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Abstract: Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer
and its prognosis are very dependent on the affected tissue, body location, and stage at which the
disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many
attempts to look for compounds to treat this malignancy. Most of the current strategies to fight
cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine
kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed
in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases
isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against
cancer. This discovery contrasts with the production of other lipid oxidation signatures generated
by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2)
activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral
and antiproliferative activities. These findings support the previously proposed role of lipid
hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid
peroxidation is generally related to a specific production source associated with a cancer stage or
tissue in which cancer originates. This review highlights the potential therapeutical use of chemical
derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat
this disease.
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1. Introduction

Oxidative stress and inflammation are linked to cancer development [1,2]. Mutations in the DNA,
phosphorylation of kinases, or inactivation of phosphatases can alter the cell growth, cellular control of
the division, cell death, cell fate, and cell motility, which are altered in angiogenesis, inflammation,
and fuel cancer progression [3–6]. A progressive increase of reactive oxygen species (ROS) marks the
transition steps from a healthy tissue towards an invasive carcinoma [7]. This trend is owed to cancer
cells’ metabolic aberrations to adapt strategies to escape from cell death. It occurs in the presence
of compensatory upregulation of the genes coding antioxidant enzymes, preventing ROS induced
cell death [2,5]. Therefore, a blockage of the antioxidant cellular defenses or pro-oxidant therapies’
stimulation is suggested as potential strategies to fight against cancer [8,9]. In general, lipids’ ability to
participate in anti-inflammatory and/or pro-inflammatory signaling cascades is defined by: the length
of the fatty acyl chain, the number of unsaturations, and the place where the oxidation account [10].
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During lipid peroxidation, oxygen molecules are added to the unsaturated fatty acyl chain of non-polar
lipids, increasing their water solubility and diffusion towards the membrane surface. Cyclooxygenases
or lipoxygenases accessibility for their substrates is boosted, the generation of lipid metabolites
linked to inflammation is prompted, and the interaction of specific proteins and receptors recognizing
lipid oxidation products is promoted [11–15]. All of these actions are part of the lipid-dependent
inflammatory cascade. Moreover, these arrangements prevent the accumulation of lipid peroxides
into the membrane, which might functionally damage membrane components such as proteins
by induction of covalent modifications, which might compromise membrane permeability [16,17].
In general, free fatty acids can be released from phospholipids by phospholipases, and this pathway is
essential in inflammation, since it counterparts the activities of lipoxygenases and cyclooxygenases [18].
Polyunsaturated fatty acids (PUFA) and their related phospholipids are very well-known signaling
molecules with pro-inflammatory and anti-inflammatory functions, but also sensitive substrates for
peroxidation [19–28]. PUFA can promote cell life or cell death through complex signaling cascades
related to the fatty acid structure and their oxidation products [29,30]. In cancer, the connection of some
of these pathways with inflammation is unveiled by identifying a group of lipid oxidation products,
known as lipid pro-resolving mediators, which can resolve the inflammation [31–33]. Their discovery
opens the opportunity to identify new potential drugs in cancer therapy [32]. Some lipid oxidation
products have also gained attention since they are suggested as biomarkers for cancer development and
recurrence [34,35]. In general, lipids’ ability to participate in anti-inflammatory or pro-inflammatory
signaling cascades depends on the lipid’s nature and its degree of oxidation. In this review, we dissect
the lipid hydroperoxides and metabolites sources found in cancer research to better define proper
actions to treat the malignancy and highlight those stimulated pathways found in tumors from those
triggered in strategies to kill cancer cells.

2. Lipid Peroxidation: Non-Enzymatic Reactions vs. Enzymatic Reactions

Cellular lipid peroxidation can occur through different reactions, but they can be categorized into
enzyme and non-enzyme dependent reactions. The primary substrates in lipid peroxidation reactions
are polyunsaturated lipids since carbon-carbon double bonds are susceptible to reactive oxygen species,
such as the hydroxyl radical (HO•), which is a key radical that participates in peroxidation reactions.

2.1. Non-Enzyme-Dependent Lipid Peroxidation

In the non-enzymatic reactions, the Fenton and Haber–Weiss reactions producing HO• are
dependent on transition metals (i.e., iron [36,37]), for the initiation of the radical chain reactions
required for lipid peroxidation. In addition to this radical formation, some authors have suggested
that for initiation of lipid peroxidation, the formation of a complex between iron and the lipids is
required [38]. In general, it is accepted that the initiation reaction starts when a hydrogen atom is
abstracted from lipid, forming an alkyl radical [39]. HO• is preferred over other radicals to performed
this abstraction [38–43]. Once the alkyl radical is formed, the chain-carrying a carbon radical reacts
with oxygen, leading to an alkyl peroxyl radical formation. This radical can abstract hydrogen
from an organic substrate, which can be another lipid, to form a hydroperoxide plus an organic
radical or be added to alkenes, such as those present in the fatty acyl chains of PUFA present in
phospholipids, which provide isolated double bonds [44]. This last reaction leads to the formation of a
lipid hydroperoxide with a conjugated double bond. By reaction with metals, lipid radical reactions
leading to lipid peroxidation can be reinitiated as part of the propagating radical reactions [45,46].
This process occurs when the hydroperoxides react with an oxidized metal forming an alkoxyl
radical. In case the reaction involves a reduced metal, e.g., Fe2+, an alkyl peroxyl radical is generated,
which also contributes to the propagation of the reaction. PUFA are lipid molecules priming the
Fenton’s reaction, as previously indicated. Arachidonic acid (AA) and the phospholipids containing
this fatty acid are essential molecules since they are precursors of pro- and anti-inflammatory mediators,
sometimes enriched at cellular locations identified as signaling platforms, such as the plasma membrane
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lipid rafts [47,48]. Lipid oxidation at this location during the inflammation process is relevant since
lipid rafts are platforms required for cell activation in the immune system [49].

