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Abstract: The transition metal-catalyzed C–H bond functionalization of azoles has emerged as one of
the most important strategies to decorate these biologically important scaffolds. Despite significant
progress in the C–H functionalization of various heteroarenes, the regioselective alkylation and
alkenylation of azoles are still arduous transformations in many cases. This review covers recent
advances in the direct C–H alkenylation, alkylation and alkynylation of azoles utilizing transition
metal-catalysis. Moreover, the limitations of different strategies, chemoselectivity and regioselectivity
issues will be discussed in this review.

Keywords: azoles; C–H functionalization; transition metal-catalysis; C–H activation; alkenylation;
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1. Introduction

Azoles are important heterocyclic scaffolds because of their wide application in pharmaceuticals,
natural products, and functional materials [1–3]. After the first report of the antifungal activity of
azoles in 1944 by Woolley, their functionalization and synthesis started attracting the attention of
researchers [4]. The functionalization of azoles has been well elaborated for decades by classical
metalation with strong bases such as n-BuLi [5]. However, these classical methods suffer from general
limitations, such as low chemo- and/or regio- selectivity, low atom economy, sophisticated reaction
conditions, and more importantly, poor reactivity in the case of electron-deficient azoles [6]. Moreover,
the cost of waste disposal and the need to handle reactive bases make these methods unsuitable for
industrial scale-up. As a consequence, over the last decade, continuous demand for these scaffolds in
the pharmaceutical industry and academia has resulted in several new approaches, mainly based on
C–H functionalization.

Direct transition-metal catalyzed C–H functionalization is an effective tool for streamlining
azole-based biologically important frameworks [7–11]. However, the presence of heteroatoms in an
azole framework renders the overall C–H activation more challenging and substrate-specific, owing to
their ligation tendency with transition-metal catalysts. Besides the heteroatom issue, the inherent
electrophilic nature of azoles favors either a nucleophilic attack via ring opening, or a direct attack
in the presence of metal catalysts. Furthermore, the alkylation of azoles with alkyl halides bearing a
β-hydrogen is challenging due to the possibility of β-hydride elimination and/or hydrodehalogenation
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in the presence of transition metal catalysts. Similarly, the alkenylation of azoles with alkenyl halides
is problematic due to the tendency of homocoupling of alkenyl halides, as well as the low stability of
moisture-sensitive iodides and triflates. In this context, researchers have proposed several strategies
to overcome these challenges, such as: (1) the use of directing groups to control regioselectivity,
(2) the development of moisture-sensitive coupling partners such as phosphates and carboxylic acids,
and (3) modulation of the innate reactivity of azoles via electronic and steric modifications.

Nevertheless, this field needs close inspection for the development of stable and reactive
electrophilic partners with improved catalytic systems. Recently, Evano and Theunissen [12] highlighted
the importance and challenges associated with the alkylation of various heteroarenes. Ackermann and
coworkers reviewed the alkenylation and alkylation of azoles, especially via 3d transition metals [13].
Many reviews have been published on C–H functionalization/activation strategies [14–16]; to the best
of our knowledge, none of them is truly focused on the direct C–H bond functionalization of azoles.
The continuously increasing demand for new azole-based antifungal agents still requires precise control
of regioselectivity and cost-efficient catalytic systems. Therefore, throughout this review, we highlight
the role of transition metals in the direct C–H alkylation, alkenylation, and alkynylation chemistry of
azoles. We substantiate the importance of these processes and outline common mechanistic patterns,
focusing primarily on the formation of new C–C bonds.

2. Alkenylation

The alkenylation of azoles has attracted much attention due to their widespread use in polymers
and materials chemistry [17]. There are four main synthetic approaches for transition-metal-mediated
alkenylation of azoles: (1) C–H/C–X alkenylation (X = halogen or triflate) of azoles with alkenyl
halides catalyzed by palladium or other transition metals; (2) C–H/C–H alkenylation (oxidative
Mizoroki–Heck reaction [18]) of azoles with simple alkenes catalyzed by palladium and rhodium
catalysts; (3) C–H addition of azoles to alkynes catalyzed by transition metal catalysts (i.e., Rh, Pd,
and Ni); and (4) decarbonylative C–H alkenylation. For clarity, we will discuss all the recent pioneering
developments in each category with some important mechanisms, as well as shortcomings.

2.1. C–H/C–X Cross-Coupling

Straightforward C–H/C–X cross-coupling is a classical and one of the most studied methods
for the alkenylation of azoles, due to the wide availability of diverse coupling partners (i.e., halides
and triflates). Moreover, the preparation of an organometallic coupling partner can be avoided with
this approach. In 2008, Doucet and coworkers reported an early example of the alkenylation of
azoles with C–H/C–X cross-coupling (Scheme 1) [19]. The authors employed α- or ß-substituted
alkenyl bromides for palladium-catalyzed coupling of electron-rich benzoxazoles, benzothiazoles,
or 2-n-propylthiazoles to afford the desired products via C–H bond activation. They performed the
reaction at high temperature (80 ◦C to 140 ◦C) and under an inert atmosphere (Ar) in the presence
of PdCl(C3H5)(dppb) as the catalyst. They overcame the decomposition of heterocycles otherwise
observed at high temperatures by using an excess quantity thereof. Interestingly, this process produced
minimal waste; i.e., HX associated with a base, instead of a metallic salt, rendering it intriguing in
terms of both atom economy and nontoxic waste.
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Alami and coworkers employed a bimetallic Pd/Cu catalytic system for the direct alkenylation
of azoles with alkenyl halides to afford the corresponding 2-vinyl-substituted azoles in moderate to
good yields [20]. The reaction was not successful in the absence of CuI. Many heterocycles including
benzimidazole, benzoxazole, benzothiazole, and thiazole derivatives afforded the desired alkenylated
products with mono-, di-, or trisubstituted alkenyl bromides in good yields (Scheme 2).
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In 2010, Ackermann and coworkers reported Pd-catalyzed alkenylation of benzoxazoles by using
moisture-stable alkenyl phosphates as coupling partners. However, the scope of the reaction was
limited to only five examples (Scheme 3) [21].
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Scheme 3. Direct alkenylation of azoles with phosphates.

