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Abstract: Different varieties and geographical origins of walnut usually lead to different nutritional
values, contributing to a big difference in the final price. The conventional analytical techniques have
some unavoidable limitations, e.g., chemical analysis is usually time-expensive and labor-intensive.
Therefore, this work aims to apply Fourier transform mid-infrared spectroscopy coupled with machine
learning algorithms for the rapid and accurate classification of walnut species that originated from ten
varieties produced from four provinces. Three types of models were developed by using five machine
learning classifiers to (1) differentiate four geographical origins; (2) identify varieties produced from
the same origin; and (3) classify all 10 varieties from four origins. Prior to modeling, the wavelet
transform algorithm was used to smooth and denoise the spectrum. The results showed that the
identification of varieties under the same origin performed the best (i.e., accuracy = 100% for some
origins), followed by the classification of four different origins (i.e., accuracy = 96.97%), while the
discrimination of all 10 varieties is the least desirable (i.e., accuracy = 87.88%). Our results implicated
that using the full spectral range of 700–4350 cm−1 is inferior to using the subsets of the optimal
spectral variables for some classifiers. Additionally, it is demonstrated that back propagation neural
network (BPNN) delivered the best model performance, while random forests (RF) produced the
worst outcome. Hence, this work showed that the authentication and provenance of walnut can be
realized effectively based on Fourier transform mid-infrared spectroscopy combined with machine
learning algorithms.

Keywords: walnut; Fourier transform mid-infrared spectroscopy; successive projection algorithm;
genetic algorithm-partial least squares; machine learning

1. Introduction

Walnut is the hard-shell fruit, which is well-known for its high nutritional value [1]. The walnut
kernel is rich in protein, fatty acids, a variety of trace elements, and other nutrients beneficial to
the human body [2]. The walnut kernel contains a high amount of oil by weight, ranging from
52% to 70% depending on the environmental conditions, cultivars, and geographic location [3].
Researchers [4] reported that a walnut-enriched diet had a beneficial effect on cardioprotection and
bone loss. Since walnut fruit is found to be very rich in phenolic compounds, it exhibits a wide
spectrum of biological activities, e.g., anti-inflammatory, antioxidant, and antitumor properties [5].
Walnut also plays an important role in medication, and it has been used for different medical purposes
in China and Europe [2,6]. The walnut belongs to the Juglandaceae family that contains six genera,
with the most important two being Juglans and Pterocarya. Persian walnut (Juglans regia L.), which is
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widely cultivated in Asia (with China as the top producer), the U.S., and Europe, has the highest quality
among the walnut varieties. It is well recognized as a sweet taste, a relatively large kernel, and a thin
shell, which makes it easy to crack [7]. Generally, the composition of walnut varies with geographic
origins, thanks to a range of regional differences in soil, climate, and agricultural practice, as well as
the different subvarieties that are involved (i.e., different cultivars are apt to be grown in different
regions) [8]. Since the quality and nutritional value of a walnut highly depend on its geographic origin
and variety, it is of great importance to develop new and increasingly sophisticated techniques for
the authentication and provenance of walnut, which is desirable for agricultural farmers, retailers,
consumers, and administrative authorities [9].

The use of geographical indications allows producers to obtain market recognition and often a
premium price. The false use of geographical indications by unauthorized parties is detrimental to
consumers and legitimate producers [9]. Considering geographic specifications of quality, numerous
studies have been conducted to classify food products based on their geographical locations [10].
Although it is often viewed as a consumer issue, the major drive for appropriate analytical methods to
confirm authenticity has come from the food processing industry and regulatory bodies. The most
available research studies are based on the measurement of certain chemicals, such as the fatty acids and
multi-element composition [11], which is normally obtained by using a broad variety of instrumental
techniques, e.g., gas chromatography with mass spectrometry (GC-MS) [12] and nuclear magnetic
resonance (NMR) [13]. To discriminate the cultivars and geographical origins of walnut, current studies
focus on the analysis of the major and minor compounds, such as volatiles, fatty acids, polyphenols,
sterols, and minerals [14] or assessment of the antioxidant, oxidative stability, and antimicrobial
activity [15]. The method to determine chemical components is usually laborious and time-consuming,
requiring complex sample preparation. Under this circumstance, an alternative method, which enables
delivering a rapid and accurate result, is highly desired.

