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Abstract: A general regioselective one-pot synthesis of 1,2-benzothiazine 1,1-dioxides from 2-iodo
benzenesulfonamide moieties and allenylstannanes is described using a domino Stille-like/Azacyclization
reaction. The conditions developed also opened a novel access to β-carbolinones, indolopyranones,
thienopyranones and pyrano-imidazopyridines.

Keywords: regioselective synthesis; 1,2-benzothiazine 1,1-dioxides; β-carbolinones; indolo[2,3-c] and
[3,2-c]pyrane-1-one derivatives; Stille/Heterocyclization reaction

1. Introduction

With the development of efficient cross-coupling catalysts, the heterocyclic synthesis of compounds
of various interests has been facilitated in terms of numerous parameters such as temperature,
catalytic charge, selectivity or efficiency. Several methodologies have been set up to create carbon-carbon
or carbon-heteroatom bonds and applied to intramolecular cyclization and heterocyclization reactions.
The development of palladium cross-coupling processes in particular has enabled easy access to
various cores with oxygen, nitrogen or sulfur as heteroelement.

In this paper we focus on 1,2-benzothiazine 1,1-dioxide also known as benzosultam (1),
β-carbolinone (2), pyranoindole (3,4), thienopyranone (5) and pyrano-imidazopyridine (6) cores
(Figure 1).

Molecules possessing the moiety 3 are known to inhibit the hepatitis C virus NS5B polymerase [1,2]
while 1,2-benzothiazine 1,1-dioxide derivatives possess versatile biological activities [3,4]. For example
the 1 moiety constitutes the heterocyclic core of oxicam (e.g., Ampiroxicam A and meloxicam B,
Figure 2), a class of non-steroidal anti-inflammatory drugs [3]. In addition, benzothiazine dioxide
derivatives exhibit strong inhibitory properties against HIV integrand [5], and Calpain 1 [6].
Compounds 3 and 4 may constitute interesting precursors toβ- andγ-carbolinone alkaloids respectively.
The β-carbolin-1-ones skeleton 2 is found in the structure of numerous natural products of which
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some derivatives act on the central nervous system [7,8] and are recognized as HeLa and HLE cancer
cell line inhibitors [9]. β-carbolin-1-ones are also important intermediates for the synthesis of many
alkaloids [10,11], such as Bauerine C [12] and Secofascaplysin A [13] (Figure 2), and they are effective
as anti-diabetics ATAD25 agents [14] and inhibitors [15]. Pyrano [3’,4’:4,5]imidazo[1,2-a]pyridin-1-one
derivatives are known for their interesting pharmacological activities particularly as antitumoral agents [16].Molecules 2020, 25, x  2 of 11 
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Numerous ways to access these moieties are depicted in the literature. The most popular route 
used is metal catalyzed bond formation [17–24]. For example, β-carbolinones are accessed via Heck 
[15], gold cycloisomerization [25] or copper catalyzed C-N bond formation [26]. Other synthetic 
approaches for β-carbolinones have been developed via phase-transfer catalyzed intramolecular 
cyclization of 3-alkynylindole-2-carboxamides [27], intramolecular Diels-Alder reaction [28] and 
cyclization of pyridone ring [8,29]. Recently, Xia et al. described the synthesis of β-carbolinones via 
Pd/Cu catalyzed tandem C-H aminocarbonylation and dehydrogenation of tryptamines [30]. 
Although the 1,2-benzothiazine 1,1-dioxide core is widely accessed via Heck coupling [31], other 
metal catalyzed methods like domino Sonogashira-azacyclization [18], silver assisted aza-cyclization 
of enyne [19], gold-catalyzed cycloisomerization of terminal alkene [32], gold(I)-catalyzed 
ammonium formation strategy [33], Rh(III)-ctalyzed strategy by the ortho C-H activation [34] or C-H 
bond alkynylation of aryl sulfonamides [21] have been published. Moreover, 1,2-benzothiazine 
1,1-dioxides has been achieved by a palladium-catalyzed tandem-cyclization of ynamides [35]. 

