4)
C5-N4-C8 126.1(2) C4-N2-C5 119.9(4)
C4-N5-C6 120.0(2) C5-N3-C8 116.1(4)

P-C-N 115.1(9) P-C-N 106.2(2) P1-C2-N3 106.9(2) P1-C2-N2 105.7(3)
118(1) 111.8(2) P1-C1-N5 112.1(2) P1-C3-N3 112.9(4)

120.0(9) 114.5(2) P1-C3-N4 113.5(2) P1-C1-N1 114.2(4)

The presence of an additional substituent on the phosphorus atom leads to considerable differences
in bonding geometry of the crystal structures of DAPTA and its homologs, compounds 1–3. The largest
differences in bonding geometry were observed in the bonds that involve the P atom and the adjacent
C atoms. The presence of a substituent on the P atom is accompanied by an elongation of the P-C bond
distances, an opening of the C-P-C angles and a decreasing of the P-C-N angles (Table 1).
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The magnitude of the P–X (X = O, S or Se) bond distances should depend on the electronegativity
of X which assumes values of 3.44 (O) >> 2.58 (S) ≈ 2.55 (Se) [16].Consequently, the P-O bond length
in 1 is much shorter than those of P-S (in 2) and P-Se (in 3). The differences in bonding geometry
observed for the DAPTA PIII molecule and the oxidized PV species 1–3 are consistent with the different
oxidation states of phosphorus and electronegativities of X.

In all the compounds the acetyl groups adopt the anti orientation. The N–Ccarbonyl bond distances
in 2 and 3 (in the 1.350(6)–1.362(6) Å range; Table 1) are shorter than the other N–C bonds (between
1.429(6) and 1.486(6) Å; Table 1), which confirm the double bond character of such Schiff base type
moiety (Scheme 3) and justify the solubility in water of the respective compounds. The same was
observed for DAPTA and 1 [8].
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2.3. Hirshfeld Structural Comparison of DAPTA and Derivatives 1–3

The 3D Hirshfeld analysis and 2D fingerprint plots of DAPTA and compounds 1–3 were performed
with the CrystalExplorer version 17.5 software [17] and were mapped (Supplementary Figure S10, top)
with the dnorm property where the blue, white and red colours reveal the long, at van der Waals and
the short interatomic contacts, respectively. A comparison of the Hirshfeld volumes expectedly shows
the consequence of functionalization, with a slight growth upon oxidation of DAPTA (an increase from
262 to 273 Å3 was calculated, upon formation of DAPTA=O) and more effective for 2 and 3 (volumes
of 303 and 306 Å3, in this order) conceivably due to the relatively larger dimensions of S and Se against
O. In view of the weak interactions in the crystals, more informative representations could be obtained
by means of shape-index measurements in which the convex blue areas identify the donors, and the
red concavities the acceptors, as shown in Supplementary Figure S10 (bottom) for the most effective
O···H contacts.

The 2D fingerprint plots [18] in Figure 6 quantitatively describe the nature and type of the
intermolecular contacts in the compounds, where di and de represent the distances from the surface to
the nearest atom inside or outside the surface, respectively. The overall 2D plots for DAPTA and 1 are
similar (Figure 6), although with a more compact pattern in the latter conceivably due to an increase of
the OH contributions to the overall surface (see also Figure 7) and a decrease of the HH ones upon the
P-functionalization. The 2D plots for 2 and 3 also have common general features with the higher number
of points at larger distances in the latter being due to HH interactions with a short tail at (2.6, 2.4).

The graph in Figure 7 compares the contacts that more extensively contribute to the Hirshfeld
volumes in every structure, expectedly showing a much greater influence of the OH contacts in 1
(36.8%) relatively to those in DAPTA (23.6%), compound 2 (17.7%) or 3 (17.3%). The SH and the SeH
interactions contribute to 21.0 and 21.4%, respectively.
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2.4. Catalytic Performances of 1–3 in CuAAC Reaction

With the aim to develop a highly efficient catalytic system in aqueous medium for CuAAC,
cheap and available copper (I) or copper (II) salts were mixed with any of the compounds 1–3 and
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tested for this reaction, first by following well established reaction conditions (see Table 2, legend)
which were then adjusted to try to the optimum reaction conditions for this system (Table 2).