2.2. Radiation Inducing Lipid Peroxidation

HO• can also be generated by ionizing radiation [38], which is generally used and applied in
patients to treat cancer. As previously indicated, HO• is a very reactive radical, leading to the generation
of lipid hydroperoxides and oxidizing other biomolecules, including the DNA. Radiation exposition
leads to peroxides generation in membranes enriched with PUFA. Indeed, this fact should not be
discarded as a relevant factor for cancer therapy’s success in these patients [50–53]. Noteworthy,
more efforts are required to shed light on the role that ionizing radiation generating lipid peroxides
have in cancer cell death vs. other targets. These investigations could help in the characterization of
pharmacological drugs prompting the cancer cell sensitivity to lipid hydroperoxides generated by
ionizing radiation (i.e., glutathione peroxidase 4 (GPX4) inhibitors) and, therefore, better define or
reduce the patient’s exposure to ionizing radiation that can also damage non-tumoral tissues.

2.3. Enzyme-Dependent Lipid Peroxidation

The enzyme-dependent reactions are executed by peroxidases, which have been elegantly classified
by Vlasova [54]. Based on this classification, lipids can be oxidized by proteins that possess a true
peroxidase activity, such as lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450, or by
proteins that do not have a peroxidase activity but acquire a pseudo-peroxidase activity under certain
conditions, i.e., cytochrome c [55–59] upon binding to cardiolipin or other hemeproteins in defined
conditions [60–63]. The coordinated iron or iron associated with the heme group is key in these
enzymes’ catalytic center. Compound I, compound II, and sometimes compound III are generally
typical and associated with different iron valences [64]. The function of real peroxidases might depend
upon the existence of binding pockets where substrates can settle and interact with the enzyme
catalytic center, and upon electrons donated by organic molecules, which might be protein amino
acids acting as electron donors [54]. In heme-dependent pseudo-peroxidases, substrates accessibility
to the enzyme coordinating sphere depends upon the catalytic center flexibility to swift from a metal
hexa- to penta-coordination, a feature that can be influenced by the redox state or the interaction with
a ligand, i.e., cytochrome c upon cardiolipin binding to the protein [55]. The main enzymes using
AA to generate lipid hydroperoxides and derived metabolites as signaling molecules in cancer are
cyclooxygenases (COX), lipoxygenases (LOX), and P450 families [29,30,47,65]. COX-1 is constitutively
expressed in many tissues and cell types, whereas COX-2 is an inducible cyclooxygenase isoform
which activation has been reported in tumoral tissues [66–71]. Some studies have also pointed out
that other peroxidases (like myeloperoxidase and eosinophil peroxidase) released from infiltrating
neutrophils and eosinophils in the tumor microenvironment [72–75] or from infiltrated macrophages
can also generate lipid hydroperoxide [76]. Although myeloperoxidases are potential sources of lipid
peroxides and some myeloperoxidases polymorphisms, have been correlated with a higher risk of
suffering pulmonary, ovarian, and gastric cancer [77–79], there is no correlation between their activity
and the lipid peroxides derived from it with disease development.

In contrast, anti-inflammatory drugs have been linked to a decreased risk of cancer development
and decreased tumor growth rate [28]. Notably, in this context, overexpression of enzymes generating
eicosanoids in breast, lung, and pancreas cancer has been reported [28]. In particular, prostaglandins
(PGs) can stimulate mitogenesis by directly affecting fibroblasts, osteoblasts, and mammary cells.
The production of the proinflammatory PG named prostaglandin E2 (PGE2) (Figure 1A) through COX-2
activity can be found in mutagenesis, angiogenesis, and cell migration processes associated with cancer
(Table 1). An activation mechanism for COX-2 has been proposed using human colorectal HT-29 and
the human prostate carcinoma DU145 cell lines [80]. A correlation between the production of PGE2

with the resistance of cancer cells to apoptosis has been found through activation of the P2Y2/Src/p38