The microwave-assisted synthesis utilizing H2O as solvent is a cost-efficient and green approach
in organic synthesis. In 2012, Willis and coworkers employed such an approach for the coupling of
various alkenyl iodides with benzoxazoles using [Pd(dppf)Cl2.CH2Cl2], PPh3, and Ag2CO3 as the
catalytic system [22] (Scheme 4). They coupled a wide range of alkenyl iodides to afford the desired
products with good regioselectivity.
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Owing to the importance of monofluorinated alkenes in several areas, Hoarau and coworkers
developed a Pd0/Cu1 bimetallic catalytic system for stereospecific direct C–H alkenylation of
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various 1,3-diazoles utilizing gem-bromofluoroalkenes as electrophiles (Scheme 5). A range of
electron-withdrawing and donating groups on gem-bromofluoroalkenes successfully afforded the
desired products in good yields without producing the undesired alkynylated product. The authors
used strong bases such as Cs2CO3 and tBuOLi for alkenylation of less-acidic 1,3-diazoles to furnish the
desired monofluorinated products [23].
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Recently, nanoparticles have emerged as a robust catalytic system for many organic
transformations [24–26], providing an alternative to conventional homogenous catalysis. In 2014,
Wang and coworkers employed CuO (6.5 nm) nanoparticles for alkenylation of benzoxazoles,
benzothiazoles, and 1-methylbenzimidazoles with alkenyl bromides (Scheme 6) [27]. The authors
proposed a mechanism similar to the homogeneous catalytic system reported by Miura [28], in which
PPh3 stabilized the surface of the nanoparticles and acted as a ligand. Moreover, the catalyst can be
used several times without losing its catalytic activity.
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In 2013, Yamaguchi and Itami disclosed an efficient nickel-catalyzed C–H/C–O coupling of
heteroarenes and enol derivatives [29]. A 1,2-bis(dicyclohexylphosphino)ethane (dcype) ligand was
necessary for this Ni(0) catalytic system (similar ligands displayed an extremely low or no promoting
effect; Scheme 7a). They employed styryl pivalate and carbamate as coupling partners with various
azoles such as oxazoles and benzoxazoles with substituents at the C5 position (methyl, methoxy,
and t-butyl) to afford the corresponding styrylated products in moderate to good yields. Moreover,
the authors showed the utility of this new method by synthesizing Siphonazole B in a convergent
manner as compared with previous reports. However, benzothiazoles did not react with styryl pivalates
and carbamates under the optimized reaction conditions. Later in 2015, the same group improved
the efficiency of this reaction by employing a Ni(II)/dcypt catalytic system to deliver the alkenyled
imidazoles in high yields (Scheme 7b) [30].

In 2016, Kwong and coworkers disclosed a Pd/PhMezole-Phos-catalyst system for alkenylation
of oxazoles by employing readily available and stable alkenyl tosylates as coupling partners [31].
They reduced the catalyst loading to 250 ppm, providing an opportunity to minimize the residual
Pd-content in pharmaceutical products. Moreover, they synthesized a new class of Ir(III) complexes
by using C2-alkenyloxazoles, useful for applications such as cell imaging. In addition, they carried
out a gram-scale synthesis without altering the reaction conditions, affording the desired product in
85% yield (Scheme 8).

A year later, Chen and coworkers described an efficient method for C2-alkenylation of benzoxazoles
by using an economical Cu-atalytic system and allyl halides as coupling partners under ligand-free
conditions [32]. Interestingly, slightly modified reaction conditions produced a more conjugated
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2-(buta-1,3-dienyl)benzo[d]oxazole product in 75% yield from 1,4-dibromobut-2-ene and benzoxazole.
The reaction starts with deprotonation of the benzoxazole followed by metalation to form intermediate B.
The in situ intermediate then undergoes oxidative insertion with the allyl halide to generate intermediate
C, which further undergoes reductive elimination to afford the desired product (Scheme 9).
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In 2019, Liang and coworkers followed Doucet’s Pd-catalytic approach for C2-alkenylation
of a variety of azole-based heterocycles by using a more efficient Ni–xantphos catalytic system
(Scheme 10) [33]. These modified reaction conditions presented a moderate scope for C2-alkenylation.
However, a higher reaction temperature was needed for sterically hindered bromoalkenes.
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2.2. C–H/C–H Cross-Coupling

From the viewpoint of sustainable and atom-economic development, C–H/C–H cross-coupling
offers the most straightforward approach in alkenylation of azoles. Also, substrate pre-activation is
not required.

