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General experimental procedures

'H NMR (400 MHz), 3C NMR (100 MHz) and '°*F NMR (376 MHz) spectra were recorded
on a JEOL 400 MHz instrument (JEOL RESONANCE Inc., Tokyo, Japan). Chemical shifts
were referenced to residual solvent peaks and are given as follows: chemical shift (6, ppm),
multiplicity (s, singlet; br, broad; d, doublet, t, triplet; q, quartet; m, multiplet), coupling
constant (Hz), integration. LC-MS analysis was carried out using an analytical Dionex
UltiMate 3000 HPLC instrument (Dionex Softron GmbH, Germering, Germany) coupled to a
Thermo Finnigan LCQ DECA XP MAX mass spectrometer (Thermo ELECTRON
CORPORATION, San Jose, California, USA). HR-ESI-MS analyses were performed at the
Organisch Chemisches Institut WWU Minster, Germany or at the Stenhagen Analyslab AB,
Molndal. All compounds displayed the expected isotope distribution pattern. Anhydrous

CH2Cl2 was obtained by distillation from CaH under an Ar atmosphere.

Compounds 1 [1], 6 [1], L1a%?" [1], LnL1a%®" (Ln = Eu, Gd, Tb) [1] and L1d®°" [2] were
synthesized following literature methods. All other chemicals were from commercial sources
(Sigma Aldrich, St. Louis, Missouri, USA or Fluorochem, Hadfield, UK) and used as

received.

Paramagnetic 'H NMR. 'H NMR spectra of Eu-complexes were recorded at 400 MHz
using the following parameters: cooling for 5 min until the temperature stabilizes at 0+0.1 °C
for samples measured in CD30D and at 10£0.1 °C for samples measured in D2O; relaxation
delay: 1 s; number of scans: 128; number of points: 131,072; range: —60 to 60 ppm. For Yb
complexes measured at r.t. the number of points were 524,288 and the range was from —240

to 240 ppm.

Chromatography. Preparative chromatography was carried out on silica gel [Normasil 60

chromatographic silica media (40-63 micron)] and aluminum oxide [activated, neutral,
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Brockmann Activity I, Sigma-Aldrich (Sigma Aldrich, St. Louis, Missouri, USA)]. Thin
layer chromatography was performed on silica-coated (60G F254) aluminum plates from
Merck and aluminum oxide coated with 254 nm fluorescent indicator aluminum plates from
Sigma-Aldrich. Samples were visualized by UV-light (UVP LLC, Upland, California,

USA) (254 and 365 nm).

HPLC-analysis was performed on a Dionex UltiMate 3000 system (Dionex Softron
GmbH, Germering, Germany) using a Phenomenex Gemini® C18 TMS end-capped 150
mmx4.6 mm HPLC column with HPLC water (0.05% formic acid): CH3CN (0.05% formic
acid) eluent system using the methods: (a) 0—8 min: 10—20% & 8-12 min: 20% iso & 12-16
min 20—90% CH3CN, 0.5 mL/min; (b) 0-8 min: 10% iso & 8-12 min: 10%—50% & 12-16
min 50%—90% CH3CN, 0.25 mL/min. UV- (UltiMate 3000 Photodiode Array Detector
(Dionex Softron GmbH, Germering, Germany)) and ESI-MS detections (Thermo
Finnigan LCQ DECA XP MAX (Thermo ELECTRON CORPORATION, San Jose,
California, USA)) were used. Semi-preparative HPLC was performed on Dionex UltiMate
3000 system (Dionex Softron GmbH, Germering, Germany) using a Phenomenex
Gemini® C18 TMS end-capped 150 mmx30 mm HPLC column with water (0.05% formic
acid): MeOH (0.05% formic acid) eluent system with the same UV-detection. The method

utilised for semi-preparative purification was the following: 0—6 min: 14% iso & 6-9 min:

95% iso & 9—-12 min: 14% iso MeOH, 25 mL/min.

Electrochemistry. Cyclic voltammograms (CV) were obtained in an argon atmosphere at
room temperature (~20 °C) using an AUTOLAB PGSTAT 100 potentiostat, or an AUTOLAB
PGSTAT 204N potentiostat, equipped with a 3 mm glassy carbon (GC) working electrode, a
Pt wire auxiliary electrode, and a saturated calomel electrode (SCE) as a reference. The
solution was stirred in between each measurement. The solution was let to equilibrate for 10 s
at the start potential before starting the measurements. A step potential of —0.9 mV was used
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for 50, 100 and 200 mV/s scan rates, and of —2 mV was used for 500 and 1000 mV/s scan
rates. For measurements in aqueous media the supporting electrolyte was LiCl (0.1 M), in

case of non-aqueous (DMF) solutions it was TBAPFg (0.1 M).

General procedure for CV measurements in water: a solution of LiCl (0.1 M) was prepared
and pH was set to ~6.5 by addition of NaOH (0.1 M) or HCI (0.1 M). This solution was added
to the electrochemical cell, allowed to stir, and purged with argon for 10 min prior to each
measurement. The working electrode was polished with 0.05 pm alumina on a polishing pad,
washed with water and ethanol, and dried with air. The three electrodes (GC working
electrode, Pt wire auxiliary electrode, and SCE reference electrode) were inserted into the cell
setup and a background scan was recorded with a scan rate of 100 mV/s, and four sweeps. A
lack of oxygen redox signal verified that oxygen had been removed below detectable levels.
The Eu complex (1 mM) was added in the solution, and the pH of the resulting solution was
adjusted to ~6.5 (Table S1) by addition of NaOH (0.1 M) or HCI (0.1 M). The resulting
solution was stirred and purged with argon for 10 min. Scans were recorded at various scan
rates (50 to 1000 mV/s) with four sweeps for each measurement. The voltammograms
obtained at various scan rates are shown in Figures S28-34. The anodic and cathodic peak
current intensities (lpa and Ipc respectively) were plotted vs. the square root of scan rate and fit

to a linear regression to ensure that the electron transfer was heterogenous.

