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Abstract: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive cystic
degeneration of the renal tubules, the nephrons, eventually severely compromising kidney function.
ADPKD is incurable, with half of the patients eventually needing renal replacement. Treatments
for ADPKD patients are limited and new effective therapeutics are needed. Melatonin, a central
metabolic regulator conserved across all life kingdoms, exhibits oncostatic and oncoprotective activity
and no detected toxicity. Here, we used the Bicaudal C (BicC) Drosophila model of polycystic kidney
disease to test the cyst-reducing potential of melatonin. Significant cyst reduction was found in the
renal (Malpighian) tubules upon melatonin administration and suggest mechanistic sophistication.
Similar to vertebrate PKD, the BicC fly PKD model responds to the antiproliferative drugs rapamycin
and mimics of the second mitochondria-derived activator of caspases (Smac). Melatonin appears to be
a new cyst-reducing molecule with attractive properties as a potential candidate for PKD treatment.
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1. Introduction

1.1. Polycystic Kidney Disease

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease affecting 12.5 million
people globally. ADPKD typically causes the progressive formation of cysts all along the renal tubules
called nephrons [1]. ADPKD has been linked to mutations in the PKD1 gene in about 80% of the
cases and in PKD2 in about 15% of patients, with the residual ~5% of cases remaining genetically
unknown or linked to rare mutations in other loci [1]. Renal cystic disease in general, and ADPKD
particularly, display complex metabolic alterations in the tissue of the renal tubule [2] as well as
impaired fluid transport [1]. As cysts progressively grow, they compress and damage the surrounding
renal parenchyma, impairing the neighboring nephrons, both cystic and non-cystic. The ensuing
reduced renal function eventually leads to renal failure in one patient out of two [1].

Cystic growth in ADPKD displays some neoplastic characteristics [3,4]. Among several cancer
pathways found to be dysregulated in ADPKD [5–16], activation of the mechanistic/mammalian target
of rapamycin (mTOR) pathway was found to contribute to renal cyst cell proliferation in patients and
ADPKD animal models [6,17–21]. As well, myc, a common oncogene elevated in cancer cells, was found
to be upregulated in ADPKD [21–23]. Murine ADPKD models have helped to define the stages of
disease progression, as well as study the effects of mutations [24]. These studies clearly indicated that
the genetics of ADPKD-type cyst formation is complex. The discovery that human PKD1 and its murine
ortholog affect the expression of the gene BICAUDAL C, which in turn regulates MYC and mTOR has
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allowed to place BICAUDAL C genetically downstream of PKD1 and upstream of MYC [21]. Originally
discovered in the fruit fly Drosophila melanogaster ovary, the Bicaudal C gene encodes for the prototype
of a family of RNA binding proteins (reviewed in [25]). The human BICAUDAL C gene is abbreviated
as BICC1, the murine one as Bicc1, and the Drosophila one as BicC. Adult BicC mutant flies display key
ADPKD features [21]. In ADPKD patients, cysts occur most frequently in the intermediate and terminal
(distal) regions of the renal tubule [1]. Similarly, in the BicC mutant flies, cysts occur most frequently in
the intermediate and terminal tubules [21]. Cyst occurrence in the terminal tubules is thought to disrupt
fluid readsorption and urine concentration that normally occur in this region [1]. Similar to ADPKD,
BicC mutant flies also display TOR activation and myc upregulation [21]. Drosophila has thus joined the
arsenal of PKD-type cyst models to study the genetic underpinning of renal cystogenesis [21]. The fly
features conservation of 75% of genes and pathways involved in human disease [26]. Renal pathway
components are also highly conserved (reviewed in [27,28]). The Drosophila aglomerular renal system
contains four anatomically separate renal (Malpighian) tubules analogous to the tubular regions of the
human nephron. Reminiscent of nephron diversity in the human kidneys, each fly contains one pair
of longer Malpighian tubules extending anteriorly and one pair of shorter ones oriented posteriorly.
Such anterior and posterior pairs have distinct transcriptomes and functions [29]. Also similar to
the human nephron, each fly Malpighian tubule displays functionally distinct regions with selective
transport. In the fly, these are called proximal, intermediate, and terminal (reviewed in [27]). Unlike the
human nephron, the Drosophila Malpighian tubules can be precisely dissected and examined to evaluate
cyst-reducing molecules [27,30,31].