Molecules 2020, 25, 5144 4 of 25

signaling pathway, which lead to AA release from the membranes by overexpression of some PLA2

isoforms, and the overexpression of COX-2 with the subsequent PGE2 production [80].
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Figure 1. COX-2 inhibitors, PGE1, and PGE2 chemical structure (A). The prostaglandin E2 (PGE2)
(pro-cancer) (a), the aspirin derivate named [2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt
(Co-ASS) (b), the prostaglandin E1 (PGE1) (anticancer) (c) and the COX-2 selective inhibitor named
celecoxib, (p-(5-p-Tolyl-3-(trifluoromethyl) pyrazol-1-yl)benzenesulfonamide) (d). Expression of COX-2,
5-LOX, and 12-LOX in cancer and the effect of inhibitors against these targets (B). Activation of 5-LOX-5,
12-LOX, and COX-2 has been reported in the development and progress of tumors from different
tissues associated with the production of specific lipid peroxides and metabolites, such as PGE2 (a).
Some inhibitors of these LOX isoforms and COX-2 have emerged as potential therapeutical agents for
cancer treatment, modulating the production of previously commented metabolites and by induction
of cancer cell death (b).

To define the role of lipid peroxidation in signaling, the type of lipid hydroperoxide
generated should be finely characterized. In the metal-mediated lipid peroxidation based on
the Fenton and Haber–Weiss reactions, random lipid peroxides are generated and differentiated
from those formed by specialized enzymes that produce specific lipid signatures that can be
used as fingerprints of enzymatic activities [58,81,82]. Many efforts are being made to find
specific inhibitors that can provide a specific modulation of lipid hydroperoxide production that
could act as mediators in signaling cascades [58,83]. For example, aspirin, which has beneficial
effects in some cancer types, has been proposed to play that role [82,84,85]. Its implication in
cancer has been associated with COX inhibition via acetylation of the active site, where AA
binds. This accounts for COX-1 isozyme inhibition, while in COX-2, aspirin binding produces
a structural rearrangement shifting the cyclooxygenase towards the lipoxygenase activity [86,87].
Therefore, AA oxygenation and cyclization to form a 15R-Prostaglandin endoperoxide is promoted,
which favors the production of Prostaglandin D2 (PGD2) (with has a suggested function in inflammation
resolution) instead of PGE2 [88]. Recent studies have also shown the potential therapeutically
effect of aspirin organometallic derivatives as anticancer agents targeting COX-2 [89], such as
the 4-[5-(4-Chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-benzenesulfonamide (SC-236) and
[2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS) (Figure 1A), which open a promising
field in the search for inhibitors derived from aspirin [90–92].



Molecules 2020, 25, 5144 5 of 25

Table 1. Correlation between COX-2 level and other biomarkers found in tumoral tissues

Tissue Location and Type of Cancer Correlation with Other Biomarkers

Colon cancer [66], primary tumors and
metastatic lymph nodes resections for

colorectal adenocarcinoma [93],
stage II and III colorectal cancer

patients [94]

High levels of COX-2 correlates with high levels of MMP-2 and
VEGF expression and shorter survival time [93,94].

Cervical cancer [67]

Multivariate analysis of COX-2 levels in tumor/stromal
compartments. The proportion of CD3+, CD4+, and CD25+ cells was
lower in tumors with high tumor/stroma ratios, but in these tumors,

mast cells were increased [67].

Ovarian cancer [95–97] No correlation between COX-2 expression and EGFR,
and HER-2/neu status [96].

Human breast cancer cell lines and
tumors [26,98–100]

Elevated COX-2 expression associated with a large tumor size,
a high histological grade, a negative hormone receptor status, a high
proliferation rate, high p53 expression, and the presence of HER-2
oncogene amplification along with axillary node metastases and a

ductal type of histology [98]. COX-2 inhibition may potentially
prevent the development of ER-positive and ER-negative breast

cancers [98]. Expression of PGE2 and IL-8 [101]. COX-2
over-expression induces an oncogenic microRNA (miR655) in

human breast cancer cells by activation of EP4 [102].

Ductal carcinoma in situ (DCIS)
[103–105]

COX-2 expression stabilizes survivin, an inhibitor of apoptosis (IAP)
[103]. CacyBP expression was significantly negatively associated

with the COX expression [104].

Non-small cell lung cancer [68,69] Correlation between HER-2, EGFR, and COX-2 expression in
patients of non-small cell lung cancer at different degrees [69]

Laryngeal cancer [71] Cox-2 overexpression was significantly associated with
radioresistant tumors [71].

Papillary thyroid cancer [106]

The expression of COX-2 is increased with age in papillary thyroid
cancer [106]. Immunohistochemically, expression of COX-2 and

VEGF-C correlated strongly, and both were induced by the tumor
promoter phorbol 12-myristate 13-acetate [107].

Endometrial hyperplasia and
carcinoma [108–110]

No correlation between COX-2 expression with estrogen (ER) or
progesterone receptor (PR), p53, and neu [110]. Correlation between
COX-2 (59%) and aromatase (65%) expression but not estrogen and

progesterone receptor [111].