Transition-metal-catalyzed oxidative olefination (typically from acrylates) of heteroarenes for
direct C–C bond formation via C–H bond cleavage is also known as the Fujiwara–Moritani reaction.
In 2010, Miura and coworkers reported direct alkenylation of 2-substituted azoles using Pd(OAc)2

as catalyst and AgOAc as oxidant to deliver the corresponding 5-alkenylated azoles in moderate to
good yields (Scheme 11) [34]. Internal or aliphatic alkenes were not suitable under the optimized
reaction conditions and gave lower yields. They exemplified the utility of the process by synthesis of
π-conjugated 2,5-dialkenylated thiazoles, which showed interesting solid-state fluorescence properties.

Molecules 2020, 25, x FOR PEER REVIEW 6 of 33 

 

10) [33]. These modified reaction conditions presented a moderate scope for C2-alkenylation. 
However, a higher reaction temperature was needed for sterically hindered bromoalkenes. 

 
Scheme 10. Ni-catalyzed direct alkenylation of azole derivatives with alkenyl bromides. 

2.2. C–H/C–H Cross-Coupling 

From the viewpoint of sustainable and atom-economic development, C–H/C–H cross-coupling 
offers the most straightforward approach in alkenylation of azoles. Also, substrate pre-activation is 
not required. 

Transition-metal-catalyzed oxidative olefination (typically from acrylates) of heteroarenes for 
direct C–C bond formation via C–H bond cleavage is also known as the Fujiwara–Moritani reaction. 
In 2010, Miura and coworkers reported direct alkenylation of 2-substituted azoles using Pd(OAc)2 as 
catalyst and AgOAc as oxidant to deliver the corresponding 5-alkenylated azoles in moderate to good 
yields (Scheme 11) [34]. Internal or aliphatic alkenes were not suitable under the optimized reaction 
conditions and gave lower yields. They exemplified the utility of the process by synthesis of π-
conjugated 2,5-dialkenylated thiazoles, which showed interesting solid-state fluorescence properties. 

 
Scheme 11. Pd-catalyzed direct oxidative alkenylation of azoles. 

In 2011, Antilla and coworkers replaced Ag with a cheaper Cu oxidant for C4-olefination of 
oxazoles catalyzed by Pd(II) acetate via C–H bond activation under mild reaction conditions (Scheme 
12) [35]. They applied their optimized reaction conditions to a wide substrate scope including various 
olefins such as electron-deficient alkyl acrylates, N,N-ethylphenylacrylamide and substituted 
styrenes, with good functional group tolerance. Interestingly, more-challenging substrates such as 
vinyl trimethylsilane and 1-phenyl-1,3-diene also afforded the desired products in moderate to good 
yields. 

 
Scheme 12. Pd-catalyzed C4-olefination of oxazoles. 

Gem-difluoromethylene exhibits extraordinary biological activities with potential 
pharmaceutical applications [36]. Owing to its importance, Wu and coworkers reported synthesis of 
pyrazole derivatives containing a gem-difluoromethylene moiety through a Pd-catalyzed direct o-
olefination of CF3-substituted pyrazoles (Scheme 13) [37]. 

Scheme 11. Pd-catalyzed direct oxidative alkenylation of azoles.

In 2011, Antilla and coworkers replaced Ag with a cheaper Cu oxidant for C4-olefination
of oxazoles catalyzed by Pd(II) acetate via C–H bond activation under mild reaction conditions
(Scheme 12) [35]. They applied their optimized reaction conditions to a wide substrate scope including
various olefins such as electron-deficient alkyl acrylates, N,N-ethylphenylacrylamide and substituted
styrenes, with good functional group tolerance. Interestingly, more-challenging substrates such as vinyl
trimethylsilane and 1-phenyl-1,3-diene also afforded the desired products in moderate to good yields.
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Gem-difluoromethylene exhibits extraordinary biological activities with potential pharmaceutical
applications [36]. Owing to its importance, Wu and coworkers reported synthesis of pyrazole
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derivatives containing a gem-difluoromethylene moiety through a Pd-catalyzed direct o-olefination of
CF3-substituted pyrazoles (Scheme 13) [37].Molecules 2020, 25, x FOR PEER REVIEW 7 of 33 
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Inspired by You’s work, in 2014 Ong and coworkers employed a Pd(TFA)2 and 1,10-
phenanthroline catalytic system with Ag as oxidant for C-2 alkenylation of azoles (Scheme 16). The 
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Scheme 13. Pd-catalyzed reaction of 1,3,5-trisubstituted pyrazoles with
gem-difluoromethylenated acetonide.

Yao and coworkers reported a Pd(II)-catalyzed oxidative Heck coupling of thiazole-4-carboxylates
to deliver the desired alkenylation products in moderate to good yields (Scheme 14) [38].
This C–H functionalization uses neither ligands nor acidic additives to accelerate the reaction.
Thiazoles containing 2-alkyl and 2-carbonyl substituents mainly gave homocoupling byproducts
with n-butyl acrylates.
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Scheme 14. Pd(II)-catalyzed oxidative Heck coupling of thiazole-4-carboxylates.

In 2012, You and coworkers reported an efficient trimetallic catalytic system using
Pd(OAc)2/CuCl/Cu(OAc)2·H2O for a dehydrogenative Heck coupling, achieving direct alkenylation of
various biologically relevant N-heteroarenes with alkenes [39]. They applied their reaction conditions
to caffeine and xanthine derivatives, and afforded the desired products in good to moderate yields
(Scheme 15). The authors highlighted the importance of this protocol by showing the fluorescence
emission ability of these new scaffolds.
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Scheme 15. Pd/Cu-catalyzed dehydrogenative alkenylation of caffeine derivatives.

