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Abstract: The interactions of small molecule drugs with plasma serum albumin are important
because of the influence of such interactions on the pharmacokinetics of these therapeutic agents.
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) is one such drug candidate that has
recently gained attention for its promising clinical applications as an anti-cancer agent. This study
sheds light upon key aspects of AICAR’s pharmacokinetics, which are not well understood.
We performed in-depth experimental and computational binding analyses of AICAR with human
serum albumin (HSA) under simulated biochemical conditions, using ligand-dependent fluorescence
sensitivity of HSA. This allowed us to characterize the strength and modes of binding, mechanism of
fluorescence quenching, validation of FRET, and intermolecular interactions for the AICAR–HSA
complexes. We determined that AICAR and HSA form two stable low-energy complexes, leading
to conformational changes and quenching of protein fluorescence. Stern–Volmer analysis of the
fluorescence data also revealed a collision-independent static mechanism for fluorescence quenching
upon formation of the AICAR–HSA complex. Ligand-competitive displacement experiments, using
known site-specific ligands for HSA’s binding sites (I, II, and III) suggest that AICAR is capable
of binding to both HSA site I (warfarin binding site, subdomain IIA) and site II (flufenamic acid
binding site, subdomain IIIA). Computational molecular docking experiments corroborated these
site-competitive experiments, revealing key hydrogen bonding interactions involved in stabilization
of both AICAR–HSA complexes, reaffirming that AICAR binds to both site I and site II.

Keywords: AICAR; human serum albumin (HSA); static fluorescence quenching; synchronous
fluorescence; 3D fluorescence; FRET; Trp214; fluorophore microenvironment; molecular docking; MOE

1. Introduction

Human serum albumin (HSA) is the most abundant blood serum protein [1]. It transports and
interacts with many endogenous substances (water, small cations, fatty acids, hormones, bilirubin)
and exogenous ligands, including small bioactive drugs [1,2]. HSA is an ideal drug-delivery and
transport protein, mainly because of its extraordinary ligand binding properties, excellent water
solubility, and stability profiles (pH range of 4–9 and temperature up to 60 ◦C for 10 h) [2,3]. Most orally
administered drugs are hydrophobic and poorly soluble in blood plasma, thus drug–HSA complexes
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aid in the systemic drug’s solubility and distribution [1–3]. Binding to HSA also improves drug stability,
half-life, and differential uptake into diseased cells vs. the normal cells [4]. Therefore, HSA is often
used as an appropriate in vitro model transport protein for studying the structural and biochemical
basis of drug–protein interactions and the evaluation of drug-like properties related to distribution,
bioavailability, and efficacy [1].

HSA is a small globular protein (MW 66.7 kDa) comprising a single non-glycosylated polypeptide
chain of 585 amino acids with a heart-shaped tertiary structure (80 Å × 80 Å × 30 Å) [5]. X-ray 3D
structural analysis of HSA reveals three homologous α-helical domains (I–III), each including two
subdomains, A and B, stabilized by a total of 16 disulfide bridges [5]. Subdomain IIA contains the
protein’s main intrinsic fluorophore, a tryptophan residue (Trp-214), whose fluorescence is extremely
sensitive to its microenvironment [6]. Hence, this Trp residue is often used to probe HSA’s structural
changes upon ligand binding using various fluorescence spectroscopy techniques [7].

The cell-permeable nucleoside, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and
its structural derivatives have recently received a great deal of attention for their broad-spectrum
anti-cancer activity profiles [8]. AICAR activates 5′-AMP-activated protein kinase (AMPK), a master
cellular energy sensor, coordinating metabolic pathways that balance nutrient supply with energy
demand [9]. Recent studies have shown that AICAR’s cytotoxic and proapoptotic effects against various
in vitro models of human cancer is in-part mediated through the AMPK signaling network [9,10].
AICAR has very few cytotoxic effects on most normal counterpart cells, including human fibroblast
cells, thus mostly acting as a cancer-specific cytotoxic agent [9,10]. While there are numerous literature
reports on AICAR’s bioactivity, the characterization of its drug-like properties and pharmacokinetics
remains incomplete and thus warrants further study. Since the interaction of anti-cancer agents with
plasma proteins, including HSA, significantly influences their pharmacokinetic properties, we aim to
characterize the structural and biophysical basis for AICAR–HSA binding using experimental and
computational techniques. The detailed analysis of AICAR–HSA binding interactions can provide
valuable insights about AICAR’s in vivo pharmacokinetic properties, as well as HSA’s potential as a
drug delivery system in future studies [11].

