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Abstract: Intensive research on the use of magnetic nanoparticles for biotechnological applications of
microalgae biomass guided the development of proper treatment to successfully incorporate them
into these single-cell microorganisms. Protoplasts, as cells lacking a cell wall, are extensively used
in plant/microalgae genetic manipulation as well as various biotechnological applications. In this
work, a detailed study on the formation of protoplasts from Haematococcus pluvialis with the use
of enzymatic and mechanical procedures was performed. The optimization of several parameters
affecting the formation of protoplasmic cells and cell recovery was investigated. In the enzymatic
treatment, a solution of cellulase was studied at different time points of incubation, whereas in the
mechanical treatment, glass beads vortexing was used. Mechanical treatment gave better results in
comparison to the enzymatic one. Concerning the cell recovery, after the protoplast formation, it
was found to be similar in both methods used; cell viability was not investigated. To enhance the
protoplast cell wall reconstruction, different “recovery media” with an organic source of carbon or
nitrogen were used. Cell morphology during all treatments was evaluated by electron microscopy.
The optimal conditions found for protoplast formation and cell reconstruction were successfully used
to produce Haematococcus pluvialis cells with magnetic properties.

Keywords: magnetic nanoparticles; microalgae; Haematococcus pluvialis; protoplasts transformation;
protoplasts regeneration; cellulose treatment

1. Introduction

Magnetic nanoparticles are a new trend in various scientific fields, such as drug delivery, DNA/RNA
purification, improved magnetic resonance imaging (MRI), immobilization, food industry, medical
diagnostics, cell harvesting, bioremediation, and others [1–4]. They are a class of particles consisting of
a magnetic and a functional chemical component with a diameter varying from 1 to 100 nm and can be
controlled by magnetic fields displaying superparamagnetism. Haematococcus pluvialis (H. pluvialis) is
a microalgae strain rich in astaxanthin as well as lipids (20–25% per dry weight with 10% of it being
polyunsaturated fatty acids), proteins (29–45% per dry weight), and carotenoids (2–5% per dry weight).
Its ability to grow even in extreme conditions makes it a strategic tool for human diet and animal
feeding and can be used even for anticancer and anti-inflammatory purposes [5]. Skin, heart and eye
health, and photoprotection are also fields where H. pluvialis is an important implement [6].
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Improved cultivation conditions that enhance the production of the above-mentioned high-value-
added products as well as better harvesting methods are needed to fulfil the increased demands of
H. pluvialis usage. Applications of nanomaterials in microalgae cultivation and harvesting are widely
used for enhancing biomass and lipid production, reducing production costs, more efficient collection
and purification, as well as the refinement process, giving the ability to reuse nanomaterials [7].
The use of magnetic nanoparticles, naked or surface functionalized iron oxide (Fe3O4) particles, has
been reported in algal biomass harvesting as well as in biomedical applications [3,8–10]. Moreover,
the generation of magnetically modified by the insertion of magnetic nanoparticles or with newly
acquired genetic properties by the insertion of macromolecules bound to magnetic nanoparticles [11]
into the microalgae protoplasts can provide new insights into microalgae biotechnological applications.

The microalgae cell wall is constituted by rigid components embedded in a polymeric matrix
constituted by 70% cellulose as well as glycoproteins, pectin, and algaenan, which enhance the stiffness
of their cell walls [12]. High-pressure homogenization following acidic and thermal pre-treatment,
single enzymatic digestion with cellulase, hemicellulase, and pectinase, or a mix of them as well as
combinatory methods of enzymatic and mechanical treatment (sonication and microwaves) are used
for microalgae protoplast formation [13–15].

Protoplasts can be used as a convenient system to improve the delivery of nanocomposites or
foreign DNA/RNA into microalgae. Nowadays, protoplast fusion of different species or organisms
is a common technique for genome combination and development of microorganisms with desired
properties as well as in biotechnological applications [14,16–19]. The extent of cell wall thickening,
temperature and duration of the enzymatic incubation, pH, agitation, as well as the nature of osmotic
solution are key factors for protoplast formation [13].

Protoplast isolation is also a complex task, especially when enzymatic digestion is used, which
is a stress-induced procedure due to peroxisome production as well as degradation products that
enhance cell lysis [20]. If necessary, flow cytometry sorting or high-gradient sucrose centrifugation is
used for the separation of protoplasts from intact cells [21]. After protoplast isolation, the regeneration
of the cell wall is of vital importance in order to fully exploit the genetic or biotechnological features
that have been modified in the parental cells. Medium with a non-metabolizable sugar alcohol like
mannitol or sorbitol, and with auxins and cytokinins, may provide protection against osmotic pressure
and support mitosis and daughter cell formation [13]. Studies on Chlorophyta species after physical
wounding demonstrate the recreation of a cell membrane on the surface of protoplasts 12 h after the
wounding, while Golgi bodies with numerous vesicles at the peripheral region of the rebuilding cell at
24 h after the wounding began to develop [22].