Inspired by You’s work, in 2014 Ong and coworkers employed a Pd(TFA)2 and 1,10-phenanthroline
catalytic system with Ag as oxidant for C-2 alkenylation of azoles (Scheme 16). The authors revealed
the considerable role of C–H bond cleavage of the alkene in the rate-determining step. Moreover,
they achieved direct and efficient synthesis of naturally occurring Annuloline and Siphonazole,
showing a promising opportunity in natural product synthesis [40].
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Kuang and coworkers performed an extensive experimental study for C2-selective alkenylation of
thiazoles. The overall selectivity of this process relies on the neutral reaction conditions and the ligand
choice (1,10-phenanthroline). The authors presented a broad substrate scope with good functional
group tolerance (Scheme 17) [41].
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Thiazolo[3,2-b]-1,2,4-triazole moieties are valuable molecules that exhibit a wide range of
biological activities [42]. In 2014, Wang and coworkers reported an atom-economical approach
to obtain alkenylation of thiazolo[3,2-b]-1,2,4-triazoles via a palladium-catalyzed, two-fold C–H
functionalization [43]. Interestingly, the synergetic effect of a metal oxidant, Cu(OAc)2, with oxygen
plays an important role in the C–H activation step, affording the desired products in high
yields (Scheme 18).
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In 2015, Shi and coworkers employed a semi-continuous approach to overcome the long-standing
homocoupling problem in direct oxidative cross-coupling to functionalize thiazole derivatives
(Scheme 19) [44]. Interestingly, tAmylOH and DMSO played an important role in increasing the yield
of the desired products. The authors showed a broad substrate scope with good to moderate yields.
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In 2016, Huang and coworkers utilized a well-established Pd-catalyzed direct C–H bond
functionalization strategy for dehydrogenative alkenylation of imidazo[2,1-b]thiazole derivatives
(Scheme 20) [45]. The reaction conditions were compatible with a wide range of alkenes and thiazoles.Molecules 2020, 25, x FOR PEER REVIEW 9 of 33 
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Scheme 20. Pd-catalyzed site-selective C–H alkenylation of imidazo[2,1-b]thiazoles.

In 2017, for the first time, Ackermann and coworkers introduced a Ni-catalyzed regioselective
hydroarylation of allenes with purines and imidazoles [46]. The authors successfully applied
this catalytic system for dienylation through C–H functionalization and concurrent C–O cleavage
(Scheme 21). The employed base plays a key role in the isomerization step to deliver the desired
products. The practical utility of this protocol was shown by the late stage-diversification of
diphophodiesterase inhibitors.
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In 2018, Xu and coworkers employed cationic rhodium(III) for the direct olefination of imidazoles
with high regio- and stereo- selectivity [47]. Unlike the other reported methods, this catalytic system
requires a directing group for the selective C-2 alkenylation. A broad range of benzimidazoles
and activated olefins successfully delivered the desired products in good yields. In the proposed
mechanism, the reaction starts with the Rh(III)-mediated C–H bond activation to form the cyclorhodium
intermediate B, followed by coordination with olefin 2 to give intermediate C. Then a regioselective
migratory insertion of the olefin delivers the complex D. The β-H elimination furnishes the desired
product 3 and Rh(I). The Rh(I)-species is further oxidized by O2, regenerating Rh(III) to complete the
catalytic cycle (Scheme 22).

Later on, Joo and coworkers reported a systematic access to functionalized (benz)imidazoles via
direct C–H functionalization [48]. Molecular oxygen as an oxidant was found essential for the selective
C5-alkenylation of imidazoles. In this study, the authors highlighted the distinctive role of imidazole
as ligand for Pd(II) to regioselectively install alkenyl groups at the more nucleophilic C5 position of
the imidazoles (Scheme 23a,b). Notably, the reaction conditions were not compatible with related
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1,3-azoles, i.e., thiazoles and oxazoles. Furthermore, the installed C5-alkenylated imidazoles could be
subjected to additional alkenylation, affording unsymmetrically substituted benzimidazoles.Molecules 2020, 25, x FOR PEER REVIEW 10 of 33 
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Recently, Kumar and Kapur developed an interesting catalyst-driven selective C–H
functionalization of isoxazoles at the distal and the proximal position as shown in Scheme 24 [49].
The mode of activation in the case of cationic Rh involves the strong coordination with the isoxazole
nitrogen, favoring the proximal C–H activation of the arene ring. On the contrary, the Pd-catalyst prefers
to undergo the electrophilic metalation at the C(4)-H of the isoxazole to furnish the desired distal C–H
activation. Furthermore, the kinetic isotope studies elucidated the possibility of carbometallation or
the β-hydride elimination to be the rate-limiting step, instead of the C–H activation step. The synthetic
utility of this position-selective C–H olefination approach was demonstrated by the synthesis of densely
substituted pyrroles by employing a Ru- and Cu-mediated cooperative catalysis.
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The regioselective alkenylation of 2,5-unsubstituted thiazole derivatives has been a challenging
issue among synthetic chemists. Maiti and coworkers overcame this challenge by using a tricoordinating
directing group (T) bearing a cyanide template for the selective metalation of thiazole at the C5 position
followed by reductive elimination to deliver the desired products [50]. The authors presented a wide
range of substrate scope with good functional group tolerance (Scheme 25).
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Scheme 25. Pd-catalyzed template-directed C-5 selective olefination of thiazoles.