Figure 1. General structures of synthesized cores.

Molecules 2020, 25, x  2 of 11 

Molecules 2020, 25, x; doi: www.mdpi.com/journal/molecules 

 
Figure 1. General structures of synthesized cores. 

Molecules possessing the moiety 3 are known to inhibit the hepatitis C virus NS5B polymerase 
[1,2] while 1,2-benzothiazine 1,1-dioxide derivatives possess versatile biological activities [3,4]. For 
example the 1 moiety constitutes the heterocyclic core of oxicam (e.g., Ampiroxicam A and 
meloxicam B, Figure 2), a class of non-steroidal anti-inflammatory drugs [3]. In addition, 
benzothiazine dioxide derivatives exhibit strong inhibitory properties against HIV integrand [5], 
and Calpain 1 [6]. Compounds 3 and 4 may constitute interesting precursors to β- and 
γ-carbolinone alkaloids respectively. The β-carbolin-1-ones skeleton 2 is found in the structure of 
numerous natural products of which some derivatives act on the central nervous system [7,8] and 
are recognized as HeLa and HLE cancer cell line inhibitors [9]. β-carbolin-1-ones are also important 
intermediates for the synthesis of many alkaloids [10,11], such as Bauerine C [12] and 
Secofascaplysin A [13] (Figure 2), and they are effective as anti-diabetics ATAD25 agents [14] and 
inhibitors [15]. Pyrano [3’,4’:4,5]imidazo[1,2-a]pyridin-1-one derivatives are known for their 
interesting pharmacological activities particularly as antitumoral agents [16]. 

 
Figure 2. Biologically active benzothiazine dioxides and β-carbolin-1-ones. 

Numerous ways to access these moieties are depicted in the literature. The most popular route 
used is metal catalyzed bond formation [17–24]. For example, β-carbolinones are accessed via Heck 
[15], gold cycloisomerization [25] or copper catalyzed C-N bond formation [26]. Other synthetic 
approaches for β-carbolinones have been developed via phase-transfer catalyzed intramolecular 
cyclization of 3-alkynylindole-2-carboxamides [27], intramolecular Diels-Alder reaction [28] and 
cyclization of pyridone ring [8,29]. Recently, Xia et al. described the synthesis of β-carbolinones via 
Pd/Cu catalyzed tandem C-H aminocarbonylation and dehydrogenation of tryptamines [30]. 
Although the 1,2-benzothiazine 1,1-dioxide core is widely accessed via Heck coupling [31], other 
metal catalyzed methods like domino Sonogashira-azacyclization [18], silver assisted aza-cyclization 
of enyne [19], gold-catalyzed cycloisomerization of terminal alkene [32], gold(I)-catalyzed 
ammonium formation strategy [33], Rh(III)-ctalyzed strategy by the ortho C-H activation [34] or C-H 
bond alkynylation of aryl sulfonamides [21] have been published. Moreover, 1,2-benzothiazine 
1,1-dioxides has been achieved by a palladium-catalyzed tandem-cyclization of ynamides [35]. 

Figure 2. Biologically active benzothiazine dioxides and β-carbolin-1-ones.