H. pluvialis, a freshwater species of Chlorophyta of interest in many biotechnological applications, has
not been studied in detail so far. Its cell wall has a different composition compared to other microalgae
species [14]. In this work, a comparative study of the efficiency of enzymatic (cellulase) and mechanical
(glass bead vortexing) treatments of H. pluvialis microalgae species targeting protoplasts formation
and wall reconstruction, which is based on modified media enriched with different carbon and amino
acids sources, was undertaken. Using scanning electron microscopy, the regeneration of the cell wall
was analyzed; however, the survival rates were not investigated. Subsequently, iron oxide magnetic
nanoparticles were used to test the efficiency of transformation via electroporation. Our findings provide
important basic information on how to easily prepare and recover high-quantity H. pluvialis protoplasts
for biotechnological applications.

2. Results

2.1. H. pluvialis Protoplasts Formation under Enzymatic or Mechanical Treatment

In order to accomplish our goal, the creation of transformable H. pluvialis microalgae, two different
approaches for protoplast formation were used; the enzymatic, which is based on cellulase treatment,
and the mechanical, which is based on glass bead vortexing.
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Cellulose, hemicellulose, and pectin are the algae cell wall’s essential components. Cellulose
dissociation results in degradation and thus becomes a more permeable and less rigid cell wall. Four
different time points of 4, 8, 12, and 16 h at 30 ◦C of cellulase treatment (2%) were used in order to
study the efficiency of H. pluvialis protoplast production. The concentration of 2% was chosen to
limit the reaction cost. Scanning electron microscopy (SEM) images after 4 and 16 h of the enzymatic
treatment allowed the study of the degree of cell wall damage. In Figure 1a,b, SEM images confirm the
healthy and structure-complete microalgae cells without any cellulase treatment, while after 4 h of
enzymatic digestion, partial disruption of the cell wall is evident (Figure 1c,d). Indeed, cellulase-treated
cells are less spherical and more stretched compared to the round untreated cells and portions of the
decomposed cell wall can be seen barely attached on top of the microalgae cells (arrows in Figure 1d,f,h).
Furthermore, some cells appeared squeezed with the body structure completely collapsed, a sign that
cellulase digestion caused significant damage, exacerbated by the fixation and vacuum treatments
required for the preparation of SEM observation. After 16 h of cellulase treatment (Figure 1e,f), cells
showed a similar morphology as compared to those digested for 4 h, a sign that confirms the treatment
to be mild when a low enzyme concentration is used.

Glass beads vortexing was used as a second method for protoplasts formation. Different
proportions of glass beads (100, 200, and 300 mg in 5 mL) as well as vortexing time (15, 30, 60, 90,
and 120 s) were tried, and all experiments were performed with the optimum conditions for 30 s and
200 mg of dry glass beads. Following mechanical treatment with glass beads, the altered morphology
of the microalgae cell surface is shown in Figure 1g,h. The decomposed cell walls of protoplast cells
are evident. SEM images reveal much more stressed cells as compared to those after the cellulase
digestion, demonstrating a more severe phenotype. It seems that a big number of microalgae cells
were affected by the mechanical process as compared to the enzymatic treatment.

2.2. Protoplast Recovery upon Carbon and Amino Acid Addition to the Culture Media

Following the protoplast preparation and the downstream treatments, the regeneration of the cell
wall is a crucial procedure in order for the microalgae cells to be fully exploited. Due to treatment
damages, we reasoned that for a fast cell wall reconstruction, the elementary cell wall components
could not be synthesized based only on protoplast photosynthesis; therefore, extra carbon and amino
acid sources were used to enhance metabolism and pathways related to the production of cellulose,
phospholipids, and other cell wall components. Specifically, culture media supplemented with 1% and
2% w/v glucose, 1% and 2% w/v fructose, as well as 0.1% w/v casamino acids were tested. This approach
gave the opportunity to evaluate five growth media to find the most efficient source of organic carbon
or nitrogen for protoplast recovery after enzymatic or mechanical cell wall degradation. It was also
noticed that the best way to recover the majority of the protoplast culture was to incubate it without
agitation and with low light irradiation < 60 µmol photon m−2 s−1. Recovery trends were studied by
analyzing the growth of microalgae cells every two days via optical measurement (OD680 nm) for a time
course of 12 or 15 days in total. This interval was chosen because the green growth stage in H. pluvialis
usually lasts from 9 to 20 days based on the relationship between cell biomass and cell activity [23].