2.3. C–H Addition of Azoles to Alkynes

Alkynes are potentially good substrates for alkenylation because of their wide availability and
low cost. The transition metal-catalyzed direct cleavage of the C–H bond of azoles followed by
insertion of alkynes appears an ideal and atom economical method for the alkenylation of azoles.
This straightforward synthetic strategy was early reported by Miura [51]. Later, in 2009, Miura and
coworkers reported a Ni-catalyzed C–H alkenylation of 1,3,4-oxadiazoles [52]. At the same time,
Hiyama and coworkers also reported a similar approach for the alkenylation of imidazoles [53].
In 2010, Ding and Yoshikai reported a Cobased catalytic system for the addition of benzoxazoles
to unactivated internal alkynes (Scheme 26) [54]. The optimized reaction conditions showed good
regio- and chemo- selectivity possibly originating during the alkyne insertion step. Unfortunately,
the optimized conditions were not suitable for the alkenylation of benzoxazoles with terminal alkynes.
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Later, Ding and Yoshikai observed the chemoselective alkenylation of (benzo)thiazoles in the
presence of (benz)oxazoles by changing the ligand from DPEphos to Xantphos. The authors could not
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provide the reason for the observed selectivity, but their work opens the door for further investigations
(Scheme 27) [55].
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The selective alkenylation of triazolopyridines using a Ni-catalytic system was reported by Driver
and coworkers. In this pioneering work, the authors highlighted the steering role of a Lewis acid
(AlMe3) interaction for the selective oxidative addition of the C7-H bond to generate intermediate B,
followed by alkyne insertion to obtain the desired products (Scheme 28) [56]. The alkyne insertion step
was mainly curbed by the substituent steric factor on the alkyne bond, favouring the new C–C bond
between the smaller alkynyl substituent and the C7 of the triazolopyridine.
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Similar to this report, Ong and coworkers employed the same Ni/Al bimetallic catalytic system for
the remote C–H functionalization of imidazo[1,5-a]pyridines. Interestingly, the authors were able to
switch the regioselectivity of alkenylation from C5 to C3 by excluding AlMe3 from the catalytic system
(Scheme 29) [57]. A wide scope was presented with good functional group tolerance.
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In 2015, Huang and coworkers exploited an oxime as directing group in the selective alkenylation
of thiazoles employing a Rh-catalyst. This was followed by a tandem cyclization to deliver azole
fused pyridines (Scheme 30) [58]. Despite having lower reactivity at the C-4 position, various thiazoles
underwent smooth alkenylation with alkynes. In general, electron-rich alkynes gave better yields
than electron deficient alkynes. Notably, this catalytic system also successfully delivered the desired
products with unsymmetrical alkynes.
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Scheme 30. Rh(III)-catalyzed cyclization reaction of azoles with alkynes.

In 2017, You and coworkers exploited a Rh/Cu-catalytic system for the alkenylation of azoles via a
C–H addition/oxidation sequence to generate tetra(hetero)arylethylenes (Scheme 31). Interestingly,
control experiments and DFT calculations revealed that the C–H bond cleavage of azoles could be
facilitated by either Rh or Cu. The authors also supported the necessity of Cu(OAc)2 to obtain the
desired product by computational studies. Tetra-arylethylene (TAE) derivatives have widely been
used in OLED applications. This makes the protocol highly alluring for future developments in the
area of functional materials [59]. Employing this catalytic system, a broad range of alkenylated azoles
could be readily generated in good yields from alkynes.
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Scheme 31. Rh/Cu-catalyzed highly trans-selective 1,2-diheteroarylation of alkynes with azoles.

Another interesting approach for the alkenylation of the C5-position of thiazoles using a
Pd/PCy3/RCO2H-catalytic system was disclosed by Joo and coworkers in 2019 [60]. The key intermediate
of this catalytic cycle is the alkenyl Pd(II)-carboxylate complex, which enables the concerted metalation
deprotonation of substituted azoles, followed by reductive elimination to deliver the corresponding



Molecules 2020, 25, 4970 14 of 34

products. The reaction conditions were not only compatible with substituted thiazoles but also with
oxazoles, benzoxazoles, and pyrazoles (Scheme 32). The hydroarylation of azoles occured at the C2
position if the C5 position was not available.
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Scheme 32. Pd-catalyzed syn-hydroarylation reaction of diaryl alkynes with azoles.

In 2019, Breit and coworkers introduced an interesting cascade sequence to achieve the trisallyation
of benzoxazoles catalyzed by Pd(OAc)2 using Ruphos as ligand [61]. In the proposed mechanism,
the reaction starts with the generation of a Pd-hydride species through oxidative addition of the
Pd-catalyst with HOPiv. Then, the Pd-hydride species facilitates the isomerization of the alkyne to
allene and affords the π-allylpalladium intermediate. Subsequently, intermediate A reacts with azoles
by C–H activation to produce mono-allylated product B, followed by isomerization and sequential
two-fold C(sp3)–H allylation with π-allylpalladium intermediate A to furnish the desired product D
(Scheme 33).
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2.4. Decarbonylative C–H Alkenylation