Numerous ways to access these moieties are depicted in the literature. The most popular route
used is metal catalyzed bond formation [17–24]. For example, β-carbolinones are accessed via Heck [15],
gold cycloisomerization [25] or copper catalyzed C-N bond formation [26]. Other synthetic approaches
for β-carbolinones have been developed via phase-transfer catalyzed intramolecular cyclization
of 3-alkynylindole-2-carboxamides [27], intramolecular Diels-Alder reaction [28] and cyclization
of pyridone ring [8,29]. Recently, Xia et al. described the synthesis of β-carbolinones via Pd/Cu
catalyzed tandem C-H aminocarbonylation and dehydrogenation of tryptamines [30]. Although the
1,2-benzothiazine 1,1-dioxide core is widely accessed via Heck coupling [31], other metal catalyzed
methods like domino Sonogashira-azacyclization [18], silver assisted aza-cyclization of enyne [19],
gold-catalyzed cycloisomerization of terminal alkene [32], gold(I)-catalyzed ammonium formation
strategy [33], Rh(III)-ctalyzed strategy by the ortho C-H activation [34] or C-H bond alkynylation of aryl
sulfonamides [21] have been published. Moreover, 1,2-benzothiazine 1,1-dioxides has been achieved
by a palladium-catalyzed tandem-cyclization of ynamides [35]. Recently, Volla et al. [36] reported
a cobalt-catalyzed C-H activation of arylsulfonamides and their intermolecular heteroannulation
reaction with allenes for the synthesis in a highly regioselective manner of aryl fused sultams. Due to
their various pharmacological importances, the development of a novel and simple synthetic method
for the synthesis of benzothiazine dioxide and derivatives would be highly desirable. Metal-catalyzed
transition carbon-carbon bond formation has attracted much attention over the last three decades.
The palladium-catalyzed cross-coupling reaction is one of the most efficient methods for the construction
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of C-C bonds. These reactions are frequently employed to promote the synthesis of numerous natural
products or bio-active molecules. Among them the value of the Stille cross-coupling reaction [37]
is commonly recognized in the scientific community and the reactivity of aromatic halide is widely
known using that methodology. We previously published an easy and mild palladium-catalyzed
process for rapid access to α-pyrones, α-pyridones and isocoumarins by one-pot approaches involving
the intramolecular addition of carboxylic acid derivatives to allenyl moiety (Scheme 1). The reactions
proceeded as a tandem coupling heterocyclization sequence in the presence of palladium catalyst and
an alkaline carbonate.
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Scheme 1. Convergent Stille coupling/heterocyclization reaction of β-iodo-α,β-unsaturated carboxylic
acid or carboxamide systems.

We report here a valuable synthetic extension of this method onto aromatic and heteroaromatic
substrates such as o-iodo arylsulfonamide, indole, thiophene and imidazo[1,2-a]pyridine bearing
a β-iodo-α,β-unsaturated carboxylic acid or carboxamide system in order to produce 1, 2, 3, 4, 5 and
6 cores (Scheme 1). To the best of our knowledge, no cross-coupling using allenyltin reagent has been
reported to date to access to these compounds.

2. Results and Discussion

Our investigations began with assays on aromatic sulfonamides (7) for the synthesis of
1,2-benzothiazine 1,1-dioxide derivatives 1. The required 7 were prepared from the corresponding
sulfonyl chloride by treatment with alkylamines, followed by a reaction with n-BuLi then elemental
iodine according to the procedure reported in the literature (Scheme 2)[38,39].Molecules 2020, 25, x  4 of 11 
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A series of experiments on the same basis as in our previous work was carried out to optimise the
reaction conditions and establish the minimum requirements for this process. It was found that for
good performance one needs at least 0.05 equiv. of palladium acetate, 0.1 equiv. of triphenylphosphine,
1 equiv. of tetrabutylammonium bromide and 2 equiv. of potassium carbonate in MeCN. Surprisingly,
compared to our previous work on aryl bearing a β-iodo α,β-unsaturated carboxylic moiety, assays in
dimethyl formamide ended-up with extremely poor yield. No evidence for the moment has been found
for the moment to explain that observation. The use of a phosphine ligated palladium (0) catalyst such
as tetrakis(triphenylphosphine)-palladium(0) is also suitable for the transformation, giving very similar
yields. As expected, in the absence of Pd, no reaction occurred. The reaction requires temperatures of at
least 80 ◦C to proceed. Below that temperature, no reaction was observed and starting materials were
fully recovered. Compared to terminal alkynes used in Sonogashira like reactions, allenyltin offers
a major advantage in terms of regioselectivity (see Scheme 3). Published experiments using a Pd
catalyzed tandem Sonogashira/azacyclization or Ag catalyzed intramolecular Csp-azacyclization
resulted in a mixture of 5-exo dig and 6-endo dig cyclization products [40,41]. This is because alkynes offer
two attack areas resulting in two possible cyclization products (see Scheme 3, path a). Unlike the latter,
the allene structure has a well-defined electrophilic area located on the digonal carbon (see Scheme 3,
path b). This provides a regiospecific outcome to the reaction and therefore an undeniable advantage
in terms of selectivity in comparison to alkyne cyclizations. In addition, allenyltin reagents offer an
important feature as they can be used to transfer small volatile fragments such as C3 hydrocarbon
because of the heavy weight of the trialkyltin group.
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Scheme 3. Difference between alkyne and allenyltin reagent in the synthetic paths of 2H-1,2-benzothiazine
1,1-dioxide derivatives.