Invasive gallbladder cancer [112]
COX-2, c-Met, β-catenin, c-erbB2 and EGFR were over-expressed in

80%, 74%, 71%, 62%, and 11% of invasive gallbladder cancers,
respectively [112].

Prostate cancer
Metastatic primary prostate carcinoma

compared to non-metastatic
cancers [113–116]

COX-2 and Ki-67 antigen co-expression in 42.9% and 67% of the
prostate cancer patients [113].

Patients with PSA > 7 ng/mL and high COX-2 expression had the
highest probability of recurrence [114]. The expressions of COX-2

and E-cadherin are very firmly and inversely correlated as
prognostic indicators. [115]. High expression of COX-2, TGF-beta,
and Ki67 in metastatic primary prostate carcinoma was associated

with death from prostate carcinoma [116].

Gastric cancer [117,118]

A positive correlation between COX-2 and K-ras expression with the
depth of invasion and lymph node metastasis in gastric cancer [117].

Epithelial MMP-2 expression in gastric cancer is associated with
aggressive forms, COX-2 expression, and poor survival [118].
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Table 1. Cont.

Tissue Location and Type of Cancer Correlation with Other Biomarkers

Cervical cancer [119] DNA hypermethylation of the COX-2 gene may be a potential
prognostic marker in the early stages of cervical cancer [119].

Pancreatic cancer [120,121]
Anaplastic pancreatic cancer [122]

Tumor COX-2 expression portends a poor prognosis for patients
with resected adenocarcinoma of the pancreas, particularly in

tumors > or = 3 cm [121]. Expression of L1CAM, COX-2, and EGFR
in the majority of undifferentiated pancreatic carcinomas [122].

2.4. Lipid Peroxidation Derived Products and Biological Targets

Lipid hydroperoxides generated via enzyme or non-enzyme-dependent reactions can be further
oxidized to form highly reactive species and lipid autoxidation products. Acrolein, malonaldehyde,
and 4-hydroxynonenal can covalently modify proteins leading to functional and structural changes
in proteins [123–125]. Lipid autoxidation products mainly react with primary amines and lysines,
histidine, and cysteine residues from proteins to induce covalent crosslinking and prompt protein
aggregation [125]. The amino acid residues mentioned above are also the primary targets for several
protein post-transductional modifications, such as acylation, acetylation, phosphorylation, methylation,
glycation, and S-nitrosylation, among other modifications [126,127]. Therefore, it can be presumed that
the reaction of essential amino acid residues with lipid autoxidation products will also induce changes
in the signaling pathways in which these proteins are involved. The generation of lipid autoxidation
products has been reported in cancer development, angiogenesis, and invasiveness [128–132].
Some autoxidation products, such as 4-hydroxynonenal, have been implicated in DNA modifications
that generate cancer-linked mutations [1].

2.5. Antioxidants against Lipid Radical Reactions and Peroxidases

Antioxidants play a central role to counteract lipid peroxidation. In the non-enzyme-dependent
reactions, the radical chain reactions can terminate when antioxidants react with the alkyl peroxyl or
the alkoxyl radicals. Tocopherol is the main membrane antioxidant in charge of reacting with these
radicals and one of the primary membrane antioxidants against reactions generating lipid peroxides,
in general [133]. Consequently, a lipid hydroperoxide or the alcohol and the radical antioxidant are
products of the reaction between the lipid radical with the antioxidant. In the particular case of the
tocopheroxyl radical, it can be reduced back to tocopherol by its reaction with other antioxidants, such as
ascorbate and ubiquinol [134], or by enzymes in charge of reducing the antioxidant radical [135,136].
Indirectly or directly, the enzymatic activities that reduce the radicals derived from antioxidants
are essential to keep optimal alpha-tocopherol levels in the membrane [135,137,138]. Other types of
enzymes, such as glutathione peroxidases, can reduce lipid hydroperoxides to alcohols at the expense
of glutathione (GSH). GPX4 is a pharmacological target in cancer [139–141], and its inhibition has been
found to induce cancer cell death by the accumulation of lipid hydroperoxides [140].

3. Lipid Hydroperoxides Generated by Stimulated Lipoxygenases (LOXs),
Cyclooxygenases (COXs), and the Role of Their Metabolites in Cancer

3.1. COXs

The main AA oxidation products of COXs activity are PGs. Prostaglandin H2 (PGH2) is a PG
generated by both COX-1 and -2 using AA as a substrate, which acts as a precursor for the generation of
other PGs such as the thromboxane A2 (TxA2) and the PGs named PGI2, PGD2, PGE2, and PGF2α [142].
PGs are important in the early inflammatory response, and their production is increased in the inflamed
tissue mainly by stimulation of COX-2 activity [143]. In addition to COXs, other pathways have been
implicated in the generation of PGs in cancer, such as those dependent upon prostaglandin synthetases
that might be functionally coupled to COX-2 activity and, in some cases, might also be dependent upon
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glutathione [23,144,145]. In general, raised levels of COX-2 and 12-lipoxygenase (12-LOX) in patients
who developed metastatic disease or local recurrence and/or died have been found in other studies and,
therefore, these enzymes have been proposed as biomarkers in cancer [146,147]. COX-2 in combination
with other biomarkers has also been used in cancer prognosis (Table 1). In addition, a strong correlation
between the production of PGE2 and cancer development has been observed [34,35].