Table 2. Reaction conditions screening for CuAAC a.
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Entry. Cu Salt Compound Change from the “Standard Conditions” Isolated Yield

1 CuI - None 0
2 CuBr - None 0
3 CuCl - None 0
4 CuI 1 None 62
5 CuBr 1 None 41
6 CuCl 1 None 15
7 CuI 2 None 56
8 CuBr 2 None 36
9 CuCl 2 None 7
10 CuI 3 None 44
11 CuBr 3 None 27
12 CuCl 3 None 11
13 CuSO4·5H2O 1 None 16
14 CuSO4·5H2O 2 None 10
15 CuSO4·5H2O 3 None 12
16 Cu(NO3)2·3H2O 1 None 39
17 Cu(NO3)2·3H2O 2 None 37
18 Cu(NO3)2·3H2O 3 None 31
19 CuBr2 1 None 56
20 CuBr2 2 None 48
21 CuBr2 3 None 50
22 Cu(CH3COO)2·H2O 1 None 73
23 Cu(CH3COO)2·H2O 2 None 58
24 Cu(CH3COO)2·H2O 3 None 55
25 Cu(CH3COO)2·H2O 1 0.5 mol% of Cu and 1 mol% of 1, 48 h 31
26 Cu(CH3COO)2·H2O 1 H2O + MeOH (1:1) solvent mixture 69
27 Cu(CH3COO)2·H2O 1 H2O + EtOH (1:1) solvent mixture 75
28 Cu(CH3COO)2·H2O 1 H2O + tBuOH (1:1) solvent mixture 78
29 Cu(CH3COO)2·H2O 1 H2O + DMF (1:1) solvent mixture 88
30 Cu(CH3COO)2·H2O 1 H2O + MeCN (1:1) solvent mixture 97
31 Cu(CH3COO)2·H2O 1 H2O + MeCN (1:1) solvent mixture, 80 ◦C, 8 h >99

a Reaction at “standard conditions”: phenylacetylene (1 mmol), benzyl azide (1 mmol) and the catalyst (1 mol% of
the Cu salt and 2 mol% of 1–3) were stirred in 3 mL of water at room temperature (25 ◦C) under air for 24 h.

For screening the potential catalytic activity of Cu (I) halide salts as a starting point, phenylacetylene
and benzyl azide were mixed in water and the system stirred for 24 h. The experiments were performed
at room temperature in the presence of 1 mol% of the salt. Under these conditions, the Cu (I) halides
were not active (Table 2, entries 1–3), which is not surprising in view of their poor solubility in water.
However, the solubility of the copper (I) sources increased upon the addition of compounds 1–3 to the
reaction media (2 mol%). Under these conditions, a significant catalytic activity was observed (Table 2,
entries 4–12), with the mixture of CuI and 1 being the most active one, leading to 62% of the triazole
yield (Table 2, entry 4).

Mixtures of different Cu (II) salts with compounds 1–3 were also tested as catalysts for the CuAAC
reaction (Table 2, entries 13–24). When using CuSO4·5H2O, the yields were the lowest ones (10–16%
range, entries 13–15), whereas Cu(NO3)2·3H2O gave yields from 31 to 39% (entries 16–18), CuBr2 led
to yields from 48 to 56% (entries 19–21) and Cu(CH3COO)2·H2O improved them to the 55–73% range
(entries 22–24). In general, using 1 in the reaction medium with the Cu (I) and Cu (II) salts gives
a better catalytic efficiency than using 2 and 3 (Table 2, entries 4–24). Therefore, 1 was used in the
following experiments as the optimal choice. A significant drop in the yield of the reaction occurred on
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decreasing both the catalyst and compound 1 contents to half (i.e., 0.5 mol% of copper acetate and
1 mol% of 1; Table 2, entry 25), giving 31% conversion after 48 h.

Water-miscible organic co-solvents were used to improve the homogeneity of the reaction system
by increasing the solubility of the organic reactants (Table 2, entries 26–30). Using 1:1 water-alcohol
mixtures (MeOH, EtOH or tBuOH; entries 26–28) did not improve the yield when compared to that
obtained using water as the sole solvent (entry 22). However, a mixture of water and DMF or MeCN
significantly increased the conversion to 88% and 97%, respectively (entries 29 and 30). In H2O:MeCN
(1:1) solvent mixture the completion of the reaction was reached in 8 h when the temperature was
raised to 80 ◦C (Table 2, entry 31).