Following the 4-h cellulase treatment, protoplast cells grown in supplemented media showed
a different recovery trend as compared to protoplasts grown on the medium without any additions
(control). Here, 1% and 2% w/v glucose showed better growth, and probably better wall regeneration,
while 1% and 2% w/v fructose scored as the second more efficient group of carbon compounds,
with casamino acids being the least effective after 15 days of growth (Figure 2a). The effects of prolonged
digestion started to be evident after 8 h of cellulase treatment, since 1% and 2% w/v fructose impaired the
recovery trend of H. pluvialis protoplasts. Indeed, both fructose concentrations performed worse than
the control and the glucose-supplemented media. Casamino acids enhanced the recovery performance
of protoplasts as compared to 2% glucose but not as compared to 1% glucose. Therefore, after 8 h of
digestion, 1% glucose was confirmed to be the best supplement for a fast recovery (Figure 2b).
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Figure 1. Scanning electron microscopy images of H. pluvialis cells before and after enzymatic/mechanical
treatment, in two different magnifications (5000× left column, 10,000× right column) (a,b) SEM images
of H. pluvialis cells with no treatment (control); (c,d) SEM images of H. pluvialis cell wall disruption
with 4 h of enzymatic hydrolysis; (e,f) SEM images of H. pluvialis cell wall disruption with 16 h of
enzymatic hydrolysis; (g,h) SEM images of H. pluvialis cell wall disruption after mechanical treatment
with glass beads. Scale bars: 5 µm left column, 2 µm right column. White arrows in (d,f,h) indicate cell
wall fragments.
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After 12 h of cellulase treatment, all the extra added sources enhanced the recovery of H. pluvialis
protoplasts in comparison to protoplasts grown in control medium. Here, 1% fructose showed the
lowest recovery efficiency followed by 0.1% casamino acids. Next, 2% w/v glucose and 2% w/v fructose
sufficiently enhanced growth and regeneration; however, the highest efficiency was obtained with 1%
w/v glucose, again being the key concentration and compound for the best performance after 15 days
of growth (Figure 2c).

Casamino acids were the crucial compound for the best recovery of H. pluvialis protoplasts after
the longest cellulase treatment of 16 h. Higher concentrations (2% w/v) of glucose and fructose did not
enhance protoplasts regeneration with respect to control growth medium. Lower concentrations (1%
w/v) of glucose and fructose were more efficient, with glucose showing a higher recovery degree after
12 days of growth (Figure 2d).

H. pluvialis protoplasts produced with the glass bead vortexing process in general showed higher
recovery performance in all five supplemented media as compared to chemical treatment. However,
glucose at concentrations of 1% w/v was confirmed to be the key compound for the recovery. Fructose
and casamino acids did not improve the protoplast growth as compared to medium without any
carbon or amino acid source addition (Figure 2e).
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Figure 2. Recovery trend lines of H. pluvialis cells before and after enzymatic/mechanical treatment in
media supplemented with an organic source of carbon (a) after 4 h of enzymatic hydrolysis; (b) after 8 h
of enzymatic hydrolysis; (c) after 12 h of enzymatic hydrolysis; (d) after 16 h of enzymatic hydrolysis;
(e) after mechanical treatment with glass beads. G.B. glass beads.
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From the above results, it was clear that the recovery rates strongly depended on the recovery
media. To highlight this point, the protoplast growth rate was plotted versus organic carbon or nitrogen
sources. From Figure 3, it can be seen that 1% and 2% glucose gave the best results as the OD range
was between 0–6 and 0–3.5, respectively. Furthermore, H. pluvialis protoplasts prepared with the glass
beads treatment and then recovered with 1% glucose medium represent the best protocol to have a
high quantity of transformable cells with the highest recovery.
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Figure 3. Recovery trend lines of H. pluvialis cells before and after enzymatic (4, 8, 12, 16 h)/mechanical
treatment in media supplemented with (a) 1% glucose; (b) 2% glucose; (c) 1% fructose; (d) 2% fructose;
(e) 0.1% casamino acids; and (f) control.

2.3. Transformation of H. pluvialis Protoplasts Using Iron Oxide Magnetic Nanoparticles

To test the quality of protoplasts prepared as described above as well as the recovery protocols,
we performed transformation experiments that may simulate the biotechnological applications of
H. pluvialis.