For the generation of PGE2 by COXs, a peroxidation and cyclooxygenation reaction of the substrate
is required. On the distal side from the heme moiety, an array of amino acids provides the site for
hydroperoxides to bind and assists the heme-dependent reduction of hydroperoxides to alcohols [148].
Therefore, the formation of the PG involved in cancer named PGE2 requires several steps for its
production [23]. First, the formation of unstable endoperoxide intermediate named prostaglandin
G2 (PGG2) through COX activity using AA as a substrate. This PG can be further metabolized to a
second unstable endoperoxide intermediate named PGH2, which can be enzymatically broken down
to generate the PGE2 [23–28].

PGE2 acts binding to any of the specific G-coupled receptors belonging to four subclasses,
EP1-EP4, which have specific signal transduction activities, tissue localization, and regulation [149].
The activation of each of the different receptors and downstream signaling cascades makes PGE2

activity highly dependent on the specific docking receptor [150]. The role of each EP receptor in
malignant behavior is complex, but their signaling cascades have been found linked to different stages
of tumoral and immune processes [151].

Moreover, downstream metabolites derived from PGE2 are compounds, such as 15-keto-PGE2,
generated by 15-hydroxyprostaglandin dehydrogenase [152,153]. This compound ligates to the
transcription factor peroxisome proliferator-activator receptor gamma (PPARγ), which regulation
has been found to regulate genes with anti-proliferative and anti-inflammatory effects and play a
protective role against tumor development [154,155]. Some PPARγ agonists, including 15-keto-PGE2

and thiazolidinediones, have been proposed as potential pharmacological therapeutical drugs in
cancer [156–159]. However, it is still unclear whether PPARs act as bona fide tumor suppressor or as an
oncogene, and more studies are needed to understand their role in cancer for the development of efficient
and safe chemotherapeutic agents targeting these molecules [154]. Other AA derived metabolites,
such as 15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2), are also known as PPARγ agonists. Besides,
PGD2, PGJ2, ∆12-PGJ2 are also known to induce the apoptosis of tumoral cells [160,161].

3.2. The Use of COX Inhibitors to Induce Cancer Cell Death

The possibility of product formation modulation by altering the substrate availability has
traditionally been the primary COX activity regulation approach. Some substrates of COX-2 activity
other than AA, such as γ-linolenic acid and dihomo-γ-linolenic acid, have been demonstrated
to pose anti-cancer effects and have been proposed as promising dietary supplements for cancer
prevention since they increase the formation of PGE1 (Figure 1A) and related metabolites, which have
anti-inflammatory properties [19–22]. Additionally, pharmacological drugs targeting the COX/LOX
have been identified. Combined inhibition of 5-LOX/COX-2 has been used to treat some types of
cancer [162–166]. COX-2 inhibitors such as celecoxib (Figure 1A,B), aspirin, diosgenin, and ibuprofen
have been proposed to have anti-tumor activities, being useful in preventing and treating several cancer
types [99,167–170]. Noteworthy, in some instances, a lack of response to COX-2 inhibitors, such as
aspirin in some types of cancer at low concentrations, has been reported despite the potential noted
benefit among individual patients population with stage I tumors [171,172]. However, some reports
have evidenced a lack of effectiveness of this compound due to the upregulation of 15-LOX-1 that
might be induced to compensate the lack of some lipid oxidation products [173].

3.3. LOXs

This group of enzymes is named based on the place of the carbon chain where the oxidation occurs.
Six functional LOX genes (ALOX5, ALOX12, ALOX15, ALOX15B, ALOX12B, and ALOXE3) have been
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identified in humans [174]. Historically, mammalian LOXs are classified based on the position where
AA oxygenation occurs [175]. Classification of genes, expression, and tissue location can be found in
Table 2.

Table 2. Human lipoxygenases (LOXs) genes classification and expression in cells and tissues.

ALOX Gene Name Cell and Tissue Location

ALOX5
PubMed Gene ID: 240

arachidonate 5-lipoxygenase or
5-lipoxygenase (5-LOX)

Monocytes, macrophages,
B lymphocytes cells [175] and

appendix, bone marrow,
gall bladder, lung, lymph node,

spleen, and urinary bladder [176].

ALOX12
PubMed Gene ID: 239

arachidonate 12-lipoxygenase, 12S
type or

12-lipoxygenase (12-LOX)
Esophagus and skin [176].

ALOX15
PubMed Gene ID: 246

arachidonate 15-lipoxygenase or
platelet type platelet lipoxygenase
or 15-lipoxygenase-1 (15-LOX-1)

Reticulocytes, eosinophils [175]
and lung, small intestine,

testis urinary bladder [176].