Infrared spectroscopy, including near infrared (NIR) and mid-infrared (MIR), has been widely
researched in the identification and constituent analysis of food products in both qualitative and
quantitative manners [16–19]. Both techniques are rapid, straightforward, and sensitive with moderate
instrument cost and relative ease of sample presentation, showing great potential in the field of food
quality control analysis. The broad and overlapping spectral peaks in NIR make it difficult for spectral
interpretation and sometimes quantitative analysis, although NIR light facilitates a high penetration
depth compared to MIR [20]. MIR absorption peaks are easy to assign to different functional
groups due to the fundamental vibrations of molecular bonds. Therefore, MIR, which produces
well-resolved absorption bands, could be more associated with some types of compounds in food under
investigation [21]. MIR spectroscopy has found numerous applications in food quality analysis [22,23].
For instance, a recent study [24] was carried out to apply Fourier transform mid-infrared (FT-MIR)
spectroscopy for the rapid nutritional profiling of pea seeds. Their work produced the correlation
coefficients greater than 0.83 for the prediction of protein, fiber, and phytic acid concentrations in seed,
suggesting the novelty and usefulness of FT-MIR as a simple, fast, and cost-effective technique to
determine multiple seed constituents simultaneously. Furthermore, MIR methods have been reported
for the authentication, provenance, and traceability of various food products, e.g., fruit purees [25],
honey [26], and cocoa bean shell [27]. Recently, Formosa et al. [28] applied attenuated total reflection
mid-infrared (ATR-FT-MIR) spectroscopy in discriminating and classifying local honey from that
of foreign origin. A high accuracy (>95%) was achieved by using different modeling algorithms
with spectral pre-treatments, confirming the capability of MIR in the context of the authentication of
honey samples.

To the best of knowledge, this study is the first to investigate the performance of FT-MIR combined
with different machine learning algorithms to classify 10 varieties of walnut. This study also attempts
to apply spectral pre-treatment to denoise the spectrum prior to modeling. In addition, different
subsets of optimal spectral variables will be created by using uninformative variable elimination
(UVE) combining with successive projection algorithm (SPA) and genetic algorithm–partial least
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squares (GA-PLS), and their performance will be compared against using the entire spectral range.
Different machine learning classifiers will be compared in terms of (1) classifying geographic origins,
(2) classifying varieties under the same geographic origins, and (3) classifying all 10 varieties.

2. Results

2.1. Spectral Profiles and Pre-Treatment

The broad variability in mean FT-MIR spectra obtained among four geographic origins is presented
in Figure 1. The broad absorption band in 3000–3500 cm−1 is indicative of the existence of a hydroxyl
group attributed to the stretching vibration of an O–H. A series of peaks existing in 2800–3000 cm−1

correspond to the C–H stretching vibration of alkane [29]. The sharp band at 1740 cm−1 is attributed
to the C=O stretching of the carbonyl group, while the bands observed at 1500–1700 cm−1 may
either be attributed to the C=C stretching of alkene or N–H bending of amine [30]. A notable band
located at 1400–1500 cm−1 may be assigned to the C–C stretching of the aromatic ring [31]. Numerous
bands appearing in 1000–1275 cm−1 might originate from C–O stretching [32]. Figure 1 displays
distinguishable differences in terms of band shapes and areas among the mean spectra collected from
different origins, suggesting that FT-MIR is capable of capturing specific characteristics of walnut
products that are influenced by geographically specific factors.
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Figure 1. The preprocessed mean spectra calculated from each geographic origin.

2.2. Optimal Wavenumbers Selection

Herein, two variable selection strategies, namely, UVE-SPA and GA-PLS, were adopted to select
the subsets of important spectral variables from the full range originally consisting of 2853 variables.