Since the combination of copper acetate and compound 1 gave an optimum catalytic
performance for the CuAAC reaction, and the well-defined previously obtained complex
[Cu(µ-CH3COO)2(κO-DAPTA=O)]2 [11] (4, Figure 8) was included in this study. Using the
aforementioned model reaction in H2O:MeCN (1:1) solvent mixture, the effects of catalyst loading,
reaction time and temperature were investigated (Table 3).
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Entry Cat. Load (mol%) Time (h) Temp. (◦C) Isolated Yield (%) TON b

1 0.5 24 25 54 108
2 1 24 25 81 81
3 2 24 25 93 47
4 5 24 25 >99 20
5 1 3 25 34 34
6 1 8 25 49 49
7 1 12 25 57 57
8 1 48 25 88 88
9 1 6 80 >99 100

a Reaction conditions: phenylacetylene (1 mmol), benzyl azide (1 mmol) and 3 mL of water and acetonitrile mixture
(1:1). b Turnover number = number of moles of 1-benzyl-4-phenyl-1H-1,2,3-triazole per mol of catalyst.

Performing the reaction at room temperature for 24 h, the yield increased from 54% to almost
quantitative conversion with increasing the catalyst loading from 0.5 to 5 mol%, while the TON
(turnover number = number of moles of product per mol of catalyst) was gradually attenuated (Table 3,
entries 1–4). Using 1 mol% of catalyst 4 at room temperature, the reaction yield increased with time
to reach 88% after 48 h (Table 3, entries 5–8). The reaction was completed in 6 h with a quantitative
conversion when the temperature was raised to 80 ◦C (Table 3, entry 9). In view of the resemblance of
the results (compare entry 31 in Table 2 with entry 9 in Table 3), the active catalytic species in both
cases (with 4 or with Cu(CH3COO)2.H2O + 1) can be the same.
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Relying on the optimization studies, the scope of the catalytic system was broadened to
include several acetylenes. Various terminal alkynes were reacted with benzyl azide to produce
the corresponding 1,4-disubstituted-1,2,3-triazoles (5), and the results are summarized in Table 4.
The reactions were performed in water:MeCN (1:1) solvent mixture, in the presence of catalyst 4 or
the mixture of Cu(CH3COO)2·H2O and compound 1, under air at 80 ◦C. The reactions proceeded
smoothly to give 5, usually with similar yields (with 4 or with Cu(CH3COO)2.H2O + 1) from 81% up
to quantitative conversion. The products precipitated from the reaction mixture. After removing the
solvent under vacuum, the triazole solids were isolated by filtration, washed, and dried.

Table 4. One-pot catalytic synthesis of 1,4-disubstitutred-1,2,3-triazoles a..
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Entry R Product Catalyst Time (h) Isolated Yield (%)

1
H 5a

Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 >99
2 4 (1 mol%) 6 >99
3

3-Me 5b
Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 93

4 4 (1 mol%) 6 95
5

3-OMe 5c
Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 >99

6 4 (1 mol%) 6 >99
7

4-Me 5d
Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 91

8 4 (1 mol%) 6 94
9

4-Et 5e
Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 88

10 4 (1 mol%) 6 92
11

4-F 5f
Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 85

12 4 (1 mol%) 6 87
13

4-tBu 5g Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 95
14 4 (1 mol%) 6 97
15 4-NH2 5h

Cu(CH3COO)2·H2O (1 mol%) + 1 (2 mol%) 8 81
16 4 (1 mol%) 6 86

a Reaction conditions: alkyne (1 mmol), benzyl azide (1 mmol), 3 mL of water and acetonitrile mixture (1:1), 80 ◦C.

Although the position (meta- or para-) of the substituent group of phenylacetylene seems not
to have an influence on the yield of the reaction (compare entries 3–4, with entries 7–8, Table 4),
increasing its electron-donating character can decrease that yield (compare entries 7–10 with entries
15–16). However, this is not a general behaviour since the alkyl substituted catalysts lead to higher
yields than the fluoro catalyst (compare entries 7–10 and 13–14 with entries 11–12).