ALOX15B
PubMed Gene ID: 247

arachidonate 15-lipoxygenase type
B or 15-lipoxygenase-2 (15-LOX-2)

Human skin [175] and prostate,
lung, and esophagus [176].

ALOX12B
PubMed Gene ID: 242

arachidonate 12-lipoxygenase, 12R
type or 12R-lipoxygenase

(12R-LOX)
Skin and esophagus [176].

ALOXE3
PubMed Gene ID: 59344

arachidonate lipoxygenase 3,
lipoxygenase, epidermis type

(eLOX3)

Skin, tongue, prostate,
tonsils [175,176].

The 12-LOX utilizes AA to synthesize 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HpETE),
which is converted to the end-product named 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE)
implicated in the promotion of tumorigenesis, proliferation, and metastasis by stimulation of
the vascular endothelial growth factor (VEGF), and some integrins expression and controlling
the cell cycle [177–180]. Besides 12(S)-HETE, metabolites generated from 5-LOX such as
5-hydroxyeicosatetraenoic acid (5(S)-HETE), which precursor is 5(S)-HpETE, have been implicated in
the stimulation of prostate cancer cell growth [181]. Upregulation of 5-LOX and 12-LOX activities in
cancer contrast with the decrease in 15-lipoxygenase (15-LOX) isoform 1 (15-LOX-1) function, as well
as in the metabolites generated from linoleic acid oxidation, such as 13–hydroperoxyoctadecadienoic
acid (13(S)-HpODE) [178] and 13-S-hydroxyoctadecadienoic acid (13-S-HODE), which are reported in
human colorectal and esophageal cancers [173]. These effects might be related to a downregulation
of the 15-LOX-1 gene expression or its inactivation, as demonstrated for colon cancer [182–185],
where the transcription factor GATA-6 is responsible for this effect [183]. Other derived
hydroperoxides from 15-LOX-1, such as hydroperoxyoctadecatrienoic acid (13-HpOTrE), 13-HpODE,
and 15-hydroperoxyeicosatetraenoic acid (15-HpETE) have been reported as inhibitors of breast, colon,
prostate, lung, and leukemia cancer growth in conventional cell studies in vitro [186], supporting that
stimulation of this 15-LOX-1 could be potentially used for therapeutical purposes. Among these
compounds, 13-HpOTrE is reported to be the most active hydroperoxide regarding cytotoxicity and
apoptosis induction in cell culture experiments [184,186]. Notably, other than in the two-dimensional
(2D) culture experiments, 13-HpOTrE treatments for as long as a week did not show significant effects
on cell viability in 3D cell culture experiments of tumor cells but resulted in decreased IL-6 release [186].
These results support the specific role of some lipid hydroperoxides as pro-survival or cell death signals
in cancer that could be modulated by a specific tissue microenvironment and linked to the specific
LOX isoforms.
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Moreover, 15-LOX-1 activity is elevated when ferroptosis is induced in cancer cells [139].
Some of the main phospholipids acting as substrates for 15-LOX-1 in the context of ferroptosis
are phosphatidylethanolamines (PE) containing PUFA in their fatty acyl chain, which generates lipid
hydroperoxide and other PE oxidation products as ferroptosis signals [187]. This target specificity is
associated with phosphatidylethanolamine-binding protein 1 (PEBP1) activity that acts as a scaffold
protein inhibitor of protein kinase cascades that can form a complex with some 15-LOX isoforms [188].

3.4. The Use of LOX Inhibitors to Induce Cancer Cell Death

The nonsteroidal anti-inflammatory drugs acting as inhibitors of COX/LOX named tepoxalin [189],
and licofelone [190] have been successfully used to halt the progression of gastric cancer and colon
cancer cells, respectively, in tumor xenograft mice. These results suggest that inhibition of certain LOXs
that have been found stimulated in cancer might be used to block cancer development. The most potent
inhibitor of 12-LOX, named Zyflamend, presents cancer antiproliferative activity in human prostate
cancer PC3 cells [191]. Peptides against 12-LOX, such as the one formed by tyrosine, tryptophan,
cysteine and serine residues (YWCS), have also been developed and suggested for breast cancer
treatment, and specific 12-LOX inhibitors, such as baicalein, due to their tumor-suppressive and
anti-angiogenesis effects [192,193]. Other therapeutical approaches have demonstrated the efficacy
of 12-LOX inhibition in vitro and in vivo experiments using human prostate cancer cells [194,195].
To summarize, it seems that the combinatorial effect of these enzyme inhibitors with those of COX-2
can prevent the generation of tumorigenic signaling molecules derived from 5-LOX and 12-LOX,
whose synthesis is induced in some types of cancers with pathological consequences (Figure 1B).