Sorting the importance of variables is crucial for variable selection and model simplification.
GA-PLS seeks for the importance of variables based on the frequency of selection. As shown in
Figure 2, the frequency of the selected wavenumbers was indicated. In general, variables with relatively
large frequency are more important to the classification modeling and therefore should be chosen.
In GA-PLS, the variance coefficients (CV) and the root mean square error of cross-validation (RMSECV)
were computed from the subset of the selected variables. Figure 3 displays the evolution of RMSECV
against the number of selected variables, while CV is plotted against the number of selected variables
and shown in Figure S4. As seen, the global, the better, and the suggested model are marked with
green, blue, and red stars, respectively. It is noted that RMSECV decreases rapidly at the first 64
selected variables and then tends to slow down, meaning that the increase of more variables makes little
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contribution to the model performance. For this reason, 102 important wavenumbers were selected
and shown in Figure S5, which was based on the better model in the GA-PLS.
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Figure 3. The root mean square error of cross-validation (RMSECV) of the number of variables included.
The global, the better, and the suggested model are marked with green, blue, and red stars, respectively.

In the UVE process, the PLS algorithm obtained the optimal principal factor of 12. Figure 4
shows the stability of each variable after UVE modeling. The left part of the vertical line in yellow
was the spectral wavenumber variables, and the right part shown in a red color was random
variables. Two horizontal lines represent the minimum and maximum cutoff lines. The stability of
the wavenumbers in the middle of the two lines meant that the spectral information carried by the
wavenumbers was useless. By this means, 1316 wavenumber variables were determined as important
and therefore selected and fed into SPA as input. The significant variables are selected based on the
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minimum root mean square error (RMSE) in SPA. Figure S6 exhibits the change of RMSE along with
the selected variable increases from 1 to 35. As seen, 10 spectral variables have an impact on reducing
RMSE, and therefore, they are chosen. The selected variables are subsequently shown in Figure 5.
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Figure 5. The selected spectral variables after performing UVE-SPA (uninformative variable elimination
combining with successive projection algorithm).

2.3. PCA Exploration

PCA, developed from the pre-treated spectra data, was used to explore the dataset before the
classification model establishment. Figure 6 demonstrates the score plots for samples collected from four
geographic origins with PC1 explaining 86.49% of variation, PC2 explaining 6.77%, and PC3 explaining
4.1%, accounting for 97.36% of the variance represented by the first three PCs. The figure shows
samples collected from Shaanxi province all located at the negative side of PC1. In contrast, samples of
Yunnan are all found to have positive scores in PC1. This indicates that walnut samples harvested
from Yunnan and Shaanxi provinces are distinctly different. Yunnan has a generally mild climate with
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pleasant and fair weather because of the province’s location on south-facing mountain slopes, receiving
the influence of both the Pacific and Indian oceans. However, Shaanxi has a continental climate with a
cold winter and hot summer. In this sense, the difference in the growth environment (temperature,
humidity, rainfall, light time, etc.) could contribute to distinctive characteristics in samples from these
provinces, which is consistent with published research on olive oils from different geographic origins
displaying various quality attributes [33,34]. As for samples from Hebei and Xinjiang provinces, it is
interesting to find that some of them are distributed at a negative axis and some are a positive size,
suggesting the variability within the same origin probably due to different varieties. In addition,
PCA score plots, created from each geographic origin, are presented in Figure S7 of the supplementary
material. The results indicate that two varieties collected from the same provinces (i.e., Yunnan and
Shaanxi) formed separable clusters. To visualize the possibility of classifying all 10 varieties, the same
score plot of Figure 6 is modified to highlight each variety, as shown in Figure S8. It is seen that some
varieties are heavily overlapping with the others, making a challenging job for discrimination.
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2.4. Classification of Geographic Origins

Classification models are developed from the entire spectral region as well as the selected variables,
and the results are summarized in Table 1. It should be noted that the model performance is evaluated
and compared based on the external test set. Although different classifiers produce dissimilar model
performances, the classification of four geographic origins is relatively satisfying with the average
accuracy higher than 80%. It is probably because the quality of the walnut varies depending on
the geographic origins due to different growth environments. Similar results can be found in the
literature. For example, Vermeulen et al. [35] applied attenuated total reflection-Fourier transform
infrared (ATR-FTIR) to the oil fraction extracted from the dried distillers grains with solubles for
classification of origins. The model developed from their study provided a classification accuracy
higher than 95% using an external validation set.