A mimetic of the second mitochondria-derived activator of caspases (Smac) was shown to
ameliorate cysts in a murine ADPKD model [32]. Using the Drosophila BicC PKD model, we have
recently characterized the substantial cyst-reducing properties of four novel Smac mimetics confirming
a potential for Smac mimicry in ameliorating PKD, which further underscores conservation of the renal
cystic mechanisms [30]. ADPKD is incurable, urging the discovery of anti-cystic drugs. A repurposed
antagonist of the vasopressin V2 receptor, tolvaptan has been approved for use in a subset of ADPKD
patients between the ages of 18 and 50, presenting a moderate decline in renal function, as well as
fast disease progression [33,34]. Tolvaptan-induced hepatotoxicity and possible loss of efficacy over
time limit its broad use in PKD therapy [34]. In an effort to offer remedy to the larger ADPKD patient
population, several molecules and diet-induced strategies targeting altered cystic cell metabolism are
being studied (e.g., [35–37]). Unlike several antineoplastic compounds, such molecules exhibit low
general toxicity and may present wider applicability. In fact, because ADPKD is chronic and must be
managed in the long-term, an ideal ADPKD drug would have no to low toxicity.

1.2. Melatonin

Melatonin (N-acetyl-5-methoxytrypamine) is a ubiquitous neurohormone that, in humans,
is produced and secreted at night from the pineal gland and is also made locally by cells in
the brain [38,39], skin [40], gastrointestinal tract [41], lymphocytes [42], several other tissues,
and potentially all cells [43]. Melatonin is thought to function pleiotropically to synchronize most
physiological functions with the circadian cycle (reviewed in [44]). In mammalians, melatonin
acts via G protein-coupled receptors MT1 and MT2, which are ubiquitously expressed in the
central nervous system [45–49]. Other melatonin receptors may also exist, and melatonin may also
function in receptor-independent ways (reviewed in [50]). Melatonin reduces oxidative stress, anxiety,
hypertension [51–53] and pain [54]. Melatonin has been found to extend the lifespan of rodents and
fruit flies, while treating age-related diseases such as premature aging and carcinogenesis [49,53,55–59].

Consistent with its numerous physiological effects, melatonin has long been known as an oncostatic
in a variety of cancer types and is thought to function at multiple levels ([58]; reviewed in [60,61]).
Melatonin reduces proliferation of several cancer cells in vitro, e.g., breast [62–68], melanoma [69,70]
via several growth factor pathways (e.g., insulin, TOR, mitogen activated protein kinases, MAPK,
epithelial growth factor, EGF [71–76]; reviewed in [61]) and regulates energy production via the insulin
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pathway, nutrient uptake and glycolysis (ib.). Melatonin exerts anti-genotoxic, anti-mutagenic and
anti-oxidative effects in vitro and in vivo, while bringing reactive oxidative species to toxic levels
specifically in cancer cells [56,58,77–91]. Simultaneously, melatonin can induce cancer cell apoptosis
and cell death via multiple pathways [51,75,92–94]. Moreover, melatonin was found to suppress
angiogenesis by inhibiting the abnormal proliferation and migration of endothelial cells ([68,95–97];
reviewed in [98]) and to play immunomodulatory functions (reviewed in [61]). One notable ADPKD
feature is the hyperproliferation of the tubular epithelium to form cysts through the activation of
evolutionarily conserved pathways ([3,4,99], reviewed in [16]). Moreover, ADPKD causes oxidative
stress and inflammation [100–102]. The cellular pathways of reactive oxidative response are conserved
in Drosophila [103–106].