In recent years, decarboxylative C–H bond functionalization has drawn growing attention, since
carboxylic acids are commercially available and are structurally diverse. Obviously, the use of
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transition-metal catalyzed vinyl carboxylic acids as olefin sources with heterocycles via direct activation
of C–H bonds is an attractive and atom-economic synthetic methodology. Several transition-metal
coupling methodologies for the direct decarboxylative olefination have been reported [62,63].
Decarbonylative cross-couplings for the alkenylation of azoles have remained elusive for some
time. In 2013, Itami and coworkers reported an inimitable method for the alkenylation of azoles
with a Ni/dcype catalytic system, using enol derivatives and α,β-unsaturated esters [29]. Moreover,
this catalytic system can also efficiently enable decarbonylative alkenylation with enol derivatives
of styryl pivalate, styryl carbamate and phenyl cinnamate (Scheme 34). In general, the coupling
product of various azoles with carbamates delivered the corresponding products with higher yields as
compared to styryl pivalates.
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Fluorinated heterocycles have always been attractive scaffolds for pharmaceuticals and organic
materials. In 2014, Hoarau and coworkers reported an efficient method for the direct C–H/C–CO2H
cross-coupling between azoles and α-fluoroacrylic acids via a decarboxylative process, using a
Pd/Cu-catalytic system [64]. The reaction mechanism is believed to start with a Cu-promoted
decarboxylation step generating an alkenylcopper intermediate. This is followed by a transmetalation
step with the Pd-azole intermediate. Finally, reductive elimination generates the desired product.
The various (Z/E)-α-fluroacrylic acids successfully delivered the Z/E-isomeric products in good to
moderate yields with good functional group tolerance (Scheme 35).
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Later in 2017, the same group developed a decarboxylative C–H alkenylation of various
azoles with α-alkoxylated acrylic acids [65]. This decarboxylative coupling proceeded smoothly
employing [Pd(acac)2] as catalyst along with CuCO3.Cu(OH)2. This transformation displays good
E/Z stereochemistry and α/β regiochemistry. For less acidic benzothiazoles, CuI played a key role
in increasing the acidity at the C2-H of the heteroarene, forming a [Cu]-heterocycle. Therefore,
depending on the acidity and the nucleophilicity of the azole, there could be two possible pathways
to activate the azoles and afford intermediate (I): (i) direct Pd-catalyzed heteroarenes (azoles) via
a base-assisted concerted or nonconcerted (carbanionic-type) process, or (ii) heteroarylcopper(III)
through a transmetalation step with Pd(OAc)2 (Scheme 36). Using these optimized conditions,
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the authors successfully reported a convenient approach to generate α,β-enolizable α-ketoazoles and
biologically active C2−C4′ linked azoles.Molecules 2020, 25, x FOR PEER REVIEW 16 of 33 
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3. Alkylation of Azoles

Friedel-Craft alkylation has been used as the first-line technique for the alkylation of azoles
before direct C–H functionalization came on the scene [6]. However, Friedel-Crafts alkylation mostly
encounters several difficulties such as low chemo-and/or regioselectivity, being limited to electron-rich
substrates, and harsh reaction conditions [12]. C–H activation is providing an efficient tool for the
direct alkylation of azoles with almost surgical precision. Great contributions by Fagnou, Miura and
Ackermann in the field of azole alkylation via C–H activation have made this field wide open for
further developments [66–68].

3.1. Primary C–H alkylation of Azoles

Among different C–H alkylations of azoles, primary alkylation has been widely investigated using
halides, pseudohalides and alkenes as coupling partners. Among the various metals used, it is no
surprise that Pd adopts a key role, though other metals like Rh, Ni and Cu are catching up, and some
astonishing discoveries have been made in recent years. Alkylation of heteroarenes through the direct



Molecules 2020, 25, 4970 17 of 34

cross-coupling with nonactivated alkyl halides containing a β-hydrogen atom, has been a challenging
issue. In 2010, Hu and coworkers reported a novel nickel complex for the alkylation of the C–H bond
of azoles with nonactivated alkyl halides containing a β-hydrogen atom, using CuI as a cocatalyst
(Scheme 37) [69]. A wide range of functional groups branching at the β-position of the halides showed
good reactivity, and high chemo- and regioselectivity.
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Scheme 37. The Ni/Cu-catalyzed direct alkylation of heterocyclic C–H bonds.

Concurrently, Miura and coworkers reported a Pd-catalyzed direct alkylation of oxazoles with
nonactivated alkyl halides [70]. A variety of alkyl bromides possessing a benzyl ether, a silyl ether or
a pivaloyl ester functional group, transformed into the desired products in moderate to good yields
(Scheme 38). Moreover, unactivated alkyl chlorides were also well tolerated employing this catalytic
system. Unfortunately, 1-iodohexane gave a much lower yield (20%) while bromocyclohexane could
not provide the product due to the rapid decomposition and steric hindrance, respectively.
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Scheme 38. Pd-catalyzed direct C–H alkylation of benzoxazoles with various alkyl halides.

In 2011, Ackermann and coworkers reported the alkylation of oxazoles with benzyl chlorides
and benzyl phosphate applying a Pd(II) complex [71]. The authors found that phosphinous acid
Pd(II) complex significantly improved the yield in comparison with other palladium catalysts. In the
presence of a prefunctionalized Pd(II) complex, a wide range of differently substituted benzyl chlorides
reacted efficiently with (benz)oxazoles, providing the corresponding products in moderate to high
yields (Scheme 39).
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In 2012, the first example of direct addition between azoles and alkenes via C–H bond activation
of heteroarenes was reported by Chang and coworkers using a [{Rh(cod)Cl}2] catalyst (Scheme 40) [72].
A possible reaction pathway follows (i) formation of a mono-rhodium species I via ligand exchange
with cesium acetate, (ii) base-promoted deprotonation and metalation to generate the Rh/heteroaryl
species II, (iii) olefin insertion, (iv) β-hydride elimination and re-insertion affording intermediated IV
and V respectively, and final protonation to deliver products VI with regeneration of the Rh(I) species.
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Scheme 40. Rh- catalyzed alkylation by the addition of azoles to alkenes.