It is also noted that different classifiers respond differently with regard to the comparison between
the full spectral range and the selected variables. A better predictive ability is witnessed after removing
unimportant variables for ELM and PLS-DA classifiers. Interestingly, RF produced the same overall
accuracy over the different spectral subsets, i.e., full, which was selected by UVE-SPA and selected by
GA-PLS. The inferior model performance of RF suggests that this classifier is unsuitable for walnut
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powder discrimination based on FTIR spectra. However, RBF neural network works better on the full
spectral region compared the reduced subsets. The model performances between these two variable
selection methods are dissimilar, which is expected due to the different mathematical computations in
recognizing important wavenumbers. Table 1 shows that the best result is achieved by using BPNN
built from the selected variables with the overall accuracy higher than 95%.

Table 1. Modeling performances to classify four geographic origins on test set built from the full
spectral range and subsets of the selected variable using different classifiers.

Classifier Parameter Yunnan Xinjiang Shaanxi Hebei Overall

ELM 62 84.62 70.00 100.00 52.63 74.24
RF 40 61.54 65.00 57.14 89.47 69.70

RBF 66 69.23 100.00 64.29 94.74 84.85
PLS-DA 12 69.23 50.00 71.43 84.21 68.18

UVE-SPA-ELM 56 61.54 90.00 71.43 94.74 81.82
UVE-SPA-RF 88 58.85 75.00 50.00 89.47 69.70

UVE-SPA-RBF 70 76.92 35.00 28.57 78.95 54.55
UVE-SPA-PLS-DA 6 53.85 90.00 100.00 89.47 84.85
UVE-SPA-BPNN 8 100.00 100.00 93.33 94.74 96.97

GA-PLS-ELM 108 69.23 85.00 71.43 78.95 77.27
GA-PLS-RF 60 58.85 75.00 50.00 89.47 69.70

GA-PLS-RBF 15 61.54 90.00 64.29 94.74 80.30
GA-PLS-PLS-DA 9 84.62 85.00 92.86 94.74 89.39
GA-PLS-BPNN 6 92.31 95.00 92.86 100.00 95.45

Note: Parameter: number of latent variables (LVs) for partial least squares–discrimination analysis (PLS-DA),
number of forest trees for random forest (RF), number of nodes in the hidden layer for radial basis function
(RBF), number of nodes for extreme learning machine (ELM), and number of neurons in the hidden layer for back
propagation neural network (BPNN).

2.5. Classification of Varieties Under the Same Origin

The next step is to investigate if the classifiers can distinguish different varieties under the same
geographic origin. In this sense, classification models for the identification of varieties are separately
developed within the same origin, as shown in Table 2. Compared to the discrimination of four origins
(see Table 1), a better classification performance is evidenced. It is noticed that the classification of
varieties in Yunnan and Shaanxi provinces outperformed those in Xinjiang and Hebei, which is in
line with the PCA score plots in the Supplementary Materials. Overall, the models built from the
selected variables are superior to those from the full spectral region. The results based on the optimal
wavenumbers selected by GA are close to the results of using the UVE-SPA algorithm. Again, BP neural
network is seen as the most powerful algorithm that produces the best classification performance
almost in all cases, while RF is recognized as the least desirable classifier, generating the worst accuracy
in a test set.

2.6. Classification of All Varieties

Classification of all 10 varieties coming from four geographic origins are subsequently explored,
with the statistical results summarized in Table 3. The inferior classification performance is observed
when compared to the discrimination of origins or varieties (Table 1) within the same origin
(Table 2). This is understandable, since the developed model is more complicated with more classes,
e.g., 10 varieties vs. four origins. This also reminds us of the PCA score plots in which samples of
different varieties are not visually clustered. As the most powerful classifier, BPNN reaches the accuracy
of 87.88% and 83.33% using the subset of variables selected from GA-PLS and UVE-SPA, respectively.
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Table 2. Modeling performances to classify varieties within the same origin on a test set built from the
full spectral range and subsets of the selected variable using different classifiers.