General procedure for CV measurements in DMF: a sample of TBAPFs (194 mg) was
dissolved in 5 mL of DMF (0.1 M) and purged with argon for 10 minutes. After detecting
blank signal without oxygen redox events, the CVs were recorded as it is described in the
procedure for aqueous media, with 1 mM concentration of Eu complex. At the end of each
experiment a sample of Ferrocene (Fc) was added at the tip of the spatula into the

electrochemical cell to adjust potentials according to Fc%/Fc* redox events vs SCE which was
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then shifted according to the difference vs NHE [3]. The cyclic voltammograms of increasing

scan rates are displayed in Figures S35-41.

UV-Vis absorption and emission spectroscopy. All measurements were performed in
PIPES-buffered HPLC water or D.O at pH 6.5 or pD 6.5. [LnL] was nominally 10 pM,
however, small quantities of Ln salts may diminish this. Glycerol was of 99.9+% purity.
Quartz cells with 1 cm optical pathlengths were used for the room temperature measurements.
The absorbance spectra were measured by a Varian Cary 100 Bio UV-Visible
spectrophotometer (VARIAN AUSTRALIA PTY LTD, Mulgrave, Victoria, Australia).
The emission and excitation spectra, lifetimes, time-resolved spectra and quantum yields were
recorded on a Horiba FluoroMax-4P (HORIBA Jobin Yvon, Edison, New Jersey, USA).
All emissions were corrected by the wavelength sensitivity (correction function) of the

spectrometer. All measurements were performed at room temperature unless stated otherwise.

Quantum vyields were measured at room temperature, using quinine sulfate (QS) in H2SO4
0.05M (®ref =0.59) as reference [4] in Equation S1. Quantum vyields were calculated
according to (3), with ®s the quantum yield of the sample, ®ref the quantum yield of the
reference, | the integrated corrected emission intensity of the sample (s) and of the reference
(ref), fa the absorption factor of the sample (s) and of the reference (ref) at the excitation
wavelength and n the refractive indexes of the sample (s) and of the reference (ref). The
concentration of the complexes was adjusted to obtain an absorbance around the maxima of
the antennae matching that of the QS fluorescence standard. The excitation wavelength where
the absorption factors of the samples and of the reference were the same was chosen (i.e.
where the absorptions are identical). The corrected emission spectra of the sample and
reference standard were then measured under the same conditions over the 330-800 nm (320-
800 nm for carbostyril complexes) spectral range as well as blank samples containing only the

solvent (i.e. PIPES-buffered aqueous solutions). The appropriate blanks were subtracted from
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their respective spectra, and the antenna fluorescence and Ln(lll) luminescence were
separated by fitting the section of the antenna emission overlapping the Ln(l11) emission with
an exponential decay or with a scaled emission spectrum from the corresponding Gd(lI)
complexes. The quantum yields were then calculated according to (3). The given relative error
on the quantum yields (6@ = A®/®, where A® is the absolute error) take into account the
accuracy of the spectrometer and of the integration procedure [d(Is/lref) < 2%], an error of 0.59
+0.01 on the quantum vyield of the reference QS [3(Drer) < 2%], an error on the ratio of the
absorption factors [d(faref/fas) < 5%, relative to the fixed absorption factor of the reference
QS] and an error on the ratio of the squared refractive indexes [8(ns?/nref?) < 1%, < 0.25%
around 1.333 for H20 [5] and 1.328 for DO [6] on each individual refractive index], which
sums to a total estimated relative error that should be d®s < 10%. A limit value of 10% is thus

chosen.

_Is fAref (ns)?
P= Ivef X fas X (Mref)? X djref st

Low temperature measurements were done in quartz capillaries (0.2 cm optical pathlength)
at 77 K by immersion in a liquid No-filled quartz Dewar and with addition of glycerol (1 drop)

to the solutions (9 drops) measured at room temperature.

Lifetimes were recorded 0.05 ms after pulsed excitation at the excitation maxima (Aex) Of
either 315 (coumarin) or 327 nm (carbostyril) by measuring the decay of the lanthanide main
emission peak (i.e. Sm 600 nm, Eu 615 nm and Th 545 nm). The increments after the initial
delay were adjusted between 0.2-20 ps depending on the lifetime in order to have a good
sampling of the decay. The obtained data were fitted by single and double exponential decay
models in OriginPro 9 (OriginLab Corporation, Northampton, Massachusetts, USA), and

the most reliable value was chosen according to the adjusted R? value and the shape of the
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residuals. A relative error of 10% is typically found among a series of measurements on the

same sample.

Hydration numbers (q) were obtained by measuring the lifetimes of the same quantity of
complex in a PIPES buffered solution in H,O and in D,O and fitting the difference according

to the model of Horrocks et al. [7], and Beeby et al [8].

The NIR emission and excitation spectra were recorded on a Horiba Jobin Yvon
Fluorolog3-22 instrument (HORIBA Jobin Yvon, Edison, New Jersey, USA) and

automatically corrected for wavelength dependent instrument sensitivity.
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Additional chemical characterization

LC-MS analysis
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Figure S1. LC-MS analysis of EuL2c®® measured via method (a) from general procedures.
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Figure S3. LC-MS analysis of TbL2c® measured via method (a) from general procedures.