4. Stimulation of Peroxidases to Induce Cancer Cell Death: The Case of 15-LOX-1 Activity
in Ferroptosis

In cancer, lipid peroxidation became interesting for researchers since its involvement,
and implication in cancer cell ferroptosis was discovered [196]. Many well-written reviews are
describing this type of cell death [82,197,198]. Essentially this process can be summarized as a
cell-regulated iron-dependent form of non-apoptotic cell death derived from lipid hydroperoxide
accumulation [199], more predominantly phosphatidylethanolamine hydroperoxides [187].
In ferroptosis, iron chelators, lipophilic antioxidants, lipid peroxidation inhibitors, and depletion
of polyunsaturated fatty acids (PUFAs) can block this cell death process [200]. Inhibition of GPX4
activates ferroptosis, and since this enzyme function is dependent upon GSH that acts as a substrate
for this activity, those processes that limit GSH biosynthesis are essential and also to trigger this
type of cell death [200,201]. For example, inhibition of the cystine/glutamate antiporter system
xc- regulates the transsulfuration pathway, in charge of cysteine biosynthesis, and limits the synthesis
of glutathione [200,201]. In correlation with this point, glutamate and glutamine deficiency also
regulate ferroptosis [202]. Besides GPX4 activity depletion, suppression of some non-steroidogenic
metabolites of the mevalonate pathway enhances some ferroptosis inducers’ sensitivity, such as the
ferroptosis activator named FIN56, which acts independently of GPX4 degradation [203]. From this
pathway, ubiquinone has emerged as an essential molecule that could modulate ferroptosis [203],
which correlates with the early described function as one of the major cellular antioxidants against lipid
peroxidation [204–207]. Ferroptosis is also dependent upon stimulation of several other enzymatic
processes, such as the biosynthesis of PUFA-containing phospholipids that are the primary substrate for
selective oxygenation by lipoxygenases, the acyl-CoA synthetase long-chain family member 4 (ACSL4),
in charge of free fatty acids conversion into fatty CoA esters, and the lysophosphatidylcholine
acyltransferase 3 (LPCAT3), which is involved in phospholipid biosynthesis [200]. Iron can also
mediate the activation of ferroptosis, and processes and iron import, export, storage, and iron
turnover impact the cell sensitivity to ferroptosis [200]. These processed should be summed to the
fact that iron is an enzyme effector for non-heme dependent enzymes such as LOXs in charge of
the generation of lipid peroxidation products [187,208,209]. Although iron chelators and genetic
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inhibition of cellular iron uptake can block ferroptosis [210,211], the increase in H2O2 production
dependent upon iron can not only be attributed to Fenton’s chemistry [199]. All 15-LOX isoforms,
but 15-LOX-1, significantly [187,209], play a crucial role in generating lipid hydroperoxides associated
with ferroptosis. Iron has also been implicated in this process since iron chelators can rescue
cells from experimental induction of ferroptosis [210,211]. Therefore, there is some controversy on
the relative role of enzymatic and non-enzymatic metal-dependent reactions in the generation of
lipid hydroperoxides. The combined activity of 15-LOX and iron-binding proteins in ferroptosis
are likely to be required to generate phospholipid autoxidation products that participate in the
initiation-propagation of the lipid radical chains implicated in the modification of cellular regulatory
proteins driving ferroptosis [82,212,213]. Moreover, the activity of the phosphorylase kinase G2
(PHKG2), a key enzyme in the control of cellular iron levels, is necessary to induce ferroptosis in the
erastin-induced model, where LOX induced formation of lipid hydroperoxides has been demonstrated
as one of the main inducer mechanism of ferroptosis [209].

5. Blockage of Antioxidant Enzymes to Increase Lipid Peroxidation in Tumoral Cells

5.1. GPX4

Ferroptosis can be triggered by inhibition of GPX4 (Figure 2), a peroxidase in charge of reducing
lipid peroxides at the expense of GSH [140]. Therefore, ferroptosis in cancer can be triggered by
inhibition of this enzyme [140], and some efforts have been made to find specific inhibitors; (1S,3R)-RSL-3
(RSL3) was the first described irreversible inhibitor of GPX4 [140,199,209]. Other inhibitors, such as
ML210 and ML162, are mesenchymal state-targeting compounds inhibiting GPX4 [214]. Due to
GPX4 dependence upon GSH, compounds downregulating cellular GSH levels (such as erastin and
sorafenib [199], as well as inhibitors of the xc-cystine/glutamate exchanger system that limits the
novo synthesis of GSH [215]), can also promote ferroptosis. GSH depletion also leads to ferroptosis
activation in cancer cells and the accumulation of lipid hydroperoxides [216]. Moreover, the ferroptosis
suppressor protein 1 (FSP1), an enzyme in charge of ubiquinone reduction, has emerged as a
potential pharmacological target to inhibit cellular ferroptosis resistance in the GPX4 deficiency model
(Figure 2) [217].
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Figure 2. Glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) function in
cancer cells. Role of ubiquinone reduction through FSP1 and GPX4 in the protection of the membrane
against lipid peroxidation in cancer cells (A). In cancer cells, the antioxidant enzymes GPX4 and FSP1,
which act on reducing lipid hydroperoxides, would protect them against cell death. Lipid peroxidation
and stimulation and ferroptosis induction by the FSP1 and GPX4 inhibitors’ such as iFSP1 and RSL3,
respectively (B). By the blockage of these enzymes and stimulation of LOXs, such as 15-LOX-1,
lipid peroxidation is prompted. Moreover, substrates of these enzymes and mediators such as GSH
and iron could stimulate ferroptosis in cancer cells.
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5.2. Quinone Reductases (QRs)