Origin Variable
Input ELM RF RBF PLS-DA BPNN

Yunnan
(No.1 No.2)

Full 84.62 84.62 92.31 84.62 -
GA-PLS 92.31 84.62 92.31 92.31 100.00

UVE-SPA 92.31 84.62 100.00 92.31 100.00

Xinjiang
(No.3 No.4 No.5)

Full 70.00 65.00 90.00 70.00 -
GA-PLS 90.00 65.00 90.00 65.00 94.74

UVE-SPA 100.00 70.00 85.00 65.00 100.00

Shaanxi
(No.6 No.7)

Full 85.71 92.31 100.00 100.00 -
GA-PLS 100.00 100.00 100.00 100.00 100.00

UVE-SPA 100.00 100.00 100.00 100.00 100.00

Hebei
(No.8 No.9 No.10)

Full 73.68 68.42 68.42 78.95 -
GA-PLS 78.95 73.68 73.68 78.95 94.74

UVE-SPA 84.21 68.42 63.16 73.68 89.47

Table 3. Modeling performances to classify all 10 varieties on a test set built from the full spectral range
and subsets of the selected variable using different classifiers.

Variable Input
Classifier

ELM RF RBF PLS-DA BPNN

Full 60.61 54.55 68.18 42.42 -
GA-PLS 68.18 53.03 71.21 60.61 87.88

UVE-SPA 66.67 48.48 60.61 51.52 83.33

3. Discussion

The interaction of mid-IR radiation with a walnut sample provides a spectral fingerprint useful for
discrimination. FT-MIR enables recording spectral characteristics of walnut products related to the four
geographic origins. Good separation between four origins is noticed in the mean FT-MIR spectra of
Figure 1, suggesting the powerfulness and capability of vibrational spectroscopy for the discrimination
of walnut’s geographical origin. Due to the diversity of walnut samples within the same geographic
origin, machine learning algorithms are required. Generally, machine learning algorithms are capable
of addressing some random noise with a large size of training samples. In our case, since the training
set is relatively small, the random noise is likely to cause overfitting problems; i.e., the model wrongly
uses noise as a feature and performs well on the training set, yet it performs poorly on the test set.
For this reason, the wavelet transform algorithm is a good option for spectral smoothing prior to
machine learning model development.

Both the unsupervised (i.e., PCA) and supervised machine learning methods evidenced the
presence of differences between the walnuts having diverse provenance. Such differences are unlikely
due to random variation or overfitting issues. A PCA score plot (see Figure 6) exhibits that walnuts
harvested from Shaanxi province can be well separated from samples from Yunnan. Since the main
factor under investigation is the geographical origin, it is reasonable to ascribe the samples separation
to the distinct environmental features of these two provinces. Variations of soil and weather conditions
are likely to influence the walnut’s chemical composition.

As pointed out by Tables 1–3, the selection of important variables has the potential to increase
the model performance for some classifiers. Results also show that the model performance varies
distinctively between ML algorithms. It is understandable, since each machine learning algorithm
works in different manners and they have been designed for various applications. Overall, the results
proved that BPNN performed the best at all conditions, suggesting the suitability of applying BPNN
on FTIR spectral data. On the contrary, RF presented the worst performance, and therefore, it is
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not suggested to apply RF for such applications. RBF modeling was able to produce good results,
yet it was unstable in some circumstances. The discrimination of varieties within the same origin
performed the best, yet this mode requires more classification models (i.e., one model for each origin).
The classification of geographic origins is also desirable, with the highest accuracy of 96.97% achieved
by UVE-SPA-BPNN. The identification of all 10 varieties in one attempt is the least satisfying with the
highest accuracy of 87.88% by GA-PLS-BPNN. Therefore, it is recommended to classify the geographic
origins first and then apply different models to identify varieties under the same origin.

In spite of the remarkable outcomes, we feel obliged to point out that the development of
a comprehensive model that is able to discriminate the geographic origin of an unseen walnut
sample is not feasible at the moment. An exhaustive sampling of world walnut samples over
several harvest years is required. The future work will include more walnut samples with a large
variability. For example, seasonal climate fluctuations will be taken into consideration by repeating the
sampling over several consecutive harvesting seasons. This extra variation is beneficial to ensure the
robustness of the developed machine learning model and therefore essential to achieve generalization
in real-world situations.