Figure S2. LC-MS analysis of GdL2c®" measured via method (a) from general procedures.
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'H NMR spectra of Ln(111) complexes
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ring protons in red and blue respectively.
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Figure S18. 'H NMR spectrum (400 MHz) of EuL1d®® measured in DO at 10 °C with the

regions corresponding to TSAP and SAP cyclen ring protons in red and blue respectively.
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Figure S19. 'H NMR spectrum (400 MHz) of EuL2d® measured in CD3OD at 0 °C with

the regions corresponding to TSAP and SAP cyclen ring protons in red and blue respectively.
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Figure S20. *H NMR spectrum (400 MHz) of YbL1a®" measured in D,O at r.t. with the

regions corresponding to TSAP and SAP cyclen ring protons in red and blue respectively.
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Figure S25. *H NMR spectrum (400 MHz) of YbL2d® measured in CD3sOD at r.t. with the

regions corresponding to TSAP and SAP cyclen ring protons in red and blue respectively.



Cyclic Voltammetry
In the samples of EuL1-2d°" Eu®* (aq) is also detected in the cyclic voltammograms.
Aqueous solutions

Table S1. pH values of the solutions used in aqueous cyclic voltammetry.

Complex pH

EuCls 6.53
EulL1aca" 6.47
EuL2a% (CI- counterions) 6.51
EuL2c" (CI- counterions) 6.52
EulL1dCou 6.58
EuL2d®° (CI- counterions) 6.53
EuL2d® (OTf counterions) 6.57

Table S2. Cyclic voltammetry of Eu(l11) complexes with OTf-counterions. [

Compound Eyp P! Epa ) Epc ) AE PPl
Eul.2dCo —634 -536 —732 196

el Ey, is a half-wave potential, Epa (Epc) is anodic (cathodic) peak potential, AE is peaks
separation. ! Values are in mV vs. NHE. Measured in H20 (LiCl 0.1 M, pH 6.57) with a
sample concentration of 1 mM at a glassy C electrode using a SCE as a reference electrode

and a Pt wire counter electrode with a scan rate of 100 mV/s.

Table S3. Comparison of cyclic voltammetry data for secondary and tertiary amide-

linked carbostyril Eu(l11) complexes. @

Compound Eyp P! Epa ) Epc ) AE [Pl
EuLlacar -948 —766 -1131 365

Eul1bCar -839 ~771 -908 137
Eul2ac —612 —437 —1787 350

EulL2bCar e —554 472 —643 171

el Ey is a half-wave potential, Epa (Epc) is anodic (cathodic) peak potential, AE is peaks
separation. ®! Values are in mV vs. NHE. Measured in H20 (LiCl 0.1 M, pH 6.3-6.7) with a
sample concentration of 1 mM at a glassy C electrode using a SCE as a reference electrode

and a Pt wire counter electrode with a scan rate of 100 mV/s. [l Data from [9].
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Figure S28. Cyclic voltammograms at various scan rates for EuCls and plot of I,a and Iy vs.
square root of scan rate.

Table S4. Values for linear fit of I,a and Ipc vs. square root of scan rate for EuCls.

Equation: y =a*x+b lpa lpc
Slope (a) 1.85:10°+7.21-10" -3.84-107°+2.26-10~'
Intercept (b) 1.78:10°+4.39-10" -7.59-10~" +1.38-10~'
R-Square (COD) 0.99546 0.9999
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Figure S29. Cyclic voltammograms at various scan rates for EuL1a%" and plot of lpa and Ipc
vs. square root of scan rate.

Table S5. Values for linear fit of 1pa and Iy vs. square root of scan rate for EuL1a%?".

Equation:y =a*x +b Ipa Ipc
Slope (a) 0.86-10°+5.16-10" -1.60-10°+6.33-10"'
Intercept (b) 1.26-10°+2.38-10" -1.82-10"" +2.92.10~'
R-Square (COD) 0.99287 0.99687
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Figure S30. Cyclic voltammograms at various scan rates for EuL2a%" and plot of lpa and Ipc
vs. square root of scan rate.

Table S6. Values for linear fit of 1pa and Iy vs. square root of scan rate for EuL2ac?",

Equation: y =a*x+b Ipa Ipc
Slope (a) 3.43.10°+1.06:10°% -3.57-10°+7.07-10°'
Intercept (b) —2.95-10°+6.47-107 2.50-10°° + 4.30-107
R-Square (COD) 0.99713 0.99883
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Figure S31. Cyclic voltammograms at various scan rates for EuL2c2" and plot of lpa and Ipc
vs. square root of scan rate.

Table S7. Values for linear fit of 1pa and Iy vs. square root of scan rate for EuL2c¢?".

Equation:y =a*x +b Ipa Ipc
Slope (a) 1.23-10°+2.18:10" -2.14-107°+4.38.10~'
Intercept (b) 2.20-10"+1.33-10" —-3.06-10"" + 2.66-107
R-Square (COD) 0.99906 0.99875
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Figure S32. Cyclic voltammograms at various scan rates for EuL1d®°" and plot of lpa and Ipc
vs. square root of scan rate.

Table S8. Values for linear fit of 1pa and Iy vs. square root of scan rate for EuL1d®°Y.

Equation:y =a*x +b Ipa Ipc
Slope (a) 0.72:10°+1.12-107" -2.14-10°+2.62-10'
Intercept (b) 1.40-10~" +6.80-10" -5.13-10" + 1.60-10~/
R-Square (COD) 0.99927 0.99955
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Figure S33. Cyclic voltammograms at various scan rates for EuL2d®°" and plot of lpa and Ipc

VS. square root of scan rate.

Table S9. Values for linear fit of 1p, and Iy vs. square root of scan rate for EuL2d®".

Equation: y =a*x+b Ipa Ipc
Slope (a) 0.62:10°+243-10" -1.85-107°+2.34.10~
Intercept (b) —2.86-1077 +1.48-107 -1.92-107" +1.42-10°'
R-Square (COD) 0.99542 0.99952
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Figure S34. Cyclic voltammograms at various scan rates for EuL2d“°U-OTf and plot of Ipa

and Ipc vs. square root of scan rate.

Table S10. Values for linear fit of 1pa and Iy vs. square root of scan rate for EuL2d°!-OTH.