To broaden the scope of the use of allenyltin reagents, we extended our investigations to
indole derivatives bearing a β-iodo α,β-unsaturated carboxylic or carboxamide moiety (8, 9 and 10).
Compounds 8, 9 and 10 were synthesized in good yields starting from the corresponding commercial
indoles (Scheme 4). Compound 8 was obtained in four steps from (1H)indole-2-carboxylic acid [42,43].
After esterification of the starting indole and halogenation of the ester with N-chlorosuccinimide/sodium
iodide (NCS/NaI) in DMF, the resulting indole was reacted with benzylbromide and saponified into 8
in good yield. It was impossible to obtain indole 9 in the same way. Methyl indole-3-carboxylate was
benzylated prior to halogenation and saponification. A treatment with t-BuLi and molecular iodine led
to the synthesis of 9 in good yield [42], while the use of n-BuLi or s-BuLi led to moderate to poor yields.
Compound 10 was obtained in good yield by treatment of 8 with oxalyl chloride followed by a reaction
with benzylamine [27]. Having the starting materials, we subjected them to react with allenyltin
derivatives (Table 1). No significant difference in the behavior of the transformation between aromatic
and heteroaromatic substrates was found, except for the fact that DMF proved to be surprisingly
inefficient and led to poor yields.
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8  O  

 

3b 62 

9  O  

 

3c 76 

10  O  

 

4a 57 

11  O  

 

4b 60 

12  O  
 

5 72 

13  O  

 

6 68  

a Isolated yield. 

As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
  

3b 62

9 O

Molecules 2020, 25, x  6 of 11 

Molecules 2020, 25, x; doi: www.mdpi.com/journal/molecules 

7  O  

 

3a 56 

8  O  

 

3b 62 

9  O  

 

3c 76 

10  O  

 

4a 57 

11  O  

 

4b 60 

12  O  
 

5 72 

13  O  

 

6 68  

a Isolated yield. 

As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to 
that important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl 
group with the acetyl group proved to be ineffective, as only the formation of a few traces of 
cyclization product was observed, indicating that the nucleophilicity of the amine is an essential 
parameter in this heterocyclization reaction. In the same way, 8 and 9 afforded 
indolo[2,3-c]pyran-1-ones 3a–c and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to 
good yields. A certain number of methods to access these indolopyranones have been reported in 
the literature. For example, compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], 

anhydride rearrangement [45,46], metal-catalyzed enyne cyclization [47,48], or metal-catalyzed 
coupling [49,50]. We also published recently a convenient Cu-catalyzed domino route to these type 
of molecules. However, the present study shows that although the copper catalyzed process is 
cheaper in term of catalyst, the tandem Stille coupling/heterocyclization using allenyltin reagents 
offers the possibility of accessing a wide variety of new heterocyclic compounds, and the reaction 
requires a lower temperature than in the case of Cu-catalyzed cyclization. Likewise, this strategy has 
been successfully extended to 3-iodothiophene-2-carboxylic acid and 
3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead, with good yields, to thieno[2,3-c] 
pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6, respectively (entries 12 and 
13). Note that few synthesis of this type of compound has been reported to date [51,52]. 
  