4. Materials and Methods

4.1. Walnut Sample Preparation

In this experiment, a total of 192 walnut samples consisting of 10 varieties was collected from
four provinces (see Figure S1 of supplementary material), i.e., Yunnan, Xinjiang, Shaanxi, and Hebei,
which are known as the largest places of walnut production in China. The walnuts were harvested
at commercial maturity and then transported to the laboratory at Zhejiang University, Hangzhou
(120◦09′ E, 30◦14′ N), China. For analysis and spectral acquisition, the wholesome walnuts free from
any abnormal features such as diseases, defects, and contaminations were collected. These walnut
varieties had no obvious difference in appearance. Further details are presented in Table 4. These 10
varieties were simply labeled as No. 1–10. The number of samples collected from each variety was
slightly different based on its availability, ranging from 16 to 20. Within each variety, around 2/3
samples were selected as the training set for model development, while the remaining ones served as
the test set.

Table 4. Details of the collected walnut samples and the characterization of each variety.

Province Geographical
Location Variety Characteristic Sample

Size

Data Partition
(Training/Test

Samples)

Yunnan

Southwest of
China; 97◦32′ ≈

106◦12′ E, 21◦08′

≈ 29◦15′ N

No. 1:
Yangbi
Dapao

As the most planted variety in
Yunnan, it is mainly
distributed on the western
slope of Cangshan Mountain
in Yunnan, accounting for
about 80% of Yangbi walnuts.

20 13/7

No. 2:
Yangbi
Caoguo

It is mostly found in Meiji
Village, West Town of
Cangshan, Yunnan. The inner
folds are well developed, and
whole kernels can be collected.

19 13/6
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Table 4. Cont.

Province Geographical
Location Variety Characteristic Sample

Size

Data Partition
(Training/Test

Samples)

Xinjiang

Northwest of
China; 34◦22′ ≈
49◦33′ E, 73◦41′

≈ 96◦18′ N

No. 3:
Hetian

185

It is the main walnut variety
cultivated in Xinjiang, mostly
found in southern Xinjiang.

19 13/6

No. 4:
Xinfeng

Grown at the altitude of
1700–2400 m, it is named after
the skin, which is as thin as
paper, and the whole kernel is
easy to collect.

20 13/7

No. 5:
Xinxin 2

It is an early-maturing variety
with the characteristics of high
yield and good stability.

20 13/7

Shaanxi

Northwest of
China; 105◦29′ ≈
111◦15′ E, 31◦42′

≈ 39◦35′ N

No. 6:
Liao 4

As a crossbreed, this variety
has strong adaptability, cold
and drought tolerance,
making it suitable for northern
cultivation areas.

20 13/7

No. 7:
Xiangling

It is a mid-ripening variety,
ideal for cultivation in thick
and fertile soil conditions.

20 13/7

Hebei

Northern China;
113◦04′ ≈ 119◦53′

E, 36◦01′ ≈
42◦37′ N

No.8:
Qingxiang

It belongs to the late-maturing
type, which was introduced
from Japan.

16 10/6

No.9:
Liao 1

It is the main variety of walnut
cultivated in Hebei. 18 12/6

No.10:
Liao 8

As one of the early-fruiting
walnut varieties cultivated by
hybridization, it gets mature
in mid-September.