Considering the wide and potentially beneficial effects of melatonin, as well as its low toxicity
profile [107–109], we tested the cyst-reducing potential of melatonin utilizing the Drosophila PKD model.
The BicC fly model of renal cystogenesis was previously used successfully to test the anti-cystic activity
of rapamycin [21] and Smac mimetics [30]. Here, we report that melatonin was found to substantially
reduce cysts in the Drosophila PKD model.

2. Results

2.1. Melatonin Significantly Reduced Cysts in the Renal Tubule of BicC∆/YC33 Mutants

Populations of BicC∆/YC33 flies aged 0–2 days were fed either vehicle (ethanol) or 150 µM melatonin
and treated in parallel (Figure 1). When compared to the vehicle-treated siblings, 150 µM melatonin
significantly reduced cysts in both the anterior and posterior tubules of the milder BicC∆/YC33 flies
(n = 50) by 36% (total 529 vs. 340 cysts, p = 0.0029) and 31% (total 551 vs. 412 cysts, p = 0.0117),
respectively (Table 1, Figure 2).
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Figure 1. Protocol for testing the melatonin anti-cystic activity. BicCΔ/YC33 and BicCΔ/IIF34 flies (aged 0–
2d) were placed in food-containing vials mixed with either vehicle (ethanol) or 150 µM melatonin at 
nighttime. Malpighian tubules were micro-dissected after 18 days of treatment and cysts scored 
(population aged 18–20d). 

Table 1. Overall cyst reduction upon melatonin treatment of BicC mutants. 

 Anterior Tubules Posterior Tubules 
BicCΔ/YC33 (n = 50) 36% (p = 0.0029) 31% (p = 0.017) 
BicCΔ/IIF34 (n = 50) 18% (n.s.)  7% (n.s.)  

Bold indicates significant cyst reduction; Italics indicate populations yielding p > 0.05 (statistically not 
significant, n.s.). 

2.2. Melatonin Treatment Displayed Regional Specificity in BicCΔ/YC33 Mutants 

Figure 1. Protocol for testing the melatonin anti-cystic activity. BicC∆/YC33 and BicC∆/IIF34 flies
(aged 0–2d) were placed in food-containing vials mixed with either vehicle (ethanol) or 150 µM
melatonin at nighttime. Malpighian tubules were micro-dissected after 18 days of treatment and cysts
scored (population aged 18–20d).

Table 1. Overall cyst reduction upon melatonin treatment of BicC mutants.

Anterior Tubules Posterior Tubules

BicC∆/YC33 (n = 50) 36% (p = 0.0029) 31% (p = 0.017)
BicC∆/IIF34 (n = 50) 18% (n.s.) 7% (n.s.)

Bold indicates significant cyst reduction; Italics indicate populations yielding p > 0.05 (statistically not significant, n.s.).

2.2. Melatonin Treatment Displayed Regional Specificity in BicC∆/YC33 Mutants

Similar to human nephrons, the Drosophila renal tubules display regional specialization and
differential response to Smac mimics [30]. Thus, we examined the regional physiological response
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to melatonin treatment. In the BicC∆/YC33 flies, melatonin appeared to reduce cysts in the proximal,
intermediate, and terminal regions of the anterior tubules, respectively, by 59, 37 and 31% (total 27 vs.
11 cysts (p = 0.0389), 306 vs. 193 cysts (p = 0.0031), and 196 vs. 136 cysts (p = 0.0152)) (Table 2, Figure 2).
In the posterior tubules, melatonin administration diminished cysts in the proximal, intermediate and
terminal regions, respectively, by 12, 30 and 25% (total 101 vs. 89 cysts (p = 0.3493), 271 vs. 189 cysts
(p = 0.0070), and 179 vs. 134 cysts (p = 0.0454)) (Table 2, Figure 2).
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of cysts found in each anterior and posterior tubule pair of 50 vehicle- and 50 melatonin-treated cystic flies, 
with mean and standard deviation. (c) Regional analyses. Nested plots indicating the number of cysts 
found in the proximal, intermediate, and terminal region of the anterior and posterior tubule pairs of the 
flies in b, with mean and standard deviation. p values (with Welch’s correction) are indicated. Treatments 
are shown with color: vehicle, left, grey; melatonin, right, green. Melatonin treatment significantly 