2. Results and Discussion

2.1. Protein Fluorescence Quenching of HSA by AICAR

Fluorescence spectroscopy has been widely used to investigate the intermolecular interactions
between small ligands and proteins, leading to various ligand-induced changes in protein biophysical
properties, including fluorescence quenching, binding affinity, energy transfer, and conformational
dynamics [12]. Herein, fluorescence quenching refers to any process (i.e., binding of a ligand)
that decreases the protein fluorescence intensity because of the changes in the fluorophore’s
microenvironment. Protein fluorescence quenching, as well as a shift in the maximum emission
wavelength (λem) upon ligand–protein complex formation, can help profile the specific protein-binding
sites and binding energies. The intrinsic fluorescence spectra of HSA in the absence and presence of
AICAR in increasing concentrations are shown in Figure 1. The fluorescence emission spectrum of
HSA displays λem of 322 nm at an excitation wavelength (λex) of 280 nm.

AICAR caused progressive fluorescence quenching of HSA without changing λem or the shape of
the peaks. There was an approximately 30% decrease in HSA fluorescence intensity at the highest
AICAR concentration (50 µM). This suggests that AICAR specifically interacts with HSA and quenches
its intrinsic fluorescence in a concentration-dependent manner.
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Figure 1. Fluorescence quenching spectra of 5-aminoimidazole-4-carboxamide ribonucleoside–human 
serum albumin (AICAR–HSA) complexes. Fixed [HSA] = 5 μM, increasing concentration of [AICAR] = 5–
50 μM, pH = 7.4, T = 298 K, in 10x-PBS buffer. 
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Furthermore, dynamic fluorescence quenching does not require actual ligand binding, leading to no 
change in the protein’s conformational structure or function. In contrast, static fluorescence quenching 
primarily results from the formation of a stable bound protein–quencher complex. Thus, the quenching 
constant (Kq) increases with decreasing diffusion frequency, representing an inverse dependence upon 
temperature [13,14]. 

Dynamic and static quenching can be distinguished by both biomolecular quenching rate constants 
(Kq) and their contrasting dependence upon temperature. The maximum Kq value for a collision-
controlled dynamic quenching mechanism is typically 7.4 × 109 L∙mol−1∙s−1 (298K), while a higher Kq value 
indicates a binding-controlled static mechanism [15]. 

The mathematical relationship between protein fluorescence quenching as a function of quencher 
concentration is described by the Stern–Volmer equation. This model is often used to predict the 
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Figure 1. Fluorescence quenching spectra of 5-aminoimidazole-4-carboxamide ribonucleoside–human
serum albumin (AICAR–HSA) complexes. Fixed [HSA] = 5 µM, increasing concentration of [AICAR] =

5–50 µM, pH = 7.4, T = 298 K, in 10x-PBS buffer.

2.2. Fluorescence Quenching Mechanism

Fluorescence quenching of a protein in the presence of a ligand (i.e., a quencher) can occur through
either a dynamic or static mechanism [12]. Dynamic fluorescence quenching stems primarily from
transient intermolecular collisions between the protein and the quencher. Thus, the rate constant for
quenching (Kq) increases with increasing collision frequency in a temperature-dependent manner.
Furthermore, dynamic fluorescence quenching does not require actual ligand binding, leading to no
change in the protein’s conformational structure or function. In contrast, static fluorescence quenching
primarily results from the formation of a stable bound protein–quencher complex. Thus, the quenching
constant (Kq) increases with decreasing diffusion frequency, representing an inverse dependence upon
temperature [13,14].

Dynamic and static quenching can be distinguished by both biomolecular quenching rate
constants (Kq) and their contrasting dependence upon temperature. The maximum Kq value for a
collision-controlled dynamic quenching mechanism is typically 7.4 × 109 L·mol−1

·s−1 (298 K), while a
higher Kq value indicates a binding-controlled static mechanism [15].

The mathematical relationship between protein fluorescence quenching as a function of quencher
concentration is described by the Stern–Volmer equation. This model is often used to predict the
mechanism of fluorescence quenching [16]:

F0/F = 1 + Kqτ0[Q] = 1 + KSV[Q] (1)

The quenching rate constant is calculated using the following equation:

Kq = KSV/τ0 (2)

Here, F0 and F represent the equilibrium fluorescence intensities in the absence and presence of
quencher, respectively. KSV is the Stern–Volmer constant, [Q] is the quencher concentration, Kq is the
biomolecular quenching rate constant, and τ0 is the average lifetime of the protein in the absence of
any quencher.

The relative fluorescence intensity data (F0/F) as a function of quencher concentration was obtained
at three different temperatures (298 K, 310 K, and 318 K). The values of Ksv are determined by the
slope of the linear function of F0/F vs. the quencher concentration [Q]. To calculate the Kq, the average



Molecules 2020, 25, 5410 4 of 17

literature value of the fluorescence lifetime for HSA in the absence of any quenchers of (τ0 = 10−8 s)
was used [17].

The calculated values of KSV and Kq for the interaction of AICAR with HSA at three different
temperatures are listed in Table 1. The values of both KSV and Kq decrease with increasing temperature,
suggesting a static fluorescence quenching mechanism for AICAR–HSA complex formation. The values
of Kq were approximately two orders of magnitude larger than the limiting bimolecular diffusion rate
constant (Kdiff = 7.4 × 1010 L·mol−1

·s−1 at 298 K), further validating a static quenching mechanism that
involves the formation of a ground state AICAR–HSA complex at equilibrium.