20 13/7

4.2. FT-MIR Spectroscopy Acquisition

The mid-infrared spectra of samples were acquired by a Jasco FT/IR-4100 spectrometer
(Jasco International Co. Ltd., Tokyo, Japan) using the detector of DLATGSTGS and a ZnO crystal
sampling accessory in transmission mode. Before collecting the spectrum, potassium bromide (KBr)
was prepared by first drying in an oven at 105 ◦C for 4 h and then keeping in a vacuum drying dish.
Each walnut shell sample was peeled, and about 5 g of sample was successively milled for 30 s using a
grinder (FW100, Ty, instrument Co., Ltd., Shanghai, China). To prevent water absorption before spectra
collection, the ground sample was packed in a dry sealed bag and stored in the vacuum desiccator.
To effectively acquire FT-MIR spectra, 20 mg of walnut sample was homogenously mixed with the
980 mg KBr in a ratio of 1:49. A manual tableting machine produced by Jasco and matched with a Jasco
FT/IR-4100 infrared spectrometer was used to compress the mixture at the same height for 1 min each
time. When measuring, each sample was scanned 32 times at a resolution of 4 cm−1 in the range of
400–4000 cm−1. An average spectrum was taken as a representative of the sample. The data collection
was performed at a constant temperature of 25 ◦C. The beginning and end of the original spectral data
were eliminated to exclude the effect of the noise on the subsequent data analysis, leading to a smaller
spectral range covering 700–3450 cm−1 for the modeling purpose.

4.3. Spectral Pre-Treatment

In this work, wavelet transform was used to smooth the spectral data. The basic idea behind
wavelet denoising is that the wavelet transforms results in a sparse representation for many real-world
signals. In other words, wavelet transform concentrates signal features in a few large-magnitude
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wavelet coefficients. Wavelet coefficients which are small in value are typically noise and we can
“shrink” those coefficients or remove them without affecting the signal quality. After thresholding
the coefficients, the data can be reconstructed using the inverse wavelet transform. The wavelet
transform algorithm employs different basis functions and decomposition scales, leading to different
denoising effects. In this case, the wavelet function Daubechies’ orthogonal wavelet basis Db3 and the
decomposition scale 4 were used to denoise the spectral signal.

4.4. Optimal Spectral Variables Selection

We employed the genetic algorithm–partial least squares (GA-PLS) and uninformative variable
elimination–successive projection algorithm (UVE-SPA) to select the optimal wavenumbers. As an
adaptive heuristic search algorithm, GA can be applied when the dimension of the data space is too
large for an exhaustive search [36]. It proceeds first by randomly generating an initial population of
individuals, which should ideally cover the domain to explore. GA-based variable selection in the
frame of PLS regression is thoroughly described in Leardi and González [37]. The basic principle of
GA-PLS is to select candidate variables using GA and evaluate the selected subset using PLS. GA-PLS
takes the minimum cross-validation root mean square error (RMSECV) or variance as the fitness and
the PLS algorithm as the fitness evaluation function. Additionally, GA-PLS uses the weighted average
of the frequency as the frequency of the final selected subset. In our case, the population size was set to
30, the crossover probability was set to 0.5, and the probability of mutation was set to 0.01 according
to the previous studies performed by Leardi [37,38]. The GA-PLS tends to be more stable when the
number of iterations increases and the number of selected variables decreases. Therefore, in this work,
the number of GA-PLS iterations was set to 1000 to ensure the stability and accuracy of the results.

SPA is employed as a simple projection operation in a vector space to select subsets of variables with
minimum collinearity. Compared to GA, SPA can provide more reproducible results [39]. Nevertheless,
the SPA operation is time-expensive when the entire spectral range contains thousands of variables.
UVE is used to eliminate the variables, which have no more informative variables for modeling than
noise. Wu et al. [40] reported that the combination of UVE with SPA (UVE-SPA) could both reduce the
calculation time and improve the model’s performance. In this work, the spectral variables selected by
UVE were used as the input to feed into SPA with the range of the selected optimal wavenumbers
setting to 5–30.

4.5. Principal Component Analysis

Principal component analysis (PCA) has been widely used for quantitative and qualitative analysis
of spectral data. PCA linearly transforms the original data into new variables (i.e., scores and loadings).
Each loading is a vector that provides information on the relative importance, or the weighting,
of specific wavelengths relative to each other. Generally speaking, the first principal component (PC)
contains the largest variance in the dataset and each following PC describes progressively less of the
variance. In this sense, the first few PCs can be used to represent the original dataset, which greatly
reduces the data dimension. In this work, PCA was used to visualize the distribution of data and hint
at any possible clustering of the walnut powder samples based on different origins and varieties.