Molecules 2020, 25, x  6 of 11 

Molecules 2020, 25, x; doi: www.mdpi.com/journal/molecules 

7  O  

 

3a 56 

8  O  

 

3b 62 

9  O  

 

3c 76 

10  O  

 

4a 57 

11  O  

 

4b 60 

12  O  
 

5 72 

13  O  

 

6 68  

a Isolated yield. 
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As expected, 10 led to the synthesis of β-carbolinone 2 (entry 6), showing an efficient route to that
important class of alkaloids. Note that in the case of amide 10, the replacement of the benzyl group
with the acetyl group proved to be ineffective, as only the formation of a few traces of cyclization
product was observed, indicating that the nucleophilicity of the amine is an essential parameter in
this heterocyclization reaction. In the same way, 8 and 9 afforded indolo[2,3-c]pyran-1-ones 3a–c
and indolo[3,2-c]pyran-1-ones 4a,b respectively with reasonable to good yields. A certain number
of methods to access these indolopyranones have been reported in the literature. For example,
compounds 3 and 4 can be accessed from γ-ketoester cyclization [44], anhydride rearrangement [45,46],
metal-catalyzed enyne cyclization [47,48], or metal-catalyzed coupling [49,50]. We also published
recently a convenient Cu-catalyzed domino route to these type of molecules. However, the present
study shows that although the copper catalyzed process is cheaper in term of catalyst, the tandem
Stille coupling/heterocyclization using allenyltin reagents offers the possibility of accessing a wide
variety of new heterocyclic compounds, and the reaction requires a lower temperature than in
the case of Cu-catalyzed cyclization. Likewise, this strategy has been successfully extended
to 3-iodothiophene-2-carboxylic acid and 3-iodoimidazo[1,2-a]pyridin-2-carboxylic acid to lead,
with good yields, to thieno[2,3-c] pyran-7(7H)-one 5 and pyrano[3’,4’:4,5]imidazo[1,2-a]pyridin-1-one 6,
respectively (entries 12 and 13). Note that few synthesis of this type of compound has been reported
to date [51,52].
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3. Materials and Methods

3.1. General Protocol for Synthesis of 1,2-Benzothiazine 1,1-dioxides 1

To a Schlenk tube, under argon, containing 3.1 mmol of sulfonamide 6 in CH3CN
(10 mL), potassium carbonate (860 mg, 2 equiv.), tetrabutylammonium bromide (1 g, 1 equiv.),
triphenylphosphine (80 mg, 10 mol %) and Pd(OAc)2 (35 mg, 5 mol %) were added successively.
The mixture was degassed, placed under nitrogen and well-stirred during 10 min. Allenyltributyltin
(5.9 mmol, 1 equiv.) was then added. After 4 h at reflux, the mixture was hydrolyzed with water,
and the organic phases were extracted with ethyl acetate. The combined organic extracts were dried
over MgSO4, concentrated under vacuum, and the resulting residue was purified by silica gel column
chromatography (petroleum ether/diethyl ether = 90/10) to afford the desired product 1.

2-Benzyl-3,7-dmethyl-1,2-benzothiazine 1,1-dioxide (1a), 71%; yellow solid; mp: 119–121 ◦C; 1H NMR
(300 MHz, CDCl3, ppm) δ: 7.83 (1H, d, J = 8.1 Hz), 7.30–7.22 (m, 4H), 7.14–7.12 (m, 3H), 6.13 (s, 1H),
5.05 (s, 2H), 2.47 (s, 3H), 2.17 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm) δ: 142.8, 139.8, 137.1, 133.3,
129.1 (2C), 128.8, 128.3, 127.9, 127.0 (2C), 126.9, 121.9, 110.0, 48.7, 22.0, 21.2. LR-MS (EI, 70 eV): m/z (%):
299 [M]+ HR-MS (ESI): Anal. Calcd for C17H17NO2S [M + H]+ 300.0980, found 300.0995.