Equation:y =a*x +b Ipa Ipc
Slope (a) 1.17-10°+1.16:107 -1.81-107°+2.77-10°7
Intercept (b) 3.41.107+7.08-:10° -541-10"" +1.68-10~7
R-Square (COD) 0.9997 0.9993
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Non-agueous (DMF) solutions

Table S11. Cyclic voltammetry of Eu(l1l) complexes in non-aqueous (DMF) media.

Compound E1p Epa Epc AE [
Eu(OTf)3 —433 -349 -518 169
EuLlaca" -1074 -948 -1200 252
EuL 1bCar -1118 -1028 -1208 180
EuL2a®a" (Cl-counterions) -508 437 -579 142
EuL2b%" (OTf-counterions) -501 460 -542 82
EuL1d®cou -1011 -881 -1141 260
EuL2d® (OTf-counterions) ~750 -711 -789 78

Eu2 is a half-wave potential, Epa (Epc) is anodic (cathodic) peak potential, AE is peaks
separation. @ Values are in mV vs. NHE. Measured in DMF (TBAPFs 0.1 M) with a sample

concentration of 1 mM at a glassy carbon electrode using a SCE as a reference electrode and a

Pt wire counter electrode with a scan rate of 100 mV/s. Ferrocene was added to each sample

at the end of experiment and the potentials were adjusted according to reported values [3].
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Figure S35. Cyclic voltammograms at various scan rates for Eu(OTf)s in DMF and plot of lpa

and Ipc vs. square root of scan rate.

Table S12. Values for linear fit of Ipa and Iy vs. square root of scan rate for Eu(OTf)z in
DMF.

Equation:y =a*x+b lpa lpc
Slope (a) 1.67-105+1.08:10° -1.49-105+ 1.26-10°5
Intercept (b) 5.95-108 + 6.55-10~7 -1.41-107% + 7.65-10~7
R-Square (COD) 0.98769 0.97909
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Figure S36. Cyclic voltammograms at various scan rates for EuL1a%" in DMF and plot of Ipa
and Ipc vs. square root of scan rate.

Table S13. Values for linear fit of I, and Iy vs. square root of scan rate for EuL1a%" in
DMF.

Equation: y =a*x+b lpa lpc
Slope (a) 0.80-10°+5.23-10" -1.72-10°+3.71-10°°
Intercept (b) —8.43-107 +3.18-107 -1.12:10°+2.26-10"'
R-Square (COD) 0.98732 0.99861
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Figure S37. Cyclic voltammograms at various scan rates for EuL1b%@" in DMF and plot of Ipa

and Ipc vs. square root of scan rate.

Table S14. Values for linear fit of Ipa and Ipc vs. square root of scan rate for EuL1b%e" in

DMF.
Equation: y=a*x+b Ipa Ipc
Slope (a) 1.30-10°+3.89-107 -2.05-10° +4.01-10°'
Intercept (b) —2.56-10"7 +2.37-107 -2.84-10%+2.44.10"7
R-Square (COD) 0.99733 0.99885

S33



1.0x10°
2x10°° 4
5.0x10°° 4
1x10°% -
= =
= 0 = 0.0 4
¢ e
S El
o &)
%10
Tan -5.0¢10° -
50 mv/s
Sl —onomvis
mv/s =
500 mvis sl \—— EuL2a%", 100 mVis|
—— 1000 mv/s | Blank, 100 mVis
-3x10°F T T T | T T T T 1
15 -10 05 00 05 20 15 10 085 0.0 05
Potential [V vs NHE] Potential [V vs NHE]
2x10°°
1x10°
[ ] Ipa
- LI
= 04 —— Linear fit of ,,
5 —— Linearfit of I
3 -1x10°
2x10°
-3x10°
T T T T T
0.2 0.4 0.6 0.8 1.0

Scan rate [(v/s)'?

Figure S38. Cyclic voltammograms at various scan rates for EuL2a%" in DMF and plot of Ipa

and lpc vs. square root of scan

Table S15. Values for linear
DMF.

rate.

fit of 1pa and lpc vs. square root of scan rate for EuL2a%" in

Equation:y=a*x+b

|pa |pc

Slope (a)
Intercept (b)

R-Square (COD)

2.15-10° + 3.85-107
9.37-107" £ 2.34-10°'
0.99903

—2.45-10°+2.59-10”
-8.90-107 +1.58-10°/
0.99967
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Figure S39. Cyclic voltammograms at various scan rates for EuL2b%@" in DMF and plot of Ipa

and lpc vs. square root of scan

rate.

Table S16. Values for linear fit of lpa and Ipc vs. square root of scan rate for EuL2b®?" in

DMF.

Equation:y=a*x+b

Ipa Ipc

Slope (a)
Intercept (b)

R-Square (COD)

—2.40-107° + 3.64-10°'
-1.09-10° +2.22-10°7
0.99931

2.26-107°+5.08-10~7
4.48-10~" + 3.09-10°/
0.99849
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Figure S40. Cyclic voltammograms at various scan rates for EuL1d® in DMF and plot of

lpa @nd Ipc VS. square root of scan rate.

Table S17. Values for linear fit of 1pa and Ipc vs. square root of scan rate for EuL1d® in
DMF.

Equation: y =a*x+b lpa lpc
Slope (a) 2.86-10° + 1.53-107 -9.08:10° + 2.25-10~"
Intercept (b) —2.83-107+9.33.10°®% 3.34.-10" +1.37-10~
R-Square (COD) 0.99145 0.99816
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Figure S41. Cyclic voltammograms at various scan rates for EuL2d® in DMF and plot of

lpa @nd Ipc VS. square root of scan rate.

Table S18. Values for linear fit of lpa and Ipc vs. square root of scan rate for EuL2d® in
DMF.