Several recent studies have recently evidenced the role of QRs in cancer cells using a GPX4
deficiency model and have highlighted the potential of ubiquinol and, therefore, QRs as novel targets
for cancer treatment (Figure 2). Their role in cancer seems to be related to their capacity to reduce
ubiquinone. Reduced ubiquinone is necessary to recycle oxidized alpha-tocopherol and protect
membranes from lipid hydroperoxides [204]. Studies using inhibitors of the mevalonate pathway,
blocking the ubiquinone synthesis, have evidenced the ubiquinone role in this type of cell death [203].
Some QRs, including the NAD(P)H Quinone Dehydrogenase 1 (NQO1), have been shown to work
with a Km value for quinones in the same range reported for FSP1 [217]. Although it is known that
NQO1 cannot compete with FSP1 in the reaction with hydrophilic peroxides, the situation is reversed
when the substrate is lipid hydroperoxides. Other QRs, with similar or higher Km values for quinones,
are also putative targets for cancer treatment combined with GPX4 inhibitors. We proposed a list of
described mammalian QRs with reported Km values, the name and structure of the specific inhibitors
available for these enzymes, and the IC50 value reported for cancer cells as potential targets to inhibit
to promote ferroptosis in conjunction with GPX4 inhibitors (Table 3).

6. The Future of Nanoparticles (NP) for Cancer Targeting and Tissue Specificity

In the last decade, NPs have emerged as tools for delivering compounds for cancer treatment.
Up to date, attempts to generate NPs loaded with lipid hydroperoxides have been hampered due
to the high reactivity and instability of lipid hydroperoxides, hindering the proper delivery of
intact peroxides into cancer cells. Noteworthy, and based on the evidence accumulated using the
pharmacological targets reviewed here, the use of NPs to facilitate the distribution of drugs modulating
lipid hydroperoxide generation in cancer patients seems to be of potential pharmacological interest.
NPs can incorporate molecules on their surface that preferentially target cancer cells (i.e., folate [232]
and 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin [233]). The successful delivery of anticancer
drugs can be achieved through this strategy [234–237].

Some recent advances have been made regarding the synthesis of NPs loaded with metals,
mainly with iron, which can facilitate lipid peroxidation in cancer cells [234,238,239]. As previously
indicated, iron overload produces an increase in random peroxidation products that is entirely
unspecific and could lead to harmful oxidative stress in non-cancer cells. Ferroptosis induction has
been indirectly associated with the use of pharmacological inhibitors of this type of cell death. However,
in some cases, the mechanism of action that induces ferroptosis is unknown and does not seem mediated
by inhibition of antioxidant enzymes [237]. Due to iron’s high reactivity, GSH oxidation induced by
the metal should be considered a therapeutical approach and could be the main triggering factor
leading to ferroptosis activation. Some reports have been published describing ferroptosis induction
thought combination therapy where iron NPs are conjugated with ferroptosis inducers, such as the
xc-cystine-glutamate exchanger’s inhibitor Sorafenib, that induces glutathione depletion [240], as well
as with drugs promoting lysosomes disruption [241,242].
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Table 3. Summary of enzymes with Quinone Reductases (QR) activity, reported kinetic properties,
and implication in cancer.

Name Km (CoQ)
(µM)

Specific Inhibitor with
Anti-Cancer Properties

IC50 (µM) and
Cancer Cell Line Structure

FSP1
(AFM2) 12 [217]

1-amino-3-(4-
methylphenyl)-pyrido
[1,2-a]benzimidazole-2,

4-dicarbonitrile (iFSP1) [217]

≈1
variety of human
cancer cell lines

co-treatment with
RSL3 [217]
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cancer and the inhibition of COX-2 and 5-LOX, the inhibition mechanism involved remains unknown. 
More efforts should be made to evaluate the potential applications of NPs to deliver LOX inhibitors 
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Regarding COX inhibitors, the use of nebulized colloidal poly d,l-lactide-co-glycolide (PLGA)
nanoparticles co-encapsulating a COX-2 inhibitor (celecoxib) and a herbal compound (naringenin)
has shown promising results for lung cancer treatment in in vitro studies [243]. A similar strategy for
the treatment of tumoral glial cells has been reported [244]. As pertaining to LOX inhibitors, we did
not find specific reports on their use in combination with NPs to treat cancer. Although some authors
reported the photodynamic therapeutic effect of indocyanine green entrapped nanoparticles in skin
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cancer and the inhibition of COX-2 and 5-LOX, the inhibition mechanism involved remains unknown.
More efforts should be made to evaluate the potential applications of NPs to deliver LOX inhibitors for
cancer treatment.
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