The successful manipulation of H. pluvialis protoplasts with enzymatic or mechanical treatment
was tested by inserting magnetic nanoparticles using electroporation. Due to the high volume (>20 mL)
of each protoplast preparation, in order to allow the magnetic nanoparticles to enter the protoplast
cells, a homemade flow-cuvette that works with standard electroporators was used. The characteristics
of the flow-cuvette will be published elsewhere [24], but a brief description is given in the Section 4.
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Biocompatible iron oxide (Fe3O4) nanoparticles at a concentration of 10 ng/mL were used to transform
H. pluvialis protoplasts via electroporation. The intracellular introduction of nanoparticles in both cases
of pretreatment was confirmed by light microscopy images upon Prussian blue staining. The staining
is specific for the detection of the iron ions. As it is depicted in Figure 4, all cells containing iron in
their cytoplasm appear to be blue.Molecules 2020, 25, x FOR PEER REVIEW 7 of 17 
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Figure 4. Visualization of the internalized magnetic iron oxide nanoparticles by light microscopy after
Prussian blue staining. H. pluvialis cells were cultivated for 3 days after electroporation. (a) H. pluvialis
untreated cells from stock culture, (b) H. pluvialis cells pretreated with enzyme for 8 h, (c) H. pluvialis
cells pretreated with glass beads. In (b,c), a magnification of two cells stained in blue is reported,
a digital zoon was used. Scale bar 10 µm.

The recovery of H. pluvialis protoplasts following the 8-h digestion as well as their transformation
with magnetic nanoparticles were visualized by SEM images (Figure 5c,d) after 4 days of culturing,
compared to the control cells (Figure 5a,b). The analysis of the pictures demonstrated a similar shape
between the untreated and treated/transformed cells, which coincides with the fact that 1% w/v glucose
supported the regeneration of protoplasts. The successful recovery of transformed protoplasts was also
verified by the recovery growth curve, which shows an increase of chlorophyll content up to 4 days
(Figure 6a), whereas the absorbance started to decay at day 5, most probably due to the consumption of
nutrients in the medium. The protoplast and electroporation efficiency was calculated (as described
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in the materials and methods) and the results are presented in Table 1. The best result gave 30% of
magnetic cells in the preparation for glass bead treatment, while after enzymatic digestion, the efficiency
was around 20%.

Table 1. Transformation efficiency of H. pluvialis protoplasts.

Conditions OD680 nm
(4th Day after Recovery)

OD680 nm
(after Magnetic Rack)

Protoplast and Electroporation
Efficiency (%)

Enzymatic digestion (8 h) 0.923 0.736 20.26

Pre-treatment with glass beads 0.889 0.625 29.7

Values are the means of three measurements and the standard deviation was below 5% in all cases.
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Figure 5. Recovery of H. pluvialis after the 8-h enzymatic digestion and the glass bead treatment as
well as their transformation with magnetic particles. (a,b), two different magnifications of H. pluvialis
control cells. (c,d), two different magnifications of H. pluvialis cells digested with cellulase and after
4 days of recovery. (e,f), two different magnifications of H. pluvialis cells pretreated with glass beads
and after 4 days of recovery. Scale bar on the left column is 5 µm whereas in the right column, it is 2 µm.

The SEM micrographs also revealed that after 4–5 days, the cells were able to fully recover despite
their suffering due to the two stressing insults (pretreatment and electroporation). Indeed, probably
because of the presence of organic carbon, they were able to reconstruct their cell wall (Figure 5c,d).
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Moreover, the chemical distribution analysis (EDX) showed the presence of iron (Figure 7a) only in
the cells transformed with the magnetic nanoparticles but not in the control cells (Figure 7c), thus
confirming the Prussian blue data.
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Figure 6. Recovery trend lines of H. pluvialis protoplast cells after transformation with magnetic
nanoparticles. (a) H. pluvialis protoplast pretreated with cellulase digestion (8 h) in media supplemented
with 1% glucose. (b) H. pluvialis protoplast pretreated with glass beads in media supplemented with
1% glucose. (a,b) Overlapping of recovery trend lines of H. pluvialis protoplast pre-treated with both
methods, non-electroporated cells (red) and electroporated cells (black).

The recovery of H. pluvialis protoplasts after the glass bead vortexing and their transformation
with magnetic nanoparticles was also studied. It was found that, similarly to the protoplasts prepared
with the enzymatic digestion, the cells were able to sufficiently reconstruct their wall after 4–5 days of
cultivation in the recovery medium (Figure 5e,f). The EDX analysis performed on this sample also
confirmed the presence of iron in the transformed cells (Figure 7b) whereas the recovery of the culture
was efficient after 3–4 days. Indeed, after 5 days, the recovery curve showed a decay similar to the
one obtained with enzymatic digestion (Figure 6b), since the culture reached its saturation point and
re-culture in fresh medium was necessary. Furthermore, to verify if the electric shock suffered by
protoplast cells could have effects on their recovery, we overlapped the trend lines of Figure 6a,b with
the corresponding trend lines of non-electroporated cells of Figure 2. As it can be seen from Figure 6a,b,
the electric shock affected the recovery of protoplast cells. Up to the fifth day of recovery, the trend
points were very similar; after, media for the electroporated cells started to decay and in turn impaired
the cell growth.Molecules 2020, 25, x FOR PEER REVIEW 10 of 17 
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Figure 7. EDX analysis for the detection of the elemental composition of the substance. (a) EDX analysis
of digested and transformed cells where the iron peak (arrow) is visible. (b) EDX analysis of glass
bead-treated and transformed cells where the iron peak (arrow) is visible. (c) EDX analysis of control
cells where the iron peak is not detected.