Figure 2. Melatonin reduced cysts in the renal tubule of BicC∆/YC33 flies. (a) Representative Malpighian
tubules micro-dissected from BicC∆/YC33 flies treated with either vehicle (ethanol) or 150 µM melatonin
were photographed ex vivo. Arrows indicate exemplary cysts. (b) Nested plots reporting overall
number of cysts found in each anterior and posterior tubule pair of 50 vehicle- and 50 melatonin-treated
cystic flies, with mean and standard deviation. (c) Regional analyses. Nested plots indicating the
number of cysts found in the proximal, intermediate, and terminal region of the anterior and posterior
tubule pairs of the flies in b, with mean and standard deviation. p values (with Welch’s correction)
are indicated. Treatments are shown with color: vehicle, left, grey; melatonin, right, green. Melatonin
treatment significantly reduced cysts in all regions of the Malpighian tubules of BicC∆/YC33 flies (p < 0.05),
except for the proximal region in the posterior tubules.

Table 2. Regional cyst reduction upon melatonin treatment of BicC mutants.

Anterior Tubules Posterior Tubules

Proximal Intermediate Terminal Proximal Intermediate Terminal

BicC∆/YC33 59%
p = 0.0389

37%
p = 0.0031

31%
p = 0.0152

12%
p = 0.3493

30%
p = 0.0070

25%
p = 0.0454

BicC∆/IIF34 7%
p = 0.9051

21%
p = 1296

16%
p = 0.1798

2%
p = 0.9013

9%
p = 0.4891

7%
p = 0.5161

Bold indicates significant cyst reduction; Italics indicate populations yielding p > 0.05 (statistically not significant).
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Therefore, melatonin administration significantly reduced cysts in BicC∆/YC33 flies overall,
with apparent slightly higher efficacy in the anterior tubule. Moreover, melatonin reduced cysts
in the proximal, intermediate and terminal regions of the anterior tubules and in the intermediate
and terminal regions of the posterior tubules, with the proximal region displaying a trend toward
cyst reduction.

2.3. Melatonin Treatment Was Less Efficient in BicC∆/IIF34 Mutants

The BicC allelic combination, BicC∆/IIF34 yields more severe defects than BicC∆/YC33 despite
expressing higher levels of a truncated BicC protein [110] and may be a dominant negative [21].
Melatonin was administered to the BicC∆/IIF34 flies (n = 50) with identical procedure. Melatonin
induced an overall trend towards reduced cysts in both anterior and posterior tubules. However,
phenotypic variability was such that p-values resulted above significance threshold. Specifically,
compared to vehicle-treatment, the anterior tubule displayed 18% less cysts (total 432 vs. 354 cysts,
p = 0.1204) and the posterior tubule 7% less (total 503 vs. 469 cysts, p = 0.5329) (Table 1, Figure 3).
Along the different regions of the Malpighian tubules of BicC∆/IIF34 flies, melatonin administration
also produced a trend in cyst-reduction in the proximal, intermediate, and terminal regions of the
anterior tubules, respectively, by 7, 21 and 16% (total 15 vs. 14 cysts (p = 0.9051), 217 vs. 172 cysts
(p = 0.1296), and 200 vs. 168 cysts (p = 0.1798)) (Table 2, Figure 3). In the posterior tubules, melatonin
diminished cysts in the proximal, intermediate and terminal regions by 2, 9 and 7% (total 93 vs. 91
cysts (p = 0.9013), 206 vs. 188 cysts (p = 0.4891), and 204 vs. 190 cysts (p = 0.5161)) (Table 2, Figure 3).
Therefore, melatonin administration yielded a trend in cyst reduction in the more severely cystic
BicC∆/IIF34 flies; however, p-values remained above significance threshold.
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Figure 3. Melatonin did not reduce cysts in BicC∆/IIF34 flies. (a) Representative Malpighian tubules
micro-dissected from BicC∆/IIF34flies treated with either vehicle (ethanol) or 150 µM melatonin were
photographed ex vivo. Arrows indicate exemplary cysts. (b) Nested plots reporting overall number of