Equation: y =a*x+b lpa lpc
Slope (a) 7.80-10°+1.65-10" -1.61-10°+2.89-10°'
Intercept (b) ~1.55-107 £ 1.00-107  5.25-10~7 + 1.76-10~"
R-Square (COD) 0.99866 0.99904
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Photophysical Characterization
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Figure S42. Superimposed UV-Vis absorption spectra of LalL1a®® (magenta line) with
LnL2a%" (Ln = La, Sm, Eu, Gd, Tb, Yb, Lu) (from dark to light blue lines, left) and
LnL2c® (Ln = La, Sm, Eu, Gd, Th, Yb, Lu) (from dark to light green lines, right) complexes
normalized at 328 nm. [LnL] = 10 uM and was measured in aqueous 10 mM PIPES buffer at
pH 6.5 at 293 K.

Wavenumber [10° x cm™] Wavenumber [10° x cm™]
40 35 30 25 40 35 30 25
I T T T T T T T T T T T 1 L T T T T T T T T T T T T

LaL1d® ——LaL1d®™

——SmL1dC —— LaL2dC

EuL1d® —— SmL2d®"

—— GdL1d% EuL2d®"

—— TbL1d%" —— GdL2d°®

—— YbLAdCeu —— TbL2d®®

Lul 1% —— YbL2¢Co

LuL2d®>

PP BT TR BT N N I S B D A
250 275 300 325 350 375 400 250 275 300 325 350 375 400

Wavelength [nm] Wavelength [nm]

Figure S43. Superimposed UV-Vis absorption spectra of LnL1d® (Ln = La, Sm, Eu, Gd,
Th, Yb, Lu) (from black to light purple lines, left) and LaL1d®® (black line) with LnL2d<°u
(Ln = La, Sm, Eu, Gd, Th, Yb, Lu) (from dark to light red lines, right) complexes normalized
at 319 nm. [LnL] = 10 uM and was measured in aqueous 10 mM PIPES buffer at pH 6.5 at
293 K.
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Figure S44. Excitation spectra of the ligand centered phosphorescence emissions of GdL
complexes (black lines, Aem = 435 nm (GdL2a%?"), 462 nm (GdL1-2d®°")), and their steady-
state emission spectra (blue lines, dex = 327 nm (GdL2a%?"), 315 nm (GdL1-2d%%)) at 77 K.
[GdL] = 10 uM with 10% glycerol in 10 mM PIPES buffer aqueous solutions at pH 6.5. The
dark grey lines are at the maxima of the first visible vibronic component of the
phosphorescence spectra (fem = 435 nm (GdL2a%?"), 450 nm (GdL1-2dc°Y)).
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Figure S45. Superimposed excitation spectra of the ligand centered phosphorescence
emissions of Gd complexes (black lines, Aem(GdL1-2d°) = 462 nm), and their steady-state
emission spectra (blue lines, Aex(GdL1-2d®°Y) = 315 nm) at 77 K. [GAL®®] = 10 uM with
10% glycerol in 10 mM PIPES buffer aqueous solutions at pH 6.5.
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Figure S46. Full normalized UV-Vis absorption spectrum of LaL1a®® (10 pM in 10 mM
aqueous PIPES buffer at pH 6.5) at 293 K. Blue numbers are the local maxima.
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Figure S47. Excitation of the ligand-centred emissions (black, Aem = 375 nm for La, Yb and
Lu) and of the Ln(Il) luminescence (Aem = 601 nm for Sm), steady-state (gray) and time-
resolved emission spectra (orange, Sm) of LnL1a%® complexes at 293 K. [LnL1a%®] = 10
UM in aqueous (or D20 for time-resolved emission spectrum of SmL1a®") 10 mM PIPES
buffer solutions at pH (pD) 6.5 with Aex = 327 nm.
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Figure S48. Full normalized UV-Vis absorption spectrum of LalL2a%® (10 uM in 10 mM
aqueous PIPES buffer at pH 6.5) at 293 K. Blue numbers are the local maxima.

Wavenumber [10% x cm']
40 35 30 25 20 15

Normalized Intentisy
@
o
L
(')
g

250 300 350 400 450 500 550 600 650 700 750 800
Wavelength [nm]

Figure S49. Excitation of the ligand-centred emissions (black, Aem = 375 nm for La, Gd, Yb
and Lu) and of the Ln(Ill) luminescence (Aem = 600 nm for Sm, 615 nm for Eu, 545 nm for
Th), steady-state (gray) and time-resolved emission spectra (orange, Sm; red, Eu; green, Tb)
of LnL2a%" complexes at 293 K. [LnL2a%®] = 10 uM in aqueous (or D20 for time-resolved
emission spectrum of SmL2a®) 10 mM PIPES buffer solutions at pH (pD) 6.5 with Jex =
327 nm.
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Figure S50. Full normalized UV-Vis absorption spectrum of LaL2¢®® (10 uM in 10 mM
aqueous PIPES buffer at pH 6.5) at 293 K. Blue numbers are the local maxima.
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Figure S51. Excitation (black) of the ligand-centred emissions (Aem = 375 nm for La, Gd, Yb
and Lu) and of the Ln(Ill) luminescence (Aem = 600 nm for Sm, 615 nm for Eu, 545 nm for
Th), steady-state (gray) and time-resolved emission spectra (orange, Sm; red, Eu; green, Th)
of LnL2c® complexes at 293 K. [LnL2c®¥] = 10 uM in aqueous 10 mM PIPES buffer
solutions at pH 6.5 with Jex = 327 nm.
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Figure S52. Full normalized UV-Vis absorption spectrum of LalL1d® (10 uM in 10 mM