Table 1. Quenching rate constants and Stern–Volmer constants for HSA–AICAR complex.

T (K) Kq (M−1 s−1) × 1011 Ksv (M−1) × 103 R2

298 8.539 8.539 ± 0.293 0.991
310 8.653 8.653 ± 0.337 0.988
318 8.223 8.223 ± 0.292 0.990

2.3. Thermodynamic Binding Constants and Interaction Sites between HSA and AICAR

2.3.1. Thermodynamic Binding Parameters

The thermodynamic equilibrium-binding constant (Kb) for the AICAR–HSA interaction and the
number of AICAR binding sites (n) on HSA were calculated from a double logarithmic plot of log (F0 −

F)/F versus log[Q]. This method employs the following equation [18]:

log (F0 − F)/F = logKb + nlog[AICAR] (3)

The values of n and Kb were obtained from the slope, and the y-intercept of these plots (Figure 2),
respectively and are listed in Table 2. The Kb values for the association of AICAR and HSA are in
the range of 103–104 M−1, showing a moderate affinity between these two substances [18] (Table 2).
The increase in Kb values with increasing temperature indicates that the protein can better accommodate
the ligand at 318 K than at 298 K, which may be due to HSA’s binding pocket being more accessible to
AICAR at the higher temperature. The change in Gibbs free energy (∆G) of the AICAR–HSA complex
formation under experimental conditions (pH = 7.4; T = 298, 310 and 318 K) was also determined using
the following equation [18]:

∆G = −RTlnKb (4)
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Table 2. Thermodynamic binding parameters of the AICAR–HSA complex.

T (K) Kb(M−1) × 103 n R2 ∆G (kJ·M−1)

298 38.301 ± 0.00146 1.161 ± 0.0356 0.9925 −26.15
310 48.031 ± 0.00120 1.181 ± 0.0170 0.9983 −27.78
318 139.064 ± 0.00119 1.292 ± 0.0161 0.9988 −31.31

Kb, binding constant; R, linear correlation coefficient; n, the number of binding sites.

Here, Kb is the binding constant calculated by Equation (3), T is temperature (K), and R is the
universal gas constant (8.314 JK−1mol−1). As shown in Table 2, the negative ∆G indicates that the
formation of the AICAR–HSA complex is exergonic and thus thermodynamically favorable.

2.3.2. Site-Specific Ligand Competitive Displacement Experiments

HSA is a major serum transporter protein for a variety of ligands, such as fatty acids, steroids,
and drugs, because of its multiple hydrophobic ligand-binding pockets. It has three reversible
ligand-binding sites with fairly distinct structural requirements for the ligands [19,20]. Sudlow et al.
[6,19] have suggested two principal regions of reversible ligand binding sites on the HSA protein
(sites I and II). Site I, located within subdomain IIA, has a pocket that preferentially binds to drugs
with bulky heterocyclic scaffolds, such as warfarin, bilirubin, phenylbutazone, etc. Site II, located
within subdomain IIIA, has a binding pocket that preferentially binds to smaller drugs with aromatic
rings such as ibuprofen, flufenamic acid, tryptophan, etc., [20,21]. Digitoxin, a lipid soluble glycoside,
is believed to bind to site III, a binding groove located in subdomain IB of HSA [22,23].

To determine AICAR’s preferred binding site on HSA, site marker competitive displacement
experiments were performed with warfarin (specific for site I), flufenamic acid (specific for site II), and
digitoxin (specific for site III) as control ligands at 298 K. For this analysis, varying amounts of AICAR
(5–50 µM), were added to a solution containing fixed amounts of HSA (5 µM) and site probe (5 µM),
and the relative fluorescence units (RFU) at the maximum emission wavelength (λem = 322 nm) was
measured upon excitation at (λex = 280 nm, Figure 3).Molecules 2020, 23, x 6 of 17 
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Figure 3. Effect of site marker probes (A) warfarin; (B) flufenamic acid; (C) digitoxin; and (D) double
logarithmic plots of log (F0 − F)/F versus log[Q] for HSA-AICAR complexes. AICAR (5–50 µM), fixed
HSA and probe concentrations at 5 µM, pH 7.4, 10x-PBS buffer at 298 K.
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The values of the apparent binding constants in the presence of site markers were evaluated using
Equation (3), and the results are listed in Table 3. As evident from these results, AICAR–HSA binding
in the presence of warfarin and flufenamic acid was reduced by 32.5% and 28.9% respectively, when
compared to AICAR–HSA without any site marker. This suggests that flufenamic acid and warfarin
compete and displace AICAR from binding sites I and II on HSA. Therefore, AICAR may bind at both
site I in subdomain IIA and site II in subdomain IIIA of HSA. On the other hand, in the presence of
digitoxin, the decrease in Kb value was negligible, suggesting that AICAR does not bind in site III and
its binding is independent of digitoxin binding [22].