Molecules 2020, 25, 5477 6 of 16

cysts found in each anterior and posterior tubule pair of 50 vehicle- and 50 melatonin-treated cystic
flies, with mean and standard deviation. (c) Regional analyses. Nested plots indicating the number of
cysts found in the proximal, intermediate, and terminal region of the anterior and posterior tubule pairs
of the flies in b, with mean and standard deviation. p values (with Welch’s correction) are indicated.
Treatments are color-coded: vehicle, left, grey; melatonin, right, green. Melatonin treatment of
BicC∆/IIF34 flies produced a trend in cyst reduction, however, did not significantly differentiate the
treated vs. untreated populations.

3. Discussion

Melatonin, a pleiotropic hormone, has long been studied for the treatment of age-related diseases
and carcinogenesis. Suggesting a renoprotective role, decreased melatonin levels correlate with renal
dysfunction in chronic kidney disease (CKD) [111–114]. Melatonin was found to protect rat kidneys
against oxidative damage [115–117]. Upon carbon tetrachloride-induced oxidative damage, melatonin
restored antioxidant enzyme levels and improved kidney histopathology [116]. Notably, diabetic
and IgA nephropathies are characterized by increased circulating reactive oxygen species [118,119].
Early ADPKD pathogenesis has a strong component of oxidative stress [120] with reduced expression of
antioxidant enzymes [100]. The reactive oxidative response is conserved in Drosophila [103–106,121–123].
Therefore, melatonin by lowering oxidative damage to the renal tubular cells, may similarly improve
cysts in both mammalian and Drosophila renal tubules. Here, we report that melatonin exhibits
cyst-reducing effects in the first-in-kind Drosophila model of PKD [21,27,30,31].

The BicC PKD fly model recapitulates phenotypic and molecular hallmarks of PKD1-induced
PKD [21] and conserved pharmacological response to Smac mimetics [30]. In the mammalian response
to pro-apoptotic signals and TNF-α/TNF receptor (TNFR) activation, the Smac protein is released from
the mitochondria, which activates the caspase cascade [124]. Smac mimicry has been exploited in
oncology to induce apoptosis in TNF-α-dependent cancers [125,126]. Administration of small peptide
mimetics of the Smac has been shown to be sufficient to activate the caspase cascade and mitigate
cancer [125,126]. Both ADPKD patients and the Pkd1−/− mouse display high TNF-α amounts in the
cystic fluid; moreover, the cystic cells feature higher-than-normal expression of the TNFR1 receptor.
Unlike other tubular cells, the cyst-lining cells have abundant TNFR and are bathed in TNF-α-rich
fluid, which is thought to fuel an autoactivating loop promoting cyst growth [32,127]. Because of
such specific and constitutive TNF-α activation in the cells of ADPKD cysts, one Smac mimetic has
been tested in a murine model to preferentially eliminate cystic cells while sparing the non-cystic
tubular portions [32]. TNF signaling is highly conserved in Drosophila [128–131]. We showed that,
similar to the ADPKD mouse, administration of four novel Smac mimetics to the BicC fly PKD model
significantly reduced cysts in the renal tubules [30]. This underscores the conservation of cystic
pathways between human and Drosophila. Interestingly, melatonin has been shown to decrease TNF-α
expression [132–135], which raises the possibility that melatonin pleiotropic functions may contribute to
renal tubule normalization. In further support of this possibility, melatonin is a known antiproliferative
that normalizes several overactive pathways in both cancer and ADPKD, e.g., ERK, mTOR, PI3K/Akt,
PKC [1,16,53,58,71,136–143]. Note, the BicC fly model of PKD also exhibits hyperactive mTOR [21].