In comparison with the copper (I) catalysts with DAPTA=NO(OR)2S core ligands for CuAAC
reaction, [19] our catalytic system revealed a high catalytic activity to obtain triazoles with quantitative
conversions in water/acetonitrile solution after only 6 h, without any added reducing agents or bases.
Lower conversions were, however, obtained with water as the sole solvent, but the Cu(I) complexes
bearing the iminophosphorane DAPTA derivatives [19] required 10 mol% of 2,6-dimethylpyridine for
the reaction to proceed. The Cu (I) complexes [CuX(DAPTA)3] and [Cu(µ-X)(DAPTA)2]2 (X = Br or I)
also proved to be of high efficiency with quantitative conversions in aqueous medium under microwave
irradiations in 15 min [12]. Despite the high activity of these latter catalysts in terms of very short
reaction time, the required copper complex loading was relatively high (5 mol%). The catalyst loading
in the present study is low and thus beneficial from the economic point of view, but the higher reaction
time is, in this respect, a disadvantage.

Although several N-donor and phosphine ligands were found to form efficient and highly active
copper catalysts for CuAAC reactions, [20–22] DAPTA=O is notable in view of its high solubility
in water, and thus the corresponding complex can be separated easily from the organic product by
simple solvent extraction procedures. Unfortunately, complex 4 and the copper (II)/1 system exhibit
poor recyclability as the yield of the triazole product diminished considerably on the following cycles.
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The obtained yields were 61% and 58% in the second cycle, 15% and 22% in the third cycle for complex
4 and the copper (II)/1 catalytic systems, respectively.

A mechanism for the CuAAC reaction has been proposed (Scheme 4) based on fundamental
steps established by computational [23–25] and experimental methods [26–28]. As a starting point,
the catalytically active Cu(I) species are generated through an oxidative homocoupling of terminal
alkynes (Glaser reaction) [29–33]. The catalytic cycle should start with (1) π-coordination of the alkyne
to a Cu (I) species, thus increasing the acidity of the terminal alkyne (pKa drops from ~25 to ~15),
and allowing the subsequent (2) formation of a Cu (I) σ-coordinated acetylide, thus generating an
intermediate that resembles the known µ-coordination mode of Cu (I) acetylides [34]. (3) A triazolide
intermediate is formed upon the coordination of the azide to the π-coordinated Cu (I) center, potentially
either through the substituted nitrogen (π-donating) or the terminal one (π-accepting). However, (4) the
regioselectivity for the 1,4-isomer was attributed to the π-coordination to Cu (I) of the α-carbon of the
acetylide, raising the electron density on the metal centre, directing a nucleophilic attack of the β-carbon
at the electrophilic terminal nitrogen and ensuing oxidative coupling. Thus, (5) a six-membered
bimetallic cupra-cycle intermediate was proposed, [25] stabilized by a geminal bimetallic coordination.
Finally, (6) in an exothermic reductive elimination process, Cu (I) triazolide is formed [25,27], and its
protonation releases the 1,4-disubstituted 1,2,3-triazole product.
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Scheme 4. Proposed catalytic cycle for the CuAAC reaction.

The catalytic activities of the mixtures of Cu (I) halide salts CuX (I− > Br− > Cl−) with 1–3 may
follow the inverse of the general trend in the spectrochemical series (I− < Br− < Cl−), reflecting the
π-electron donor ability of the halide, which can promote the oxidation addition step in the catalytic
cycle. In the case of mixtures of Cu (II) salts and DAPTA=O (1), the highest catalytic activity is observed
for the acetate salt. Since the acetate anion is the strongest base in the group, the importance for
promoting step (1) of the catalytic cycle is evident. Moreover, acetate readily bridges two copper
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ions, forming the {Cu2(µ-CH3COO)4} dicopper core (4), which promotes the formation of dicopper
intermediates involved in the catalytic cycle (Scheme 4).

A different type of effect possibly concerns the extension of O···H interactions which decreases in
the order DAPTA=O >> DAPTA=S > DAPTA=Se (see above). Such contacts can affect the catalytic
cycle, namely assisting in alkyne deprotonation (Scheme 4).