Table 3. Equilibrium binding constants in site-competitive displacement experiments at 298 K.

T (K) System Kb(M−1) × 103 n R2 ∆G (kJ·M−1)

298 AICAR–HSA 38.30 ± 0.001 1.16 ± 0.04 0.9925 −26.15

298 AICAR–HSA–Warfarin 28.38 ± 0.001 1.12 ± 0.01 0.9987 −25.40

298 AICAR–HSA–Digitoxin 40.18 ± 0.001 1.14 ± 0.01 0.9988 −26.27

298 AICAR–HSA–Flufenamic Acid 24.55 ± 0.001 1.08 ± 0.03 0.9953 −25.04

Kb, binding constant; R, linear correlation coefficient.

2.4. Characterization of Conformational Change in HSA upon AICAR Binding

2.4.1. Synchronous Fluorescence Spectroscopy

Synchronous fluorescence spectroscopy is a sensitive method used to probe changes in the binding
pocket conformation and polarity upon ligand binding to a protein [24]. Often, ligand-induced protein
conformational changes lead to binding pocket realignment which can affect the microenvironment of
nearby HSA’s fluorophores, Trp (214) and Tyr (150, 411, 452) residues.

Here, the monochromators were set for synchronous scans at fixed wavelength differences
(∆λ) between the excitation wavelengths (λex) and the measured emission wavelengths (λem) for
AICAR–HSA complexes. Upon AICAR binding, conformational rearrangements leading to changes in
the microenvironment of HSA fluorophores, Tyr and Trp residues, can be measured when the ∆λ is set
at 15 nm and 60 nm respectively. The synchronous fluorescence data at ∆λ = 15 nm and ∆λ = 60 nm
are summarized in Table 4.

Table 4. The synchronous fluorescence data for HSA and AICAR–HSA (1/1 ratio) (A) ∆λ = 15 nm, and
(B) ∆λ = 60 nm.

(A) Intensity (cps)
± SD Wavelength (nm)

HSA 4303 ± 100 302
AICAR–HSA 3910 ± 55 302

% Change −9.14
Shift 0

(B) Intensity (cps)
± SD Wavelength (nm)

HSA 12,166 ± 219 346
AICAR–HSA 11,430 ± 255 348

% Change −6.05
Shift 2

As seen in Figure 4, at ∆λ = 60 nm, the synchronous fluorescence intensity of HSA decreased with
increasing AICAR concentration by ~6%, consistent with conventional fluorescence quenching data
observed earlier. Furthermore, a slight but persistent red shift of 2 nm in maximum λem was observed.
When probing for Tyr at ∆λ = 15 nm, although the fluorescence intensity of HSA decreased with
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increasing AICAR concentration by ~9%, there was no obvious blueshift or redshift in the maximum
λem. This suggests that the AICAR binding mostly affects the binding pocket conformation near
Trp-214 in site I and thus its microenvironment polarity, with negligible effects on conformation near
the Tyr residues (411, 452) in site II.
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2.4.2. Three-Dimensional Fluorescence Spectroscopy

Three-dimensional fluorescence spectroscopy is an effective method for studying protein structural
dynamics upon ligand binding [25,26]. In this experiment, the three axes of the fluorescence spectra
are the excitation wavelength (λex), the maximum emission wavelength (λem), and the fluorescence
intensity. Figure 5 presents the 3D fluorescence spectra and the corresponding contour maps for free
HSA and AICAR–HSA-bound complexes, the detailed descriptions of peaks I and II are outlined below:

Peak I (λex = 360 nm, λem = 360 nm) is the Rayleigh scattering peak, which reflects changes in the
overall protein surface area as a result of ligand binding. For complexes of AICAR–HSA (1/1 and 2/1
ratios), the intensity of this peak decreased (~7%) and (~13%) respectively with no shift in maximum
λem. This suggests a moderate decrease in the total protein surface area upon AICAR binding in a
concentration-dependent manner.

Peak II (λex = 280 nm, λem = 340 nm) is due to intrinsic fluorescence of HSA’s main fluorophore,
Trp214 residue and reflects changes in its microenvironment polarity as a result of ligand binding. For
the 1/1 AICAR–HSA complex, we observed a moderate decrease in fluorescence intensity (~8%) with
no red or blue shift in the maximum λem. However, for the 2/1 AICAR–HSA complex, we observed
a slightly more decrease in fluorescence intensity (9%) and but a significant 10 nm red shift in the
maximum λem.