aqueous PIPES buffer at pH 6.5) at 293 K. Blue numbers are the local maxima.
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Figure S53. Excitation (black) of the ligand-centred emissions (Aem = 385 nm for La, Gd, Yb
and Lu) and of the Ln(Ill) luminescence (Aem = 601 nm for Sm, 614 nm for Eu, 545 nm for
Th), steady-state (gray) and time-resolved emission spectra (orange, Sm; red, Eu; green, Th)
of LnL1d®®" complexes at 293 K. [LnL1d®°"] = 10 uM in aqueous (or DO for time-resolved
emission spectrum of SmL1d®%) 10 mM PIPES buffer solutions at pH (pD) 6.5 with Jex =
315 nm.
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Figure S54. Full normalized UV-Vis absorption spectrum of LaL2d® (10 uM in 10 mM
aqueous PIPES buffer at pH 6.5) at 293 K. Blue numbers are the local maxima.
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Figure S55. Excitation (black) of the ligand-centred emissions (Zem = 385 nm for La, Gd, Yb
and Lu) and of the Ln(lIl) luminescence (1em = 600 nm for Sm, 615 nm for Eu, 545 nm for
Th), steady-state (gray) and time-resolved emission spectra (orange, Sm; red, Eu; green, Th)
of LnL2d®°" complexes at 293 K. [LnL2d®°"] = 10 uM in aqueous (or DO for time-resolved
emission spectrum of SmL1d®%) 10 mM PIPES buffer solutions at pH (pD) 6.5 with Jex =
315 nm.
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Table S19. Antenna and Eu(lll)-based luminescence quantum yields from several
independent experiments of EuL complexes. Measurements were performed with [EuL] = 10
MM in 10 mM PIPES-buffered H20 at pH 6.5.

Standard Standard
CompleX d)L [a] d)L,av [b] . . (I)Ln [ﬁ] (an,aV [b] . .
Deviation Deviation

0.75 2.71

EulL2acar 0.77 0.77 0.015 2.75 2.74 0.023
0.78 2.75
1.09 2.51

EulL2cCar 1.18 0.120 2.5 0.014
1.26 2.49
0.61 2.12

EulL1dCou 0.59 0.62 0.031 2.08 2.17 0.129
0.65 2.32
0.59 1.51

EulL2dCou 0.56 0.58 0.015 1.39 1.47 0.069
0.58 1.51
2.52 9.40

EuLlaCar-F 2.54 0.028 9.49 0.120
2.56 9.57
2.06 12.2

EulL2aCcar-F 2.09 0.042 12.25 0.071
2.12 12.3
0.63 2.30

EuL1dCou-F 0.64 0.014 2.34 0.050
0.65 2.37
0.64 3.27

EuL2dCou-F 0.65 0.011 3.34 0.092
0.655 3.40

[a] In %, relative to QS (@ = 0.59) in HSO4 (0.05 M) [4]. ! In %, average quantum yield

from two or three independent measurements.
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Table S20. Antenna fluorescence quantum yields from several independent experiments of

GdL complexes. Measurements were performed with [GdL] = 10 uM in 10 mM PIPES-
buffered H20 at pH 6.5.

. Standard
Complex @, @ Dy oy (] o
Deviation
4.34
GdL2acar 433 4.34 0.01
0.68
GdL1dCou 0.64 0.66 0.03
0.65
GdL2dcou 0.61 0.63 0.03

8] In %, relative to QS (@ = 0.59) in H2S04 (0.05 M) [4]. ©® In %, average quantum yield

from two independent measurements.

Table S21. Antenna and Sm(lll)-based luminescence quantum yields from several

independent experiments of SmL complexes. Measurements were performed with [SmL] =
10 uM in 10 mM PIPES-buffered H20 at pH 6.5.

(] (o] Standard ] 0] Standard
Complex oLt PLav Deviation P ™ PLnav Deviation
3.60 0.198
SmL1acar 366 3.63 0.042 0176 0.187 0.016
3.46 0.232
SmL2acar 333 3.40 0.092 0.183 0.208 0.035
0.63 0.055
SmL1dCou 0.64 0.64 0.007 0.062 0.059 0.005
0.645 0.068
SmL2dCou 0.64 0.64 0.004 0.065 0.067 0.002

el In 9%, relative to QS (& = 0.59) in H2S04 (0.05 M) [4]. ™ In %, average quantum yield

from two or three independent measurements.
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Table S22. Antenna and Sm(lll)-based luminescence quantum yields of SmL in PIPES-

buffered DO and changes relative to solutions in H2O. Measurements were performed with

[SmL] =10 uM in 10 mM PIPES-buffered H20 at pD 6.5.

Complex @ [ L, % [b]
SmL1a%" 3.6 0.66 35
SmL2a%" 3.3 0.60 2.9
SmL1dcum  0.63 0.18 4.7
SmL2dCum 0,64 0.17 36

8] In 9%, relative to quinine sulfate (& = 0.59) in H2SO4 (0.05 M) [4]. I Fold increase relative

to the solution in H20.

Table S23. Antenna and Ln(l11)-based luminescence quantum yields, Ln(l11) lifetimes and

hydration states of LnL2c®?",

Complex D [%] @ D [%] ™ 30 [ms] 20 [MS] q [
LaL2cCar 47 - - - -
SmL2cCr 3.6 0.19 0.011 0.033 -
EuL2cC> 1.2 2.5 0.52 1.98 0.9
GdL2cCr 4.7 ; ] ] )
TbL2cCar 4.0 30.2 1.46 2.65 1.2
YbL2cCar 45 - - - -
LuL2cCar 47 - - - -

Measurements were performed with [LnL2c¢®] = 10uM in 10 mM aqueous PIPES buffer
solutions at pH (pD) 6.5. ¥l Relative to quinine sulfate (@ = 0.59) in HSO4 (0.05 M) [4]. [

Calculated using the equation q = 5(1/ 120 — 1/ 20 — 0.06) for Tb, and q = 1.2(1/ 420 — 1/ m20

—0.25—n x 0.075), where n is the number of nearby N-H oscillators, for Eu [8].
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Table S24. Antenna and Eu(lll)-based luminescence quantum yields from several
independent experiments of EulL2c®® complexes. Measurements were performed with
[EuL2cCar] = 10 uM in 10 mM PIPES-buffered D,O at pD 6.5.