3. Materials and Methods

3.1. General Procedures

All synthetic procedures were performed in air. Reagents and solvents were obtained from
commercial sources. The organic reactants for the cycloaddition reaction (alkynes and benzyl azide)
were further purified prior to use by distillation. DAPTA was synthesized using the published
procedure [8,10]. The ultrasound irradiation was accomplished with a high-intensity ultrasonic
probe SONIC VCX 750 (Sonics & Materials Inc., Newtown, CT, USA) model (20 kHz, 750 W) using
a titanium horn. Elemental analyses (C, H, and N) were carried out by the Microanalytical service
of Instituto Superior Tecnico. 1H and 31P NMR spectra were obtained using a Bruker Advance
(Bruker, Billerica, MA, USA) 400 and 500 MHz spectrometers at ambient temperature. Chemical shifts
δ are quoted in ppm. 1H chemical shifts were internally referenced to residual protio-solvent
resonance and are reported relative to SiMe4. 31P chemical shifts were referenced to external 85%
phosphoric acid. Assignments of 1H signals rely on COSY experiments. Electrospray mass (ESI-MS)
spectra were obtained on a Varian 500-MS LC Ion Trap Mass Spectrometer (Agilent Technologies,
Santa Clara, CA, USA) equipped with an electrospray ion source. All compounds were observed in
the positive mode (capillary voltage = 80–105 V).

3.2. Synthesis of Compounds 1–3

3.2.1. Synthesis 3,7-Diacetyl-1,3,7-Triaza-5-phosphabicyclo[3.3.1]nonane-5-oxide (DAPTA=O, 1)

To an ethanol solution (20 mL) of DAPTA (500 mg, 2.18 mmol) was added an ethanol solution
(20 mL) of hydrogen peroxide (30%, 306.4 µL, 3 mmol) dropwise with stirring over 10 min at 0 ◦C.
The produced colourless solution was further stirred for 30 min at 0 ◦C. The solvents were removed
under vacuum, leaving behind a white solid. The product 1 was recrystallized from ethanol and
obtained as a white solid in 78.6% (420 mg) yield.

Elemental analysis calcd (%) for C9H16N3O3P: C 44.08, H 6.58, N 17.14; found: C 43.92, H 6.39,
N 17.11. 1H NMR (500 MHz, DMSO-d6, δ): 5.39 (d, J = 14 Hz, 1H, NCH2N), 5.04 (dd, J = 16 Hz,
J = 15.5 Hz, 1H, PCH2N), 4.81 (d, J = 14 Hz, 1H, NCH2N), 4.37–4.35 (m, 2H, NCH2N + PCH2N),
3.9 (d, J = 13.5 Hz, 1H, NCH2N), 3.78 (m, 3H, PCH2N), 3.31 (ddd, 2JHP = 15.1 Hz, 2JHH = 8.3 Hz,
4JHH = 2.5 Hz, 1H, PCH2N), 2.03 (s, C(O)CH3, minor-syn), 2.00 (s, C(O)CH3, minor-syn), 1.94 and
1.93 (s, 6H, C(O)CH3, major-anti). 31P{1H} NMR (500 MHz, DMSO-d6, δ): 5.8 (s, syn), 3.13 (s, syn),
2.94 (s, anti). 31P{1H} NMR (400 MHz, D2O, δ): 12.19 (s, syn), 10.18 (s, anti), 9.65 (s, syn). ESI (+) MS
in H2O (m/z assignment, % intensity): 246 ([{DAPTA=O} + H]+, 100), 491 ([2{DAPTA=O} + H]+, 27),
754 ([3{DAPTA=O} + H2O + H]+, 25).

3.2.2. Synthesis 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide (DAPTA=S, 2) and
3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se, 3)

A similar procedure was utilized for the synthesis of 2 and 3. A mixture of methanol (10 mL),
DAPTA (500 mg, 2.18 mmol) and sulfur (flowers of sulfur, 96 mg, 3 mmol for 2) or selenium (220 mg,
2.8 mmol for 3) was placed in 100 mL round bottom flask. At room temperature, the mixture was
allowed to sonicate for 1 h. The resulting powders were filtered off, washed with ethanol and benzene,
and dried under vacuum.
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DAPTA=S (Pale yellow solid). Yield = 94% (535 mg). Elemental analysis calcd (%) for
C9H16N3O2PS: C 41.37, H 6.17, N 16.08, S 12.27; found: C 41.51, H 6.22, N 16.14, S 12.29. 1H NMR
(500 MHz, DMSO-d6, δ): 5.47 (d, J = 13.5 Hz, 1H, NCH2N), 5.15 (dd, J = 15 Hz, J = 14.5 Hz, 1H, PCH2N),
4.91 (d, J = 14 Hz, 1H, NCH2N), 4.54–4.47 (m, 2H, NCH2N + PCH2N), 4.05–3.98 (m, 2H, NCH2N +