3. Discussion

Biotechnological or genetic transformation of microalgae cells could be succeeded through a suitable
cell wall perturbation, which permits the insertion of DNA/RNA or nanoparticles and simultaneously
supports the normal regeneration and growth of microalgae. Microalgae cells, like bacteria, present a
rigid cell wall that surrounds the plasma membrane. Besides structural properties, the cell wall is a
formidable barrier that does not allow the insertion of macromolecules into the cytoplasm, even by
forcing them with methodologies like electroporation. Indeed, we tried to transform microalgae cells
with magnetic nanoparticles, but the rate of magnetic cells was nearly zero. Therefore, we opted to
transform protoplast. Protoplasts obtained from terrestrial or aquatic photosynthetic organisms find a
variety of applications both in basic and applied research. They can be prepared from multicellular
plant tissues or simply by removing the cell wall from unicellular photosynthetic microorganisms, such
as microalgae. Recent studies have verified that protoplasts derived from various tissues have crucial
differences and properties, especially those that are genetically or biotechnologically transformed [16].
Depending on the final application, the degree of cell wall removal might vary. Indeed, for cell fusion,
perfectly “naked” protoplasts are required since the presence of any rigid cell walls may hamper the
process, reducing its efficiency and yield. Fused microalgae (Ochromonas danica and Haematococcus
pluvialis) protoplasts via PEG treatment resulted in enhanced fatty acid production, while Chlorella
kessleri and rat insulinoma cell line fusion created insulin-producing cells [25,26]. On the other hand,
when protoplasts are intended to be used for genetic manipulation, e.g., transfection with plasmid,
siRNA, CRISPR, and others, removal of the entire cell wall might not be mandatory since the intracellular
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delivery of such macromolecules can be forced with appropriate methodologies. Other important
parameters to be considered in protoplasts’ preparation are the time needed for the recovery (cell wall
reconstruction), incubation temperature, means of transfection, number of protoplasts cells required
(biomass), and cost of protoplast preparation. These parameters are crucial especially when protoplasts
are used in plant/algae industrial applications where the economic viability and sustainability of the
entire production process is carefully evaluated.

In this work, we reported how to weaken the H. pluvialis cell wall, through single-enzyme digestion
and mechanical processes as well as their regeneration, in order to produce large quantities of transformable
protoplasts, for use in several fields of blue-biotechnology. All experiments were performed with relatively
high volumes, 20–100 mL, which can be easily scaled up, and cost minimization related to the enzymes
and energy utilized. The H. pluvialis cell wall is constituted by 19% of carbohydrates and 75% of proteins
in the exponential phase of growth, while at the stationary phase of growth, 70% of carbohydrates (66%
hexoses and mannose), 3% cellulose, and 6% proteins, as well as a remaining 3% of acetolysis-resistant
material, are crucial components of the cell wall [14]. Cells of this strain can be categorized into flagellates
and resting cells. Several enzymes have been reported to be used in protoplasts formation from microalgae,
such as proteinase K, a mixture of cellulase, hemicellulase, pectinase, sulfatase, tyrosinase, and others,
with good results [12,27–34]. We sought to investigate the possibility of using a single-enzyme digestion
with cellulase for the minimum digestion time in order to minimize cost and reduce the time of
H. pluvialis protoplast production. In our study, the usage of cellulase, which catabolizes cellulose
as a linear polymer of D-glucose with β-1,4 linkages, decomposed the cell wall almost to the same
efficiency at different treatment periods between 4 and 16 h as it was shown by the SEM images
(Figure 1a–f). To identify the minimum digestion time using only cellulase as the hydrolytic enzyme at
a concentration of 2% (w/v), we performed a series of digestions with incubation of 4, 8, 12, and 16 h.
After each incubation, the entity of cell wall damage was studied by SEM, as well as the transfectability
by introducing, via electroporation, magnetic nanoparticles with a diameter of 100 nm. Analyzing the
SEM images, we did not observe significant differences between 4 and 16 h of digestion time, as shown
in Figure 1c,d,e,f, though a good transfection outcome was obtained with cells digested for at least 8 h.