In 1861, it was reported that renal physiology has circadian rhythmicity [144]. Excretion of water,
urea and electrolytes all follow 24-h cyclicity [145,146]. Defective glomerular filtration in patients
with CKD may disturb sleep (reviewed in [113]). In end-stage renal disease (ESRD), the severity of
insomnia appeared to correlate directly with disease progression [112], and inversely with melatonin
levels [147–153]. While specific knowledge of the ADPKD situation is limited, deteriorating kidney
function reduces circadian rhythm amplitude [112], suggesting that patients in late stage ADPKD may
also have reduced melatonin level and/or function. Melatonin has only been tested in two small clinical
trials to treat CKD-related sleep disturbances and the results of one such trials have been published [154].
Small trial NCT04336566 was designed to test melatonin effects on renal function in CKD, however,
its results have not been made public. Melatonin pre-treatment has also been found to potentiate the
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beneficial anti-apoptosis, anti-oxidation, anti-inflammation effects of mesenchymal stem cell (MSC)
therapy to treat acute kidney injury (AKI) and CKD ([155], reviewed in [156]). In a rat CKD model,
melatonin pre-treated MSCs also reduced fibrosis in the kidney [135,156]. Together, this evidence
strongly suggests that melatonin is crucial for maintaining proper kidney function and that nephrological
diseases compromising renal capacity appear to upset the melatonin-dependent pathways.

In the Drosophila PKD model, nightly administration of 150 µM melatonin efficiently reduced cysts
in the BicC∆/YC33 mutants, compared to vehicle-treated flies. These effects were observed both along
the entire Malpighian tubules, and regionally. Melatonin reduced cysts in the anterior and posterior
tubules by over 30% (p < 0.012). In the terminal, intermediate and proximal regions of the anterior
tubules of BicC∆/YC33 flies, melatonin reduced cysts by 31–59% (p < 0.039). In the posterior tubules,
melatonin treatment reduced cysts in the terminal and intermediate regions by 25 and 30% respectively
(p < 0.045), while showing a trend towards reduction in the proximal region. Such differential response
to melatonin is expected to be rooted onto the functional and physiological differences documented
for the anterior and posterior tubules and the tubule regional specializations ([157]; reviewed in [27]).
This property is also consistent with our previous observations of regionally distinct effects of Smac
mimetics in the same PKD fly model [30]. In contrast to the BicC∆/YC33 mutants in which melatonin
significantly reduced renal cysts, BicC∆/IIF34 flies only showed a trend of regional cyst reduction.
Notably, the BicC∆/IIF34 genotype may be dominant negative [21]. This suggests that the genotype may
influence the extent of melatonin response of the cystic renal tubule. Future investigations will decipher
how melatonin may reduce renal cysts and how specific BicC mutations may affect the melatonin
cyst-reducing activity in the renal tubule.

Several core cellular pathways are disrupted in ADPKD. As disease progresses, physiological
compensation (e.g., through vasopressin signaling) compounds cellular changes [1]. The molecular
detail of PKD pathology is largely unknown [24]. Melatonin biological activity as a potential ameliorator
of PKD cystic pathology is intriguing. Firstly, its low toxicity is especially attractive for the long-term
management of chronic PKD. Second, melatonin is a master cellular regulator conserved throughout
evolution with pleiotropic functions that may help normalize several dysregulated pathways in PKD,
e.g., oxidative stress, cell proliferation, fibrosis, renal circadian functions. Tolvaptan, a vasopressin
V2 receptor antagonist, appears to primarily target vasopressin-dependent compensation in PKD
through mechanisms conserved among mammals. Melatonin may potentially be combined with
tolvaptan to reduce toxicity and treat PKD. In oncology, melatonin has been found to potentiate several
chemotherapeutics, while simultaneously protecting the patient from their ill effects (e.g., [158–168]).
If such property is conserved to its cyst-reducing activity, melatonin may become a prospective
candidate for utilization as a single or combination drug in PKD therapy.