Styrene can act as an efficient alkylating reagent. In 2012, the Ong group reported a Ni-Al bimetallic
catalyzed alkylation of benzimidazoles with styrenes to deliver linear products [73]. The reaction was
successfully performed by using Ni(COD)2/AlMe3 cooperative catalysis along with amino-NHC (L)
as ligand (Scheme 41). Like in the previous reports, the binding of the Lewis acid (AlCl3) to the
benzimidazole favors the linear chain product due to steric hindrance.
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In 2015, Filloux and Rovis for the first time introduced the enantioselective alkylation of
benzoxazoles with α-substituted acrylates using a Rh(I)/chiralphosphine catalytic system to afford
2-substitued benzoxazoles in moderate to excellent yields with good enantioselectivities [74].
Mechanistically, Rh(I)-acetate first activates the C–H bond of the benzoxazole and migratory insertion
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follows, providing a Rh-enolate complex. Then, β-H elimination and hydrorhodation deliver the
heterobenzyl-Rh intermediate. The authors proposed the crucial role of bulky chiral ligands to steer
enantioselectivity in the desired products by discouraging undesired ligation of heterocycles or by
attenuating coordination-promoted product epimerization (Scheme 42).Molecules 2020, 25, x FOR PEER REVIEW 19 of 33 
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Scheme 42. Rh(I)−bisphosphine catalyzed asymmetric, intermolecular hydroheteroarylation of
α-substituted acrylate derivatives with benzoxazoles.

In the same year, Joo and coworkers explored allylation and benzylation reactions of pyrazoles by
installing an electron-withdrawing group such as a nitro, a chloro, or an ester group at the C4 position.
Such substitution decreases the Lewis basicity of nitrogen atom and renders the C–H bond more acidic,
thus enabling the Pd-catalyzed regioselective C–H functionalization (Scheme 43) [75].
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Scheme 43. Pd-catalyzed C–H allylation and benzylation of pyrazoles.

Concurrently, Shao and coworkers reported a phosphine free NHC-Pd(II) complex-catalyzed
direct C–H bond benzylation of (benz)oxazoles with benzyl chlorides [76]. The authors presented a
broad substrate scope with good functional group tolerance (Scheme 44).

In 2017, Li and coworkers described a C5-alkylation of oxazoles with alkylboronic acids using
a Pd(OAc)2/AgOAc catalytic system with DDQ as oxidant (Scheme 45) [77]. DDQ facilitates the
regeneration of Pd(II) in the catalytic cycle.

In 2018, Pan and Wang explored the use of quaternary ammonium triflates as a coupling partner
for the benzylation of (benz)oxazoles in the presence of a Pd/dcype/K3PO4-catalytic system [78].
Mechanistically, in situ generated Pd(0) undergoes oxidative addition with ArCH2NMe3

+OTf− to form
the intermediate B. Subsequent ligand exchange and C–H activation forms the intermediate D via
intermediate C. Finally, reductive elimination delivers the desired product (Scheme 46).
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Recently, Herbert and coworkers synthesized Ni(II)-complexes with phenanthridine-based ligands
for the alkylation of azoles with alkyl halides [79]. In this work, a wide range of alkyl halides
bearing different substituents such as carbazole, ester, aryl, arylether, thioether, alkenyl, and aliphatic
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groups show promising reactivity with benzoxazoles to generate the desired products in low to high
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3.2. Secondary C–H Alkylation of Azoles

Although significant progress has been made for primary alkylation, the introduction of a
secondary alkyl group is a much more difficult task. In 2010, Nakao et al. reported a Ni(0) catalyzed
hydroheteroarylation of vinylarenes to give 1,1-diarylalkanes through oxidative addition of C–H
bonds to heteroaryl groups [80]. [Ni(cod)2] and carbene ligand 1,3- dimesitylimidazol-2-ylidene (IMes)
were employed as catalytic system in the nonpolar solvent hexane. A variety of vinylarenes that
contain a phenyl group bearing both electron-rich and electron-poor substituents, reacted successfully.
Several kinds of azoles including benzimidazole, benzoxazole, oxazole, and benzothiazole were also
well tolerated, affording 1,1-diarylalkanes with modest to good yields (Scheme 48).
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Scheme 48. Ni/IMes-catalyzed hydroheteroarylation of azoles with styrene.

In a pioneering work of Wang and coworkers, N-tosylhydrazones have been exploited as a
secondary alkyl source for the direct alkylation of azoles with a Cu-catalyst, offering a general
method to introduce a secondary alkyl group on an azole framework [81]. Under basic conditions,
the authors proposed that a heterocycle-copper species was the intermediate, and a migratory insertion
of the Cu carbene species was the key step in this Cu-catalyzed C–H functionalization reaction as
shown in Scheme 49.
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Scheme 49. Cu-catalyzed direct benzylation or allylation of 1,3-azoles with N-tosylhydrazones.