We also noticed that morphologically, the digestion time did not widely affect the cell shape
(Figure 1). The fact that after 16 h, digestion protoplasts presented almost the same appearance could be
due to the low percentage of cellulose in the cell wall. Indeed, as mentioned above, cellulose represents
only 3% of the cell wall, but it plays an important role in the cell wall structure since cellulose microfibrils
offer support for sugar-based scaffolds, such as hemicellulose, proteins, and other macromolecules.
Thus, even though it is not visible, a long hydrolysis of cellulose microfibrils may have a significant effect
on the permeability of the cell wall to macromolecules as well as certain nanomaterials. In addition, it has
to be considered that different protoplast yield variations can be due to physiological and biochemical
conditions and even to be related to the culture ageing [27] while different enzyme batches may affect
the yield between the same species.

A second parameter we tried to optimize was the incubation temperature. In the literature, incubation
temperatures of 20–25 ◦C have been reported as the optimal temperatures for species like Gracilaria
and Ulva, while an increased temperature may decrease their protoplast formation productivity [30,33].
Regarding our experiments with H. pluvialis, an incubation temperature of 30 ◦C resulted in optimal
cell wall digestion, which confirms the similar performance obtained in Chlorella species [35].

Mechanical treatment through glass bead vortexing resulted in a higher efficiency of cell wall
disruption of H. pluvialis cells treated, as this was verified by the SEM images (Figure 1g,h). Microalgae
cells mixed with glass beads and vortexed for 30 s, while a prolonged vortexing time resulted in
irreversible damage, which caused cell death. In Chlamydomonas species, 15 s demonstrates a better
recovery than 60 s of glass bead vortexing [36]. Studies revealed that the pretreatment of the cells
upon acidic or thermal conditions may reduce the energy need for mechanical rupture of microalgae
cells [15], while allantoin pretreatment for Porphyra cells enhanced the protoplasts formation [37].
The method we proposed to produce protoplasts seems to better in terms of cost and time, since there is
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no need for sharp control of the incubation temperature, while the glass beads can be reused multiple
times after proper cleaning.

Independently of the protoplast preparation method used, the cells undergo stressing conditions,
which may lead to their death if not properly recovered. Cell wall regeneration is an important step in
order to have fully exploitable protoplasts cells able to be properly grown. In this work, in order to
facilitate cell wall reconstruction, the growth medium was supplemented with an organic source of
carbon or nitrogen. Indeed, it was noticed that protoplast cells, especially during the initial days after
their preparation, had a reduced photosynthetic ability and most probably were not able to produce
an adequate quantity of glucose necessary for all biological processes. It was also observed that high
light and agitation time negatively affected the protoplast culture viability (data not shown). Glucose
at 1% w/v was the crucial compound, which enhanced the recovery trend of H. pluvialis protoplasts
upon the mechanical process and enzymatic digestion after 4, 8, and 12 h of treatment, while casamino
acids at 0.1% w/v better supported protoplast renewal after 16 h of cellulase treatment, as depicted in
Figure 2a–e. The different key compounds used for protoplast recovery imply the activation of different
metabolic pathways, which are related to the degree of cell wall degradation. For instance, glucose
in comparison to fructose as the initial compound of glycolysis may lead to enhanced production of
cellulose. In conclusion, glucose as the key metabolite for glycolysis enhanced the recovery trends of
H. pluvialis protoplasts after the short-term cellulase treatment and glass bead agitation, while amino
acids more efficiently promoted protoplast regeneration after the enzymatic treatment.

An important parameter that has to be considered in the protoplast preparation from microalgae
is the osmotic fluctuation, since they live in salty or fresh water, where electrolytes, ions, and other
molecules present affect the osmotic pressure in the inner cell compartment. Therefore, by removing the
protective cell wall, microalgae could undergo damage since water can spontaneously enter the cell body
and inflate it until its explosion. To prevent such a phenomenon, during protoplast preparation and in
all downstream applications, sorbitol and mannitol are added in the medium. These two sugar-based
molecules increase the osmotic pressure of media by equilibrating the pressure between the internal
cell compartment and the external environment. The optimized concentration of mannitol is 0.6 M,
and it is used in all media during digestion, electroporation, and recovery along the medium specific for
H. pluvialis.

Finally, the quality of the protoplasts prepared with both methods was tested via their transformation
with magnetic nanoparticles. The presence of the magnetic particles inside microalgae cells was easily
verified by means of magnetism and by the Prussian blue test. Our results showed that with enzymatic
digestion and glass bead pre-treatment, the transformation efficiency with magnetic particles was around
20% and 30%, respectively. It is worth noting that when Prussian blue staining was negative (no blue color
overlapped with green), the attraction of the cells with permanent magnets was not possible, suggesting
that only when nanoparticles were internalized the cells were magnetic. The transformation yield after
cellulase treatment was lower compared to plant protoplasts transformed with iron nanoparticles due
to the double-enzymatic effect of cellulose and macerozyme R10 compared to our single-enzymatic
treatment [38], while similar results to ours were demonstrated in aminoclay transformation with
vortexing of Chlamydomonas reinhardtii [39].