. Standard . Standard
Complex d)L (2] d)L,av (o] .. (an (2] (an,aV o} ..
Deviation Deviation
1.175 11.8
EulL2cCar 1.19 0.018 11.5 0.424
1.20 11.2
2.54 30.2
EulL2cCa—F 2.6 0.078 31.3 1.485
2.65 32.3

a1 In %, relative to QS (@ = 0.59) in H2S04 (0.05 M) [4]. ® In %, average quantum yield

from two or three independent measurements.

Table S25. Decay rates (k) and the amount of excitation energy lost to X-H quenching (Loss)

of EuL complexes. [

Complex  kpzo™  kpyo™  Loss (%) [©

EuL1a®r 1.52 0.461 70
Eul2a® 1.96 0.488 75
EuL1d®" 1.61 0.510 68
EuL2d¢ 1.85 0.498 73

[ [EuL] = 10 uM in 10 mM aqueous or DO PIPES buffer solutions at pH (pD) 6.5. ! In

ms~1, calculated as k = 1/ zons. [€] In ms, calculated as (Knzo—Kp20)/Kkzo.

Table S26. Decay rates (k) and asymmetry values (r) of EuL complexes in H,O and D>O. 1!

Complex krad,Ln [®) knr,Ln [b) rino !° krad,Ln(DZO) [®] knr,Ln(DZO) 1 rpao [

EuL1a®  0.187 1.33 1.13 0.186 0.275 1.12
Eul2a®r  0.196 1.77 1.39 0.194 0.294 1.41
EuL1d®"  0.190 1.42 1.18 0.188 0.322 1.19
Eul2d®" 0.199 1.65 1.42 0.196 0.302 1.41

(e [EuL] = 10 uM in 10 mM aqueous or D,O PIPES buffer solutions at pH (pD) 6.5. [’ In
MS™. Kradtn = 1/ Zrad,Ln; Kor.n = 1/ 7ops — Krad.Ln. [ The ratio of 1)=2/1;=1, where 1)=; is integral of
the Do — ‘F2 emission band (604-640 nm) and ;=1 is integral of the °Do — ’F1 emission
band (582-603 nm).
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Table S27. Photophysical properties of EuL2¢€" in PIPES-buffered H,O and D,0. [

Complex Trad,Ln [b.<] krad,Ln Ld] Tobs [b] knr,Ln Ld] CDLI:E [e. ] Nsens [e-e] e [
EulL.2cCar 5.22 0.192 0.52 1.73 9.9 254 1.37
EulL.2cCar (D20) 5.06 0.198 1.98 0.307 39.1 28.7 1.50

EuL2c¢“-F (D;0)  4.87 0205 238 0.215 48.9 61.6 221

[a] [EuL2ct] = 10 uM and was measured in 10 mM aqueous or D2O PIPES buffer solutions
at pH (pD) 6.5. [b] In ms. [c] Calculated using Eq. 1 and 2. [d] In ms™. Krag.n = 1/ rad,Ln; Knr.Ln
= 1/ 7obs — Krad,Ln. [€] In %. [f] The ratio of l,=2/ls=1, where l;= is integral of the °Do — 'F»
emission band (604-640 nm) and l;-1 is integral of the °Do — F1 emission band (582—603

nm).
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Figure S56. NIR emission spectra of fresh samples of YbLd-3%° from [2] (left) and
measured after 4 years on the same instrument (right) showing relative emission intensities
under similar sample absorbance. [YbLd-3%5] = 10 uM in 10 mM aqueous PIPES buffer, Jex
= 344 nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Figure S57. NIR emission spectra of fresh sample of YbLd-3V¢ from [2] (left) and measured
after 4 years on the same instrument (right) showing relative emission intensities under
similar sample absorbance. [YbLd-3M¢] = 10 uM in 10 mM aqueous PIPES buffer, Aex = 342
nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Figure S58. NIR emission spectra of YbLd-3%s, YbL1 (left) and YbL2 (right) complexes
showing relative emission intensities under similar sample absorbance. [YbL] = 10 uM in 10
mM aqueous PIPES buffer, Zex = 344 (YbLd-3%F), 328 (YbL1-2ace"), 319-318 (YbL1-
YbL2d®!) nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Figure S59. Normalised excitation (black) and emission (red) spectra of fresh sample of
YbLd-3%F from [2] (left) and measured after 4 years (right). [YbLd-3%F%] = 10 uM in 10 mM
aqueous PIPES buffer, Aem = 980 nm, Zex = 344 nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Figure S60. Normalised excitation (black) and emission (red) spectra of fresh samples of
YbLd-3Ve from [2] (left) and measured after 4 years (right). [YbLd-3M¢] = 10 uM in 10 mM
aqueous PIPES buffer, Aem = 979 nm, Aex = 342 nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Figure S61. Normalised excitation (black) and emission (red) spectra of YbL1d®®" (left) and
YbL2d® (right). [YbL°] = 10 uM in 10 mM aqueous PIPES buffer, Aem = 978 (YbL1d®°)
and 985 (YbL2d®!) nm, Jex = 319 (YbL1d®°) and 318 (YbL2d®°") nm, front slits: 14.7 nm,
exit slits: 14.7 nm.
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Figure S62. Normalised excitation (black) and emission (red) spectra of YbL1a%" (left) and
YbL2a% (right). [YbL®] = 10 uM in 10 mM aqueous PIPES buffer, iem = 985 (YbL1a%")
and 980 (YbL2a%") nm, lex = 328 nm, front slits: 14.7 nm, exit slits: 14.7 nm.
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Table S28. Decay rates (k), hydration states (¢) of EuL-F complexes and the amount of

excitation energy lost to X-H quenching (Loss). [

Complex kizor™ kpzor™ Loss (%) gl
EuL1a®-F 1.47 0.437 70 0.9
EuL2aC-F 0.99 0.417 58 0
EuL1d€°"-F 1.45 0.444 69 0.9
EulL2dC°"-F 0.99 0.418 58 0