Overall, in the presence of AICAR, the fluorescence intensities of peaks I and II decreased in a
concentration-dependent manner, in agreement with the steady-state and synchronous fluorescence
quenching observed in previous experiments. Furthermore, a 10 nm red shift observed in the
maximum λem for peak II (AICAR–HSA, 2/1) indicates that ligand binding flexed the HSA’s binding
site I conformation and thus altered the microenvironment polarity around HSA’s main fluorophore,
Trp214 (Table 5). This observation further corroborated the synchronous fluorescence data.
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Table 5. 3D fluorescence spectroscopy data for HSA/AICAR in ratios of 1/1 and 1/2.

System Peak
Number

Peak Position
λex/λem (nm/nm)

Intensity (cps)
± SD

% Relative
Intensity Change Shift λem (nm)

HSA
1 360/360 252,756 ± 23,400

2 280/340 9080 ± 537

AICAR–HAS
(1:1)

1 360/360 235,360 ± 17,600 −6.9 0

2 280/340 8393 ± 575 −7.6 0

AICAR–HSA
(2:1)

1 360/360 220,564 ± 9960 −12.7 0

2 280/350 8293 ± 269 −8.7 10

2.4.3. UV-VIS Absorption Spectroscopy

UV-VIS absorption spectroscopy is a basic spectrometric method used to investigate structural
changes that accompany the formation of bound ligand–protein complexes [27,28]. The aromatic
amino acids in proteins, tryptophan and tyrosine, strongly contribute to UV absorption of proteins at
280 nm and 274 nm respectively. The UV-Vis absorption spectum for the free AICAR ligand, free HSA,
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and bound HSA/AICAR complexes is shown in Figure 6. Here we see that HSA in its AICAR-bound
form (at all three different AICAR concentrations) displays a distinct λmax value at 269 nm, which
represents an 8-nm blue shift from the λmax value of free HSA and a 3-nm red shift from λmax value for
free AICAR (Figure 6). We also see a concentration-dependent increase in HSA’s peak intensity for
the bound AICAR–HSA complexes. This data reaffirms that HSA and AICAR form a new molecular
entity that has its own characteristic UV absorption, one that is distinct from the free AICAR and the
free HSA. The data also corroborates our original spectral analysis and confirms the existence of a true
bound AICAR–HSA complex.
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Figure 6. UV-VIS absorption spectra of free HSA (10 µM), AICAR–HSA (40:10 µM) subtracted from
AICAR 40 µM, free AICAR (20, 30, 40 µM), AICAR–HSA complexes (20:10, 30:10, 40:10 µM), pH 7.4,
10x-PBS buffer at 298 K.

2.5. Fluorescence Energy Transfer between HSA and AICAR–HSA

Fluorescence resonance energy transfer (FRET) is a prominent physical phenomenon used
to investigate the molecular interactions of ligands with fluorescent proteins [29,30]. In FRET,
the non-radiative resonance energy is transferred over greater than interatomic distances without
conversion to thermal energy, and without any molecular collision. FRET leads to a reduction in the
donor’s (protein fluorophore) fluorescence intensity and excited state lifetime, and an increase in the
acceptor’s (ligand) emission intensity [31].

For an efficient fluorescence energy exchange between donor and acceptor, three conditions
must be met. First, the donor must have inherent fluorescence; second, there must be a fair amount
of overlap between the donor’s fluorescence emission spectrum and the acceptor’s absorption or
excitation spectrum, and finally, the donor and acceptor molecules must be in close proximity to one
another (~1–10 nm) [31]. Thus, FRET is an effective tool for evaluating the distance between the protein
donor and the ligand in the bound ligand–protein complexes [31]. The overlap of the UV absorption
spectrum of AICAR with the fluorescence emission spectrum of HSA is shown in Figure 7.
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The energy transfer efficiency and the distance between the donor (Trp214 of HSA) and the
acceptor (AICAR) can be calculated using the theoretical model of Förster non-radiative energy transfer,
Equation (5) [30,31]:

E =
R6

0

R6
0 + r6

=
F0 − F

F0
(5)

Here, F and F0 are the fluorescence intensities of HSA in the presence and absence of AICAR respectively;
r is the distance between the donor and the acceptor, R0 is the critical energy transfer distance when
the transfer efficiency is 50%; and E is the specific energy transfer efficiency (E). The value of E was
calculated using fluorescence intensities of HSA (5 µM) with and without AICAR (5 µM) at 298 K
using (λex = 280). The value of R0 was evaluated using Equation (6):

R0 = 0.211 × (K2
× n−4 ΦDJ(λ))1/6 (6)

Here, K2 represents the spatial orientation factor related to the relative dipole directions of the
donor/acceptor. n is the average refractive index of the medium (10X-PBS) in the wavelength range
where there is a notable fluorescence-absorption spectral overlap (295–440 nm). ΦD is the fluorescence
quantum yield of the donor HSA.