In conclusion, our study demonstrated a simplified methodology to obtain good-quality H. pluvialis
protoplasts. Glucose should be added to the recovery medium as the key metabolite for enhancement of
the recovery trends of the protoplasts after short-term cellulase treatment or glass bead agitation, while
amino acids more efficiently promote protoplast regeneration after the enzymatic process. Osmotic
stabilizers are necessary in all steps, from pretreatment to recovery. By following our study, it will be
possible to easily prepare a large quantity of H. pluvialis protoplasts biomass, transform them with
proper molecules in order to acquire magnetic properties, and recover them after 4–5 days of growth
with conditional media.
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4. Materials and Methods

4.1. Organism and Growth Conditions

The H. pluvialis strain (CCAP 34/6) was purchased from Culture Collection of Algae and Protozoa
(Dunbeg, UK). The strain was grown in medium with the following composition (per liter): Ca(NO3)2,
0.15 g; KNO3, 0.10 g; β-glycerophosphoric acid disodium salt pentahydrate, 0.05 g; MgSO4·7H2O,
0.04 g; Tris-aminomethane, 0.50 g; thiamine, 0.01 mg; PIV metal solution, 3.00 mL; biotin 0.10 µg;
and vitamin B12, 0.10 µg. One liter of PIV metal solution contained Na2EDTA, 1.0 g; FeCl3·6H2O,
0.196 g; MnCl2·4H2O, 36.0 mg; ZnSO4·7H2O, 22.0 mg; CoCl2·6H2O, 4.0 mg; and Na2MoO4·2H2O,
2.5 mg [40]. The pH was adjusted to 7.5 and the temperature was controlled at 23 ◦C. Cell cultures
of H. pluvialis were grown in 250-mL Erlenmeyer flasks containing a culture volume of 100 mL at
150 rpm supplemented with NaHCO3 at a concentration of 1 g/L. The re-culture concentration was
adapted to an optical density of 0.1 at 680nm (OD680 nm). Periodic purity assessment was performed by
microscopic examination. The photobioreactor was illuminated at 60 µmol photon m−2 s−1 24/7 white
LED lamps at the cell culture surface. H. pluvialis growth was monitored by measuring the OD at
680 nm with a UV-vis spectrophotometer (Shimadzu, Kyoto, Japan) for up to 15 days. All experiments
were conducted in duplicate while samples were analyzed in triplicate.

4.2. Cell Wall Disruption by Enzymatic Lyses

H. pluvialis cells were grown in a 500-mL flask for 6–8 days and harvested by centrifugation at 1000× g
for 5 min. Then, the cell pellet was suspended in 25 mM phosphate buffer (pH 7.0) containing 0.6 M
D-mannitol and the polysaccharide-degrading enzyme cellulase (2%). The incubation temperature was
chosen based on the literature as well as our preliminary data, where different incubation temperatures
(25–37 ◦C) were examined and 30 ◦C was found to give the best results based on our morphological
observations via SEM. Each reaction mixture was incubated at 30 ◦C for 4, 8, 12, and 16 h. Afterwards,
the cells were centrifuged at 1000× g for 3 min, the pellet was re-suspended in 0.6 M D-mannitol
solution, and was washed twice with sugar solution. The protoplast layer was transferred into 5 mL
of buffer (pH 7.0) containing 0.6 M D-mannitol solution for further analysis. Generally, cells were
grown up to an optical density of 0.8–1.0 at 680 nm. Then, from this cultivation, 100 mL of cells were
withdrawn, washed, and further processed. The digestion was performed in a final volume of 30 mL.
After digestion, enzymes and digestion debris were removed by 2 washing steps and cells resuspended
in 20 mL of medium for electroporation. All solutions used for digesting, washing, and electroporation
contained 0.6 M D-mannitol to equilibrate the osmotic pressure.

4.3. Cell Wall Disruption with Glass Beads

Glass beads (Sigma, St Louis, MO, USA), 1.0 mm in diameter, were washed in concentrated
sulfuric acid, then rinsed thoroughly with sterilized water a few times, and baked at 180 ◦C for 2–3 h.
H. pluvialis cells (from the same culture as before) were cultured to the logarithmic phase and harvested
by centrifugation at 1000× g for 5 min. Cells were washed three times with 25 mM phosphate buffer
(pH 7.0) containing 0.6 M D-mannitol and re-suspended with this medium at a concentration of 2 ×
108 cells/mL. A total of 200 mg of dry glass beads and 1 mL of cells (2 × 108 cells/mL) were added
to a 1.5-mL Eppendorf tube and agitated at 1500 rpm on a vortex agitator for 30 s. The cells were
transferred to sterilized test tubes for further analysis. The experiments were performed with the
optimum conditions for 30 s and 200 mg of dry glass beads. Blank controls were transformed without
agitation. Every treatment consisted of three independent agitations.