2-Benzyl-7-methyl-3-pentyl-1,2-benzothiazine 1,1-dioxide (1b), 80%; yellow solid; mp: 122–124 ◦C. 1H NMR
(300 MHz, CDCl3, ppm) δ: 7.83 (d, J = 8.0 Hz, 1H). 7.30–7.03 (m, 7Har), 6.23 (s, 1H), 4.99 (s, 2H),
2.46 (s, 3H), 2.38 (t, J = 7.7 Hz, 2H), 1.67–1.25 (m, 6H), 0.94 (t, J = 6.7 Hz, 3H). 13C NMR (75 MHz, CDCl3,
ppm) δ: 143.8, 142.8, 137.1, 133.2, 129.0 (2C), 128.6, 128.5, 127.9, 127.3, 127.2 (2C), 121.8, 111.0, 49.2, 33.9,
31.2, 27.1, 22.0, 21.2, 14.2,. HRMS (ESI) m/z calcd for C21H25NO2S [M + H]+ 356.1606, found 356.1622.

2-Benzyl-3-ethyl-7-methyl-1.2-benzothiazine 1,1-dioxide (1c), 77%; orange solid; mp: 119–121 ◦C. 1H NMR
(300 MHz, CDCl3, ppm) δ: 7.81 (d, J = 8.0 Hz, 1H), 7.31–7.05 (m, 7Har), 6.24 (s, 1H), 5.01 (s, 2H),
2.47 (s, 3H), 2.42 (q, J = 7.3 Hz, 2H), 1.23 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3, ppm) δ: 144.6,
142.3, 136.7, 132.8, 129.1, 128.5 (2C), 128.1, 127.4, 126.9, 126.7 (2C), 121.5, 109.3, 48.5, 26.5, 21.6, 11.7.
HRMS (ESI) m/z calcd for C18H19NO2S [M + H]+ 314.1215, found 314.1205.

3,7-Dimethyl-2-(1-Phenyl-ethyl)-1.2-benzothiazine 1,1-dioxide (1d), 76% yield, white solid; mp: 160–162 ◦C.
1H NMR (300 MHz, CDCl3, ppm) δ: 7.81 (d, J = 8.0 Hz, 1H), 7.33–7.28 (m, 6Har), 7.12 (s, 1H), 6.27 (s, 1H),
5.68 (q, J = 7.1 Hz, 1H), 2.47 (s, 3H), 1.88 (s, 3H), 1.68 (d, J = 7.1 Hz, 3H), 13C NMR (75 MHz, CDCl3,
ppm) δ: 142.4, 140.7, 139.7, 132.9, 129.6, 128.4, 128.2 (2C), 127.3 (2C), 126.7, 126.6, 121.6, 113.8, 55.7, 22.5,
21.6, 19.4. HRMS (ESI) m/z calcd for C18H20NO2S [M + H]+ 314.1215, found 314.1211.

2-Allyl-3,7-dimethyl-1.2-benzothiazine 1,1-dioxide (1e), 73%; yellow oil; 1H NMR (300 MHz, CDCl3, ppm)
δ: 7.83 (d, J = 8.1 Hz, 1H), 7.30-7.24 (m, 1H), 7.13 (s, 1H), 6.21 (s, 1H), 5.88–5.69 (m, 1H), 5.17–5.12
(m, 2H), 4.34 (dt, J = 5.0 Hz, J = 1.6 Hz, 2H), 2.46 (s, 3H), 2.26 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm)
δ: 142.2, 139.3, 133.0, 132.7, 128.1, 127.7, 126.2, 121.2, 117.1, 109.1, 46.9, 21.4, 20.3. HRMS (ESI) m/z calcd
for C13H16NO2S [M + H]+ 250.0896, found 250.0895.