J is the spectral overlap integral of the fluorescence-absorbance spectra for the donor–acceptor
pair (Figure 7). λ is the maximum emission wavelength of HSA (λem = 302 nm) as a fluorescent donor.
The value of J can be calculated using Equation (7):

J =
ΣF(λ)ε(λ)λ4∆λ

ΣF(λ)∆λ
(7)

Here, F(λ) represents the fluorescence intensity of the fluorescent donor at emission wavelength
λ, and ε(λ) represents the molar absorption coefficient of the acceptor at the absorption wavelength
λmax. The literature values of 2/3, 0.15, and 1.336 were used for K2, ΦD (HSA), and n (10x-PBS)
respectively [31,32].

Using Equations (5)–(7), the values of J, R0, E, and r were calculated to be J = 9.42 × 1012 cm3
·L/mol,

R0 = 1.72 nm, E = 0.06, and r = 2.72 nm, respectively, at 298 K.
The calculated value of R0 = 1.72 nm and r = 2.72 nm are within the range for FRET distal

requirements, indicating an efficient intermolecular energy transfer and formation of a stable
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AICAR–HSA complex. This also further corroborates the previously stated static mechanism for
fluorescence quenching that occurred in AICAR–HSA complexes.

2.6. Molecular Docking Studies for the Interaction AICAR–HSA

Competitive displacement studies suggest that AICAR has binding affinity for both HSA site I
(warfarin site) and site II (flufenamic acid site). Thus, we performed the molecular docking experiments
to probe for AICAR’s ability to dock into both sites I and II. The computational docking experiments
were performed with 3-D x-ray structural models of three protein complexes, HSA complexed with
heme (PDB-ID 1N5U, 1.90 Å), warfarin (PDB-ID 2BXD, 3.05 Å), and ibuprofen (PDB-ID 2BXG, 2.70 Å),
using the molecular modeling system, MOE-CCG and Autodock-vina [33,34]. The ribbon renditions of
the lowest energy AICAR–HSA complexes, representing the most stable binding modes (for sites I
and II) are shown in Figure 8. The results predict that hydrogen bonding is the main non-covalent
interaction that stabilizes the highest-scoring docking conformation of AICAR–HSA complexes at either
binding sites. The predicted binding affinity scores for the bound complexes are −6.61 kcal/mol and
−6.52 kcal/mol for site I and II respectively, suggesting that AICAR has a slightly higher affinity for site
I than II, which corroborates the experimental data on site-specific competition assays presented earlier.Molecules 2020, 23, x 12 of 17 
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For AICAR binding at HSA site I, extensive H-bonds are donated by Glu-292 and Lys-195 residues
to three ribose oxygen atoms at C1, C2, and C5. The most energetically favorable interaction is an
H-bond from the amide hydrogens of 4-carboxamide to carbonyl oxygen on the side chain of Glu-153
(Figure 8). In addition, side chain carbonyl oxygens within Glu-153 and Glu292 serve as H-bond
acceptors from the amide and amine hydrogens on AICAR’s 4-carboxamide and 5-aminoimidazole
groups respectively. These interactions are predicted to occur at distances required for effective
H-bonding ranging from 2.78 Å to 3.43 Å. For AICAR binding at HSA site II, the side chain carbonyl
oxygen of Glu354 serves as an H-bond acceptor from the ribose hydroxyl group at C3 position (distance
of 2.65 Å). In addition, the Lys-351 forms a notable hydrophobic aromatic π-stacking interaction with
the imidazole ring of AICAR (distance 4.32 Å).

Overall, the molecular docking studies provide a useful framework for visualizing at the atomic
level the specific ligand–protein interactions and the quantitative analysis of binding affinity scores,
which are in good agreements with the site marker competition data presented earlier. The visualized
output and molecular details for all docking experiments, including specific binding site interactions
are included in the supplementary materials.
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3. Materials and Methods

3.1. Materials

HSA, Uniprot ID: P02768 (99.0% purity by electrophoresis) and AICAR, Drug Bank ID: DB01700
(98.0% purity by HPLC) were purchased from Sigma (St. Louis, MO, USA) and Chem Cruz (Dallas, TX,
USA), respectively. Warfarin, flufenamic acid, and digitoxin were purchased from Sigma-Aldrich, Alfa
Aesar (Tewksbury, MA, USA) and TCI America (Portland, OR, USA), respectively. All other reagents
were of analytical grade and used without further purification. Millipore deionized water was used
in all experiments. Sample masses were accurately measured on a Mettler Toledo analytical balance
(Columbus, OH, USA) with 0.1 mg precision, and all pH measurements were made using an AB-15
Accumet Basic pH meter (Waltham, MA, USA).

Preparation of Stock Solutions

The stock solutions of HSA (100 microM, M.W. 65.7 kDa), AICAR (1 mM, M.W. 258.23 g/mol),
warfarin (1 mM, M.W. 308.33), flufenamic acid (1 mM, M.W. 281.23 g/mol), and digitoxin (1 mM, M.W.
764.94 g/mol) were prepared in 10x-PBS (137 mM NaCl, 10 mM phosphate, 2.7 mM KCl) at pH 7.4.