4.4. Morphological Observation with Scanning Electron Microscopy Coupled with an Energy Dispersive X-ray
Analyzer System (SEM-EDX)

The H. pluvialis algal cells were sampled for the scanning electron microscopy observations
immediately after cell disruption by enzymatic lyses as well as mechanical treatment. The samples
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of algal cells were fixed in 2.5% (v/v) paraformaldehyde at 4 ◦C for 1 h, rinsed three times in 0.05 M
phosphate buffer (pH 7.4), and successively dehydrated in 20%, 35%, 50%, 75%, 90%, and 100%
(v/v) ethanol solution for 5 min. After dehydration, the prepared samples were sputter-coated with
Au and examined using a FEI Quanta-200 Scanning Electron Microscope. For validation purposes,
magnifications of 5000× and 10,000× were used. The microscope was equipped with an EDX detector
in order to obtain a distribution of the elemental composition of cells. The X-ray spectrum of each
sample loaded with a given microelement was obtained.

4.5. Nanoparticles

For the experimental investigations, ferrofluid nanoparticles (fluidMAG-lipid from Chemicell GmbH,
Berlin, Germany) were used. The nanoparticles consisted of an aqueous dispersion of magnetic iron oxides
(diameter of 80–100 nm) and were covered with phosphatidylcholine. The surfactant, phosphatidylcholine,
over the iron oxide core, is a coating layer similar to cell membrane. This characteristic gives it an
excellent biocompatibility since coated nanoparticles do not cross react with molecules and organelles of
the cytosol.

4.6. Protoplast Transformation

The transformation of H. pluvialis protoplasts with magnetic nanoparticles was performed using a
homemade continuous flow cuvette device for the electroporation. Pretreated H. pluvialis cells were
dissolved in medium containing 0.6 M D-mannitol solution and electroporated with a pulse generator
(MicroPulser) from BioRad (USA) using 1 pulse at 3 kV. Nanoparticles and pretreated cells were mixed
for 30 min before the electric pulse. A homemade flow-cuvette was used based on 3-D printing of a
plastic core where aluminum plaques were glued. The internal volume of the flow cuvette was 1.5 mL
with inlet and outlet tubes. A peristaltic pump was used to pump the mixture of protoplast cells and
nanoparticles inside the flow cuvette at a rate of ~100 µL per s. The generator was modified with an
external electronic circuit in order to deliver a pulse every 15 s.

4.7. Prussian Blue Staining

Cells were fixed with methanol/acetone 7:1 solution for 10 min at room temperature and washed
twice with phosphate-buffered saline (Sigma, St Louis, MO, USA). Cells were incubated for 1 h in
Prussian blue reagent obtained following the instruction manual of Biopal protocol (BioPhysics Assay
Laboratory, Worcester, MA, USA). Stained cells were investigated using the microscope.

4.8. Regeneration of Protoplasts

To regenerate protoplasts, an efficient protocol was established for cell wall regeneration and
restoration of the original H. pluvialis morphology. The H. pluvialis protoplast suspension was obtained
as described above after cell disruption by enzymatic lyses and glass beads. The regeneration medium
was supplemented with mannitol for osmotic stabilization of protoplasts [41], the growth medium,
and different concentrations of glucose (1 and 2% w/v), fructose (1 and 2% w/v), and casamino acids
(0.01% w/v) to enhance cell wall regeneration and subsequent division. In total, 10 mL of the suspension
were placed with 90 mL of regeneration medium. Medium without a supplemented carbon or nitrogen
source was used as a control. Protoplasts were incubated at 23 ◦C, without agitation and with low light
intensity 60 µmol photon m−2 s−1 for about a week and regenerated protoplasts were observed every
3 days. The culture conditions were described above. The electroporation efficiency was calculated
as follows: electroporated cells were grown in the appropriate recovery medium for 4 days, then the
OD680 nm was measured using 1 mL of culture. The same 1 mL was placed in a magnetic rack to attract
and retain magnetic cells. After 20 min, the supernatant of the tube was carefully removed and its
absorbance (OD680 nm) was measured again. When both protoplast preparation and electroporation
were successful, a pellet of magnetic cells in the tube formed; therefore, the supernatant’s absorbance
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was lower compared to the initial one. The protoplast and electroporation efficiency was calculated by
the rate between the two measurements.
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