4.6. Machine Learning Algorithms

In this work, a wide range of classification modeling strategies were investigated including
extreme learning machine (ELM), random forests (RF), back propagation neural network (BPNN),
radial basis function (RBF) neural network, and partial least squares discrimination analysis (PLS-DA).
The parameters and advantages of each classifier are summarized in Table S1 of the supplementary
material. Classification models were developed separately based on the whole spectral region and
the selected subsets of optimal variables. However, since it is quite time-consuming to build a BPNN
model from the entire spectral range, this option is not considered.
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ELM is a kind of single hidden layer feedforward neural network, which is a fast and simple
classifier. In the ELM algorithm, only the number of hidden neurons need to be adjusted to obtain a
unique and best solution, which is accomplished by comparing the effects of different neuron nodes.
In this work, the number of neurons in the hidden layer was set from 1 to the size of the training set.
The optimal number of neurons in the ELM model is determined by the minimum training error [41].

RF classifier is an integrated approach consisting of multiple decision trees that are independent
of each other. The idea of RF is to build multiple decision trees and then merge them together to get a
more accurate and stable prediction. As an ensemble method, RF has been proven to outperform a
single decision tree because it reduces the over-fitting by averaging the result. Furthermore, RF is fast
and tunable with relatively a small number of parameters [42].

PLS-DA is the discriminant analysis in the frame of PLS regression [43,44]. The discriminant
analysis is conducted after the development of a PLS regression model built from spectral data and
classes. The predicted values of the samples obtained from the regression model are not integers
representing different categories, and therefore, thresholding is required. In the current work,
the threshold was set to 0.5 [43]; that is, if the absolute value of the difference between the predicted
value and the actual value was less than 0.5, the discrimination is acceptable and vice versa.

BPNN has a wide range of applications in regression and discriminant analysis [45,46]. It uses
the error back propagation to modify the internal network weight after each training phase until
the training error or the training phase of the network reaches the goal [47]. Herein, Matlab Neural
Network Toolbox was used to train the BP neural network. The learning rate was set to 0.6. The number
of iterations was 1000. The target deviation was 10−5. The other parameters follow the default settings.
The discriminant threshold for BP neural network was set to 0.5, which is the same as PLS-DA.

RBF neural network is another artificial neural network, which is also widely used for various
applications. RBF and BP neural network are non-linear multi-layer forward networks; RBF-NN
usually has three layers: an input layer, a hidden layer with a non-linear RBF activation function,
and an output layer. The output of the network is a linear combination of the radial basis functions
of the input and neuron parameters [48]. All computations and machine-learning algorithms were
performed with the aid of chemometric software Unscrambler® 10.1 (CAMO AS, Oslo, Norway) and
Matlab R 2014b (The Math Works, Natick, MA, USA).

5. Conclusions

The results obtained from this work highlight the effectiveness of FTIR combined with pattern
recognition approaches in order to quickly and reliably identify the authenticity and provenance of
walnut samples. BPNN modeling was successfully applied on the FT-MIR dataset, demonstrating that
the spectroscopic fingerprint can serve as a fast screening platform for walnuts. Thus, these promising
results should serve as an incentive for more research to be done on the development of a multifactorial
approach combined with other techniques such as fluorescence spectroscopy, GC-MS, and NMR.

Supplementary Materials: The following are available online. Figure S1. The mapping of the selected geographical
regions in China. Figure S2. The raw mid-infrared spectrum of a randomly selected sample and the result after
preprocessed by wavelet transform. Figure S3. The preprocessed mean spectra calculated from each variety.
Figure S4. The CV of the number of variables included. Figure S5. Plot of 102 selected wavenumbers by GA-PLS.
Figure S6. RMSE for selection by SPA (final number of selected variables:10, RMSE = 0.77742). Figure S7. Score plot
for varieties from the same origin. PCA models were separately built from the samples within the same geographic
origin, i.e., (a) Yunnan, (b) Xinjiang, (c) Shaanxi, (d) Hebei. Distinct separation between varieties can be observed
in Yunnan (a) and Shaanxi (c). Figure S8. Score plot for all 10 varieties from four origins. Table S1. Parameters and
advantages of the selected machine learning algorithms.
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