3.2. Major Equipment

UV-VIS Absorption Spectroscopy

The UV-Vis absorption spectra were recorded at room temperature on a double-beam Lambda
25 spectrometer (Perkin Elmer, Waltham, MA, USA), equipped with 1.0 cm quartz cells. The UV
measurements of HSA in the presence and absence of AICAR were made in the 200–400 nm range.
HSA concentration was fixed at 5 µM while AICAR concentration was varied from 5 µM to 50 µM in
the 10x-PBS buffer at pH-7.4.

3.3. Fluorescence Measurements

3.3.1. Fluorescence Spectroscopy Experiments

Fluorescence measurements (counts per second, CPS) were carried out using a SpectroMax M2/M2e
spectrometer (Molecular Devices, San Jose, CA, USA) from Molecular Devices equipped with Cellstar
96 well plates (black with clear flat bottom, non-treated, no lid). The concentration of HSA was fixed
at 5 µM, and the AICAR concentration was varied from 5 to 50 µM for the steady-state fluorescence
experiments. Fluorescence spectra were recorded at 25 ◦C (298 K), 37 ◦C (310 K), and 45 ◦C (318 K) in
the 290–500 nm range upon excitation at a wavelength of 280 nm [33]. All samples were prepared
in 0.1 M phosphate-buffered saline (10x-PBS) at pH 7.4 and were incubated at each temperature for
30 min. Each experimental measurement was performed in triplicate to ensure reproducibility. Under
identical conditions, there was no detectable fluorescence emission for AICAR in the concentration
range of 5 to 50 µM.

3.3.2. Synchronous Fluorescence Spectroscopy

The Fluorolog spectrometer (HORIBA, Ann Arbor, MI, USA) equipped with 1.0 cm quartz
cells was used for measuring RFU for the synchronous and 3D-fluorescence experiments. Here, the
monochrometers were set for the simultaneous scanning of excitation and emission at a fixed wavelength
difference (∆λ = λem − λex). The excitation and emission slit widths were set at 1 nm. The scan speed
was set at 240 nm/min. In each assay, HSA (5 µM) was titrated with AICAR (at concentrations from 5 to
50 µM). The spectral behavior of tyrosine and tryptophan residues of HSA was observed at ∆λ = 15 nm
and ∆λ = 60 nm, respectively, at 25 ◦C.
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3.3.3. Site Marker Competitive Fluorescence Experiments

The competitive binding site studies were performed using three different site probes, namely
warfarin, flufenamic acid, and digitoxin for sites I, II, and III, respectively, by keeping the concentration
of HSA and the probe constant (5 µM each). The AICAR solution was varied from 5 to 50 µM with
30 min incubation periods at room temperature for each probe in PBS at pH 7.4.

3.3.4. 3D Fluorescence Spectra

3D fluorescence spectra were recorded by scanning excitation wavelength in the 200–500 nm
range and emission wavelength from 200–600 nm at 10 nm intervals for 5 µM of protein solution with
and without 5 µM and 10 µM AICAR. The scanning parameters were the same as in the fluorescence
quenching experiments.

3.4. Characterization of AICAR–HSA Binding Interactions by Molecular Docking

3.4.1. Protein Preparation

The 3-D modeled structures of each HSA protein molecule complexed with heme (1N5U), warfarin
(2BXD), and ibuprofen (2BXG) were downloaded in PDB format from the RCSB database. The PDB files
were input into the Molecular Operating Environment (MOE) software (ACA-ANS, 2019.01) [33,34].
The MOE-QuickPrep tool was used to prepare the protein structure for the docking experiments.
The semi-automated preparation steps included: Removing the unbound water molecules near the
binding sites; adding all missing terminal residues; adding all of the hydrogens on polar atoms (oxygen
and nitrogen), adjusting the protonation states of amino acids with ionizable side chains; and correcting
the poorly resolved X-ray structural discrepancies and anomalies in side chain conformation; and
energy minimization using MMFF94 to the RMSD gradient value of 0.001. The default physiological
conditions (T = 300 K, pH = 7.0, salt-conc. = 0.1 M) were used for setting up the Protonate 3D within
QuickPrep.

3.4.2. Ligand Preparation

The ligand structures for AICAR (CID:17513), flufenamic acid (CID:3371), warfarin (CID:54678486)
were downloaded in sdf format from the PubChem database. The structures in CID file formats were
input into Spartan ’18 parallel Suite (Wavefunction, Inc., Irvine, CA, USA). The ligand structures were
energy minimized to determine the lowest energy conformations in an aqueous environment with
the density functional theory (DFT), method Becke-3-Lee Yang Parr (B3LYP), and the standard 6-31G*
basis set.