3.2. General Protocol for Synthesis of 2,9-Dihydro-1H-pyrido[3,4-b]indol-1-one Derivated 2–6

Potassium carbonate (860 mg, 2 equiv.), tetrabutylammonium bromide (1 g, 1 equiv.),
triphenylphosphine (80 mg, 10 mol %) and Pd(OAc)2 (35 mg, 5 mol %) were added successively to
a Schlenk tube, under argon, containing the indole derivative 6, 7 or 8 (3.1 mmol) in CH3CN (10 mL).
The mixture was degassed, placed under nitrogen and well-stirred during 10 min. Allenyltributyltin
(5.9 mmol, 1 equiv.) was then added. After 8h at reflux, the mixture was hydrolyzed with water
and the organic phases were extracted with ethyl acetate. The combined organic extracts were dried
over MgSO4, concentrated under vacuum and the resulting residue was purified by silica gel column
chromatography (petroleum ether/diethyl ether = 80/20) to afford the desired product.
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2,9-Dibenzyl-3-methyl-2,9-dihydro-1H-pyrido[3,4-b]indol-1-one (2), 73%; beige solid; mp: 119–121 ◦C.
1H NMR (300 MHz, CDCl3, ppm) δ: 7.95 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 6.0 Hz, 2H), 7.30–7.11 (m, 11H),
6.83 (s, 1H), 6.13 (s, 2H), 5.51 (s, 2H), 2.43 (s, 3H). 13C NMR (75 MHz, CDCl3, ppm) δ: 156.7, 140.3,
138.2, 136.9, 135.8, 129.1, 128.3 (2C), 128.0 (2C), 126.6 (2C), 126.4 (2C), 125.7, 125.1, 124.5, 121.1, 120.7,
119.5, 100.5, 100.2, 47.3, 46.3, 20.5. (1H NMR and 13C NMR of compounds 1a–e, 2, 3a–c, 4a,b are in
Supplementary Materials). HRMS (ESI) m/z calcd for C26H23N2O [M + H]+ 379.1805, found 379.1804.

9-Benzyl-3-butylpyrano[3,4-b]indol-1(9H)-one (3a), 56%; orange solid; mp: 90–91 ◦C; 1H NMR (300 MHz,
CDCl3, ppm) δ: 7.86 (d, J = 8.0 Hz, 1H), 7.48–7.41 (m, 2H), 7.31–7.10 (m, 6H), 6.72 (s, 1H), 5.93 (s, 2H),
2.65 (t, J = 7.5 Hz, 2H), 1.77–1.73 (m, 2H), 1.46–1.42 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz,
CDCl3, ppm) δ: 157.8, 157.5, 141.0, 137.7, 128.7, 128.0, 127.6, 127.2, 126.5, 121.7, 121.3, 120.9, 120.2, 111.4,
98.2, 48.0, 33.4, 29.6, 22.3, 13.9. HRMS (ESI) m/z calcd for C22H21NO2 [M + H]+ 332.1645, found 332.1650.

9-Benzyl-3-hexylpyrano[3,4-b]indol-1(9H)-one (3b), 62%; yellow oil; 1H NMR (300 MHz, CDCl3, ppm)
δ: 7.90 (d, J = 8.0 Hz, 1 H), 7.48–7.46 (m, 2 H), 7.31–7.23 (m, 6 H), 6.72 (s, 1 H), 5.94 (s, 2 H), 2.65 (t, J = 7.5 Hz,
2 H), 1.78–1.76 (m, 2 H), 1.44–1.34 (m, 6 H), 0.92 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3, ppm)
δ: 157.7, 157.4, 140.9, 137.6, 128.6 (2 C), 127.9, 127.5, 127.1 (2 C), 126.4, 121.6, 121.2, 120.8, 120.1, 111.3,
98.0, 47.9, 33.6, 31.6, 28.8, 27.4, 22.6, 14.1. HRMS (ESI) m/z calcd for C24H26NO2 [M + H]+ 360.1885,
found 360.1889.