PCH2N), 3.88 (d, 2H, J = 4.5 Hz, PCH2N), 3.49 (dt, 2JHP = 15 Hz, 2JHH = 15 Hz, 4JHH = 3.5 Hz, 1H,
PCH2N), 2.06 (s, C(O)CH3, minor-syn), 2.02 (s, C(O)CH3, minor-syn), 1.96 and 1.95 (s, 6H, C(O)CH3,
major-anti). 31P{1H} NMR (500 MHz, DMSO-d6, δ): 2.94 (s, syn), −0.35 (s, syn), −0.44 (s, anti).
31P{1H} NMR (400 MHz, D2O, δ): 3.43 (s, syn), 1.46 (s, anti), −0.69 (s, syn). ESI (+) MS in H2O
(m/z assignment, % intensity): 262 ([{DAPTA=S} + H]+, 100), 523 ([2{DAPTA=S} + H]+, >5).

DAPTA=Se (Grey solid). Yield = 64% (430 mg). Elemental analysis calcd (%) for C9H16N3O2PSe:
C 35.08, H 5.23, N 13.64; found: C 34.94, H 5.17, N 13.51. 1H NMR (500 MHz, DMSO-d6, δ):
5.53 (d, J = 13.5 Hz, 1H, NCH2N), 5.24 (dd, J = 14.5 Hz, J = 14 Hz, 1H, PCH2N), 4.97 (d, J = 14.5 Hz,
1H, NCH2N), 4.6–4.57 (m, 2H, NCH2N + PCH2N), 4.14–4.08 (m, 2H, NCH2N + PCH2N), 3.97 (d, 2H,
J = 2.5 Hz, PCH2N), 3.6 (dt, 2JHP = 15 Hz, 2JHH = 15 Hz, 4JHH = 2.5 Hz, 1H, PCH2N), 2.07 (s, C(O)CH3,
minor-syn), 2.02 (s, C(O)CH3, minor-syn), 1.97 and 1.95 (s, 6H, C(O)CH3, major-anti). 31P{1H} NMR
(500 MHz, DMSO-d6, δ): −10.98 (s, syn), −13.9 (s, syn), −14.06 (s, anti). 31P{1H} NMR (400 MHz, CDCl3,
δ): −15.34 (s, syn), −17.73 (s, anti), −20.13 (s, syn). ESI(+)MS in H2O (m/z assignment, % intensity):
310 ([{DAPTA=Se} + H]+, 100).

3.3. X-ray Structure Determination of Compounds

X-ray quality crystals of the compound were immersed in cryo-oil, mounted in a Nylon loop
and measured at ambient temperature. Intensity data were collected using a Bruker AXS-KAPPA
APEX II PHOTON 100 diffractometer (Bruker, Billerica, MA, USA) with graphite monochromated
Mo-Kα (0.71069 Å) radiation. Data were collected using omega scans of 0.5◦ per frame and full sphere
of data were obtained. Cell parameters were retrieved using Bruker SMART [35] software (Bruker,
Madison, WI, USA) and refined using Bruker SAINT [35] (Bruker, Madison, WI, USA) on all the
observed reflections. Absorption corrections were applied using the SADABS program (University
of Gottingen, Göttingen, Germany) [36]. The structures were solved by direct methods using SIR97
package [37] (IUCr) and refined with SHELXL-2014/7 (IUCr, City, State if USA or Canada, Country) [38].
Calculations were performed using the WinGX System-Version 2014.1 (University of Glasgow, Glasgow,
UK) [39]. The hydrogen atoms were included in the refinement using the riding-model approximation;
Uiso(H) were defined as 1.2Ueq of the parent carbon atoms for methylene residues, and 1.5Ueq of the
parent carbon atoms for methyl. The unaccounted twinning in 3 was resolved by using TwinRotMat
routine of Platon (University of Glasgow, Glasgow, UK) [40]. The generated *.ins and hkl files were
used in the refinement. Least square refinements with anisotropic thermal motion parameters for all
the non-hydrogen atoms were employed.