4. Materials and Methods

4.1. Fly Lines and Husbandry

BicC mutants were generated as in [21,30]. Briefly, virgin female flies harboring a BicC deletion in
trans to the CyO balancer chromosome, Df(2L)RA5/CyO (obtained from the Bloomington Drosophila
Stock Center) were crossed with males carrying one of two hypomorphic BicC mutations in trans to CyO,
namely BicCYC33/CyO and BicCIIF34/CyO. BicC mutants were selected as the straight-winged progeny
with genotypes Df(2L)RA5/BicCYC33 (hereby BicC∆/YC33) and Df(2L)RA5/BicCIIF34, (hereby BicC∆/IIF34).
Such BicC allelic combinations produce truncated proteins and sterile BicC flies [21]. The BicC∆/IIF34

genotype yields a more severe cystic phenotype than the BicC∆/YC33 combination and may be dominant
negative [21]. Eclosed adult flies were collected every two days to generate 0–2-day old populations to
be used in the assays.
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4.2. Cystic Index

The cystic analysis was performed as in [30], with the following modifications. The 0–2-day old
BicC mutant females were housed in vials containing 2 mL cornmeal food (Jazzmix, Fisher Scientific)
that were replaced every three days to ensure freshness. During daytime, flies were fed plain cornmeal
food. In the evening, flies were transferred into identical vials to which equal volumes (50 µL) of either
vehicle (ethanol, control) or 150 µM melatonin (resuspended in ethanol) were added and then incubated
overnight. In the morning, flies were transferred to vials with plain cornmeal food. The timing of
dissection of the Malpighian tubules for melatonin efficacy was determined empirically with ten female
flies micro-dissected at 8, 12, 18, and 25 days after treatment beginning and 18 days post-treatment
was chosen for further analyses. This corresponds to fly populations of individuals aged 18–20 days.
Larger 0–2-day old fly populations were then established and fed either melatonin or vehicle as
above for 18 days, after which the Malpighian tubules were micro-dissected from 50 female flies in
phosphate buffered saline (PBS). Cysts were counted separately for the anterior and posterior tubules,
differentiating each tubular region (i.e., proximal, intermediate and terminal), due to their known
physiological differences ([157]; reviewed in [27]). Wild-type tubules are elongated and regularly
shaped, while BicC mutant tubules appear larger and deformed by cysts. Cysts were scored as any
tubular deformation creating uni- or bi-lateral expansions or extra-branches as in [30]. To determine
that flies ingested melatonin, green dye was added to the food and melatonin mixture. After three
days, the dye can be visualized through the semi-transparent abdominal cuticle (Figure S1). Data were
plotted using the Graphpad Prism 8.0 software (https://www.graphpad.com/scientific-software/prism/)
as nested distributions and analyzed statistically. Unpaired t-tests were performed with both Excel
and Graphpad Prism 8.0 and the Welch’s correction added, because the populations may not have
equal standard deviations. p values of less than 0.05 were considered significant and indicative of
cyst-reducing activity. The cystic index raw data can be found in Table S1.

4.3. Microscopy

Malpighian tubules from aged and treated flies as indicated were manually micro-dissected in
1× PBS, washed and equilibrated into a 3:1 1× PBS:glycerol solution as in [30] and photographed on
a Leica MZ FLIII Fluorescence Stereomicroscope with Leica MZ series 10×/21B Widefield adjustable
eyepieces equipped with a Canon DS126201 EOS 5D MARK II camera, using visible light. Canon raw
files (CR2) were converted into TIF format using the Adobe Lightroom 3.2 software (Adobe Systems,
San Jose, CA, USA).

Supplementary Materials: The following are available online, Figure S1: Melatonin feeding control, Table S1:
Cystic index raw data.
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