3.4.3. Docking

Standard searching and scoring functions of MOE were used to predict the molecular depiction of
the binding pocket, interacting residues, and the binding energies for the computationally docked
ligand–protein models [35]. The binding sites for the ligands were first searched on each of the
prospective protein structures, using MOE’s triangle matcher placement function. The London
∆G placement scoring function was then used to score and rank the binding sites on the basis of
binding energy. Using MOE’s induced fit refinement function, the conformational ensemble for
the ligand–protein bound complexes were sampled for refinement and the most favored bound
conformation was selected when the RMSD gradient value fell below 0.01 Å. The maximum number
of iterations for the minimization process was set at 500 kcal/mol. Then, the highest-affinity bound
conformations generated by the refined induced fit protocol were rescored using the refined affinity
∆G docking scoring function in MOE.
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4. Conclusions

In this study, we have systematically analyzed the structural and biophysical basis of molecular
interactions of AICAR and HSA using multiple experimental and modeling methodologies.
We primarily relied on the sensitivity of HSA’s main fluorophore, Trp-214, in our experimental
characterization of ligand binding, steady-state fluorescence quenching, protein conformational
change, and FRET validation. The steady-state fluorescence experiments indicate that the formation of
AICAR–HSA leads to a significant decrease in the fluorescence of Trp-214 in a concentration-dependent
manner. The analysis of the Stern–Volmer fluorescence parameters, KSV and Kq, reveal an inverse
correlation with temperature, indicating the formation of stable AICAR–HSA complexes. Furthermore,
fluorescence quenching occurred predominantly through a collision-independent static mechanism.
The values of Kq were approximately two orders of magnitude larger than the limiting bimolecular
diffusion rate constant (Kdiff = 7.4 × 1010 L·mol−1

·S−1 at 298 K), further validating a static fluorescence
quenching mechanism.

The characterization of thermodynamic binding parameters for the AICAR–HSA complex
formation reveal a moderate association constant and change in Gibbs free energy (Kb = 4.18 × 10−5 M−1,
∆G = −26.4 kJ/mol at 298K). The negative ∆G indicates that the overall AICAR–HSA interactions were
thermodynamically favorable and thus spontaneous. Using Förster’s theory, FRET parameters of
R0 = 1.72 nm and r = 3.05 nm are within the range for FRET distal requirements, further validating
the formation of stable AICAR–HSA complexes, robust intermolecular interactions, and an efficient
energy transfer from Trp-214 to AICAR, causing fluorescence quenching.

Using ligands with known binding sites in competitive displacement experiments, including
warfarin (site I, subdomain IIA), flufenamic acid (site II, subdomain IIIA), and digitoxin (site III,
subdomain IB), we found that AICAR has dual binding affinity for HSA′s prominent binding sites I and
II. The collective experimental data from synchronous fluorescence and 3D-fluorescence spectroscopy
demonstrate that AICAR binding triggers a moderate conformational change in the microenvironment
of the Trp214 fluorophore. This may explain why Trp-214′s characteristic fluorescence is more affected
by AICAR binding in site I.

Molecular docking results suggest that AICAR interacts via several non-covalent hydrogen
bonding interactions with Glu292, Glu153, Lys195, and Glu199 in Sudlow’s site I and with Glu354 and
Lys351 in Sudlow’s site II. These results are in good agreement with prior data from ligand competition
experiments. While AICAR does not share significant similarities with warfarin and flufenamic acid
in terms of size, structure, or hydrophobicity, it binds to HSA’s site I and site II with comparable
affinity respectively. This is not unprecedented, since prior studies have characterized HSA as a
unique monomeric protein with remarkable allosteric properties and conformationally adaptable
binding pockets (sites I and II) [35]. HSA offers various ways of accommodating structurally diverse
compounds with broad fitting requirements in either site I and II [1].

A drug’s affinity to bind to human serum albumin (HSA) is an important consideration in drug
development, because it generally influences drug absorption, distribution, and elimination, and
therefore its bioavailability [35]. AICAR is a small bioactive molecule with promising therapeutic
potential against human cancer. Herein, we have systematically characterized AICAR’s binding to HSA,
using a variety of experimental, theoretical, and computational methods, including fluorescence, UV-vis
spectroscopy, Stern–Volmer theory, and molecular docking. This study provides new biochemical and
structural information on AICAR’s binding to HSA that is valuable for the evaluation of its therapeutic
potential and for future rational drug design studies.
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Supplementary Materials: The following are available online. Figure S1: The modular structural organization
of HSA; Figure S2: 2D binding interaction map- AICAR in HSA site-II; Figure S3: 2D binding interaction map-
AICAR in HSA site-I; Figure S4a: Electrostatic surface maps for bound AICAR in HSA Sudlow site-I & II; Figure
S5a: HSA (PDB:ID 2BXD) bound AICAR Sudlow site-I; Figure S5b: HSA (PDB:ID 1N5U) bound AICAR Sudlow
site-I; Figure S5c. Binding pocket VDW interaction Surface map bound HSA:AICAR; Figure S6a. HSA (PDB:ID
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