3-Hexyl-9-methylpyrano[3,4-b]indol-1(9H)-one (3c), 76%; white solid; mp: 88–90 ◦C; 1H NMR (300 MHz,
CDCl3, ppm) δ: 7.88 (d, J = 8.1 Hz, 1 H), 7.55 (dd, J = 8.5, 6.8, 1.1 Hz, 1 H), 7.47 (d, J = 8.5 Hz, 1 H),
7.27 (dd, J = 8.1, 6.8, 1.1 Hz, 1 H), 6.70 (s, 1 H), 4.22 (s, 3 H), 2.64 (t, J = 7.5 Hz, 2 H), 1.76 (qt, J = 7.5 Hz,
2 H), 1.42–1.27 (m, 6 H), 0.91 (t, J = 7.0 Hz, 3 H). 13C NMR (75 MHz, CDCl3, ppm) δ: 157.9, 157.0, 141.3,
127.7, 125.8, 121.6, 120.8, 120.6 (2 C), 110.5, 98.1, 33.6, 31.6, 31.2, 28.7, 27.5, 22.5, 14.0. HRMS (ESI) m/z
calcd for C18H22NO2 [M + H]+ 284.1572, found 284.1576.

5-Benzyl-3-methylpyrano[4,3-b]indol-1(5H)-one (4a), 57%; yellow solid; mp: 115–117 ◦C; 1H NMR
(300 MHz, CDCl3, ppm) δ: 8.28–8.21 (m, 1H), 7.38-7.22 (m, 6H), 7.25–7.23 (m, 2H), 6.33 (q, J = 0.8 Hz,
1H), 5.42 (s, 2H), 2.39 (d, J = 0.8 Hz, 3H). 13C NMR (75 MHz, CDCl3, ppm) δ: 160.6, 160.1, 146.7, 138.4,
135.7, 129.2 (2C), 128.2, 126.3 (2C), 124.6, 124.5, 122.9, 121.4, 109.9, 99.5, 93.5, 47.3, 20.8. HRMS (ESI) m/z
calcd for C19H16NO2 [M + H]+ 290.1175, found 290.1173.

5-Benzyl-3-pentylpyrano[4,3-b]indol-1(5H)-one (4b), 60%; colorless solid; mp: 123–125 ◦C. 1H NMR
(300 MHz, CDCl3, ppm) δ: 8.03–7.97 (m, 1H), 7.35–7.27 (m, 6H), 7.12–7.03 (m, 3H), 6.29 (s, 1H),
5.38 (s, 2H), 2.57 (t, J = 7.9 Hz, 2H,), 1.80–1.65 (m, 2H), 1.35–1.27 (m, 4H), 0.88 (t, J = 6.4 Hz, 3H,).
13C NMR (75 MHz, CDCl3, ppm) δ: 164.5, 160.2, 146.7, 138.4, 135.7, 129.2 (2C), 128.2, 126.3 (2C), 124.5,
122.8, 122.2, 121.4, 109.9, 99.6, 92.7, 47.7, 34.6, 31.3, 27.1, 22.5, 14.1. HRMS (ESI) m/z calcd for C23H23NO2

[M + H]+ 346.1729, found 346.1736.

5-Pentyl-7H-thieno[2,3-c]pyran-7(7H)-one (5) [42], 72%, Yellow gum. The data of the spectroscopic
analyzes (1H NMR and 13C NMR) of product 5 are in agreement with those described in the literature [42].

3-Hexyl pyrano[3’,4’:4,5] imidazo[1,2-a]pyridin-1-one (6) [53], 68%, Yellow solid, mp: 142–144 ◦C. The data
of the spectroscopic analyzes (1H NMR and 13C NMR) of product 6 are in agreement with those
described in the literature [53].

4. Conclusion

In summary, we have developed a general and convenient one step regioselective route for the
preparation of 1,1-dioxide 1,2-benzothiazines, β-carbolinones and pyranoindoles via Stille coupling of
aromatic or heteroaromatic halide derivatives and allenyltributyltins reagents. The transformation
proceeded selectively and provided good to excellent yields of a variety of potentially bioactive



Molecules 2020, 25, 5137 9 of 11

activities of the targeted cores. The results obtained may lead to the use of allenyltin reagent as an
excellent alternative to previously published methodologies for the scientists involved in the field.

Supplementary Materials: The following are available online. 1H-NMR and 13C-NMR of compounds 1a–e, 2,
3a–c, 4a,b.
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