[a] Formed by the addition of excess KF (0.1 M, 10*-fold excess) to a solution of EuL. [EuL]

= 10 UM in 10 mM aqueous or D-O PIPES buffer solutions at pH (pD) 6.5. [b] In ms,

calculated as k = 1/zobs. [C] In ms, calculated as (Kn2o,F—Kp20,F)/knz0,F. [d] Calculated using the

equation ¢ = 5(1/ 20 — 1/ m20 — 0.06) for Th, and q = 1.2(1/ th20 — 1/ 20 — 0.25 — n x 0.075),

where n is the number of nearby N-H oscillators, for Eu [8].

Table S29. Decay rates (k) and asymmetry values () of EuL-F complexes in H,O and D>O.

[a]

Complex krad,Ln [e] knr,Ln [e]

VH20 [e] krad,Ln(D2O) [b] knr,Ln(DZO) I rpoo (el

EuL1a®-F 0.188
Eul2a®-F 0.206
EuL1d€°"-F 0.193
EuL2d®"-F 0.208

1.28
0.78
1.26
0.78

1.18
2.23
1.27
2.27

0.186
0.204
0.189
0.205

0.251 1.15
0.213 2.19
0.255 1.23
0.214 2.24

[a] [EuL] = 10 pM in 10 mM aqueous or D20 PIPES buffer solutions at pH (pD) 6.5. [b] In

MS ™. Krad.tn = 1/ 7rad,Ln; Knrin = 1/ 7obs — Krad,Ln. [C] The ratio of 1;=2/l;=1, where ;=2 is integral of

the Do — F» emission band (604-640 nm) and l;=1 is integral of the Do — ’F1 emission

band (582-603 nm).
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Figure S63. Steady-state emission spectra of EuL1a%" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [EuL1a%] = 10 uM
in 10 mM aqueous PIPES buffer at pH 6.5, Zex = 327 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S64. Steady-state emission spectra of EuL2a®" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [EuL2a%] = 10 uM
in 10 mM aqueous PIPES buffer at pH 6.5, 1ex = 327 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S65. Steady-state emission spectra of EuL1d®°" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [EuL1d®®] = 10 uM
in 10 mM aqueous PIPES buffer at pH 6.5, Zex = 315 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S66. Steady-state emission spectra of EuL.2d®°" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [EuL2d®°'] = 10 uM
in 10 mM aqueous PIPES buffer at pH 6.5, Aex = 315 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Table S30. Antenna and Sm(ll1)-based luminescence quantum yields and Sm(lll) lifetimes of

SmL-F. In parentheses fold increase compared to SmL without added KF. [

Complex DL [%] P DL [%] H20 [MS] 20 [MS]
SmLl1a“-F 3.6 0.19 0.010 0.032
SmL2a‘-F 3.5 0.23 (x1.1) 0.014 0.041
SmL1d®—F 0.62 0.045 0.010 0.032
SmL2d%—F 0.66 0.074 (x1.1) 0.014 0.041

[a] Formed by the addition of excess KF (0.1 M, 10*fold excess) to a solution of SmL.
[SmL] = 10 uM in 10 mM aqueous PIPES buffer solutions at pH 6.5. [b] Relative to quinine

sulfate (@ = 0.59) in H2SO4 (0.05 M) [4].

Table 31. Antenna and Ln(l11)-based luminescence quantum yields of SmL-F in PIPES-

buffered DO and changes relative to solutions in H,0. [

Complex DL [%] bl @, [%] b] PLnD20 [c]
Ln,H20
SmL1a%"-F 3.6 0.65 3.4
SmL2a%-F 3.5 0.77 3.3
SmL1dC—F 0.67 0.19 4.2
SmL2d®u—F 0.73 0.22 3.0

[a] Formed by the addition of excess KF (0.1 M, 10*-fold excess) to a solution of SmL.
[SmL] = 10 puM in 10 mM PIPES buffer solutions in D20 at pD 6.5 at nominally 10 uM
concentrations. [b] Relative to quinine sulfate (@ = 0.59) in H2SO4 (0.05 M) [4]. [c] Fold

increase relative to the solution in H20.
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Figure S67. Steady-state emission spectra of SmL1a%3" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [SmL1a%] = 10 uM
in 10 mM D20 PIPES buffer at pD 6.5, Aex = 327 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S68. Steady-state emission spectra of SmL2a%" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [SmL2a®] = 10 uM
in 10 mM D20 PIPES buffer at pD 6.5, Aex = 327 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S69. Steady-state emission spectra of SmL1d“°" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [SmL1d®°] = 10 uM
in 10 mM D20 PIPES buffer at pD 6.5, Aex = 315 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S70. Steady-state emission spectra of SmL2d“°" with and without added excess of KF
showing relative emission intensities under similar sample absorbance. [SmL2d®°] = 10 uM
in 10 mM D20 PIPES buffer at pD 6.5, Aex = 315 nm, front slits: 2 nm, exit slits: 1.5 nm.
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Figure S71. Excitation of Eu(lll) luminescence (black, Aem = 615 nm), steady-state (dark
gray) and time-resolved (red) emission spectra of EuL complexes at 77 K. [EuL] = 10 uM
with 10% glycerol in aqueous 10 mM PIPES buffer solutions at pH 6.5 with Aex = 315 nm
(EuL®?) and 327 nm (EuL°¥),
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