Crystallographic data for the structural analysis have been deposited to the Cambridge
Crystallographic Data Center (Cambridge, UK) (CCDC 2,040,205 (for 2) and 2,040,206 (for 3)).

3.4. General Procedure for the Synthesis of 1,2,3-Triazoles

In a 10 mL cylindrical screw capped vial equipped with a small magnetic stirring bar, a mixture of
phenylacetylene (1 mmol), azide derivative (1 mmol), catalyst (copper salt {1 mol%} and compounds
1–3 {2 mol%}, or complex 4 {0.5–5 mol%}) and 3 mL of solvent was charged. The mixture was stirred
under the temperature and for the time periods indicated in Tables 2–4. The reaction mixture was then
cooled in an ice bath and diluted with 6 mL of water. The obtained triazole product was collected by
filtration, washed with water and repeatedly washed with petroleum ether and dried in a vacuum.

The 1H NMR spectroscopic data of the triazole products (5) are in agreement with those already
reported [22,41–45]. Detailed elemental analysis and 1H-NMR data are given in the Supplementary
Materials, Section 4.
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4. Conclusions

Hydrosoluble DAPTA=X compounds 1–3 (X = O, S or Se, in the same order) were synthesized in
high yields under mild conditions. The structural features of the compounds, including the presence
of rotameric forms due to the turning around the N-C bond, were studied in solution by 1H and 31P
NMR spectroscopy, and in solid state by SCXRD. Some crystal structure data of DAPTA and 1 were
revisited for comparison with the novel compounds 2 and 3. The effect of hybridization differences of
the phosphorus atom and the electronegativity of the substituents on the structural features of the
compounds have been studied, with the most significant differences being observed in the bonds that
involve the P and the adjacent C atoms. Comparative Hirshfeld studies of DAPTA and compounds
1–3 revealed that the OH interactions contribute to ca. 37–17% of the Hirshfeld volume, following the
HH contacts that reach 63–54% of that volume.

Compounds 1–3 have demonstrated a moderate to high efficiency to enhance the catalytic
activity of copper salts for the CuAAC reaction in aqueous medium. The in situ generated
catalyst from a combination of copper acetate with ligand 1 is an efficient catalyst for the one-pot
CuAAC reaction of terminal alkynes with benzyl azide to selectively obtain the corresponding
1,4-disubstituted-1,2,3-triazoles in yields ranging from 81 to 99% in 8 h at 80 ◦C. The catalytic activity
of the well-defined copper (II) complex bearing the DAPTA=O ligand (4) has also been investigated,
and under similar conditions, the triazoles were obtained in yield ranging from 86% to 99% in 6 h.

Supplementary Materials: The following are available online. Table S1: Crystallographic data and structure
refinement details for 2 and 3, Figure S1: 1H NMR spectrum of DAPTA=O (1) in DMSO-d6 (500 MHz), Figure S2:
31P{1H} NMR spectrum of DAPTA=O (1) in DMSO-d6 (500 MHz), Figure S3: 31P{1H} NMR spectrum of DAPTA=O
(1) in D2O (400 MHz), Figure S4: 1H NMR spectrum of DAPTA=S (2) in DMSO-d6 (500 MHz), Figure S5: 31P{1H}
NMR spectrum of DAPTA=S (2) in DMSO-d6 (500 MHz), Figure S6: 31P{1H} NMR spectrum of DAPTA=S (2) in
D2O (400 MHz), Figure S7: 1H NMR spectrum of DAPTA=Se (3) in DMSO-d6 (500 MHz), Figure S8: 31P NMR
spectrum of DAPTA=Se (3) in CDCl3 (400 MHz), Figure S9: 31P{1H} NMR spectra of DAPTA and compounds 1–3
in DMSO-d6, Figure S10: Hirshfeld surfaces (top), and shape-index representations of the O···H contacts (bottom)
of DAPTA and the P-functionalized derivatives 1–3, Characterization data of triazoles (5).
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