In 2012, Sawamura and coworkers extended this concept for the allylic alkylation of
electron-deficient heteroarenes with internal secondary allylic phosphates resulting in excellent
γ-regioselectivity and E-stereoselectivity (Scheme 50) [82]. In this reaction, steric factors played an
important role in determining the regioselectivity of the product.
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Scheme 50. Cu-catalyzed allylic alkylation of electron-deficient heteroarenes with internal secondary
allylic phosphates.

Miura and coworkers also utilized N-tosylhydrazones as a radical source in a Ni-catalyzed
alkylation of azoles [83]. The authors employed two different catalytic systems depending on the
azole, i.e., a nickel catalyst for benzoxazoles and a Co(II) catalyst for 5-aryloxazoles and benzothiazoles
(Scheme 51). Interestingly, the authors ruled out a carbene insertion pathway for this catalytic system.
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Scheme 51. Ni- and Co-catalyzed direct alkylation of azoles with N-tosylhydrazones bearing
unactivated secondary alkyl groups. (a) Ni-catalyzed; (b) Co-catalyzed.

In 2013, Van der Eycken and coworkers discovered a novel heteroarene-amine-ketone coupling
(HAK-coupling) for the direct secondary alkylation of azoles [84]. This unprecedented Cu-catalyzed
HAK coupling was operationally simple and allowed the facile installation of nitrogen-containing
alkyl or alkaloid side chains on the azole moiety, using readily available starting materials. The HAK
coupling reaction plausibly proceeded through the initial condensation of the aldehyde/ketone with
the amine, leading to the corresponding iminium ion which was attacked by the azole–Cu to afford the
final product (Scheme 52).
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Scheme 52. Cu-catalyzed direct secondary C–H alkylation of azoles.

Similar to Wang’s group report, in 2013, Das and coworkers also employed N-tosylhydrazones
for the direct benzylation of aryl substituted 1,3,4-oxadiazoles in the presence of a Cu-catalyst [85].
A wide range of substituted oxadiazoles were prepared in high yields (Scheme 53).
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Scheme 53. Cu-catalyzed direct cross-coupling of 1,3,4-oxadiazoles with N-tosylhydrazones.

In 2014, Miura and coworkers employed diarylmethyl carbonates or pivalates as coupling partners
for the alkylation of oxazoles with a PdCl2(MeCN)2/PPhCy2 catalytic system [86]. This gives the access
to challenging heteroarene-containing triarylmethanes (Scheme 54).
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Scheme 54. Pd-catalyzed C−H/C−O coupling of oxazoles and diarylmethanol derivatives.

In the same year, Chen and coworkers further evolved the direct C–H bond alkylation of azoles with
ferrocenyl ketone-derived N-tosylhydrazones using an inexpensive CuBr catalyst [87]. Without using
CuBr, the product was obtained in low yield, whereas replacement of CuBr with other transition metal
salts slowed down the reaction. This catalyst system displayed good tolerance towards a range of
functional groups on the ferrocenyl ketone derived N-tosylhydrazones (Scheme 55).
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Scheme 55. Cu-catalyzed cross-coupling of ferrocenyl ketone-derived N-tosylhydrazones
with benzoxazoles.

In 2015, Zhou and coworkers reported a challenging cyclopropylation of benzoxazoles using
stereoretentive cyclopropyl halides and a Pd(0) catalystic system [88]. The reaction started with the
oxidative addition to the cyclopropyl C–X bond followed by transmetalation of an anionic heterocycle.
Finally, reductive elimination delivered the desired coupling product (Scheme 56).
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Scheme 56. Pd catalyzed cyclopropylation of benzoxazoles with cyclopropyl halides.

The first rhodium-catalyzed selective alkylation of benzimidazoles with N,N-dimethyl acrylamide
was successfully developed by Ellman and coworkers in 2017 [89]. The combination of the electron-poor
ligand dArFpe with a Rh(I) catalyst in the presence of K3PO4 selectively delivered the alkylation
product in high yields (Scheme 57).
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Scheme 57. Rh(I)-catalyzed branched alkylation of benzimidazoles.

In the same year, a Pd-catalyzed desulfonative deprotonative cross-coupling reaction of benzylic
sulfone derivatives with 1,3-oxazoles was reported by Crudden and coworkers [90]. The presented
methodology showed a high functional group tolerance and afforded excellent yields (Scheme 58).
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Scheme 58. Pd-catalyzed desulfonative cross-coupling reaction of benzylic sulfone derivatives with
1,3-oxazoles.

In 2017, Mandal and coworkers developed a Ni(COD)2 catalyzed regioselective
hydroheteroarylation of vinylarenes with benzoxazoles, providing an exclusively wide range of
1,1-diarylethane products [91]. The authors were able to isolate and characterize the active catalyst by
single-crystal X-ray crystallography (Scheme 59).
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Scheme 59. N-heterocyclic carbene and Ni(COD)2-catalyzed hydroheteroarylation of vinylarenes
with benzoxazole.

Similarly, Sun and coworkers also employed a NHCs-based nickel catalytic system for the
regioselective hydroarylation of vinylarenes with benzothiazoles, affording the desired product
in high yield [92]. In this reaction, the regioselectivity is controlled by the sterically demanding
Ni(IMes)[P(OEt)3]Br2 catalyst (Scheme 60).
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In 2019, Wang and coworkers exploited an economical Cu(I)-catalyst to achieve the
cross-coupling of bis(trimethylsilyl)diazomethane and benzoxazoles/oxazoles, affording a series
of 1,1-bis(trimethylsilyl)-methylated heteroaromatic compounds in moderate to good yields, through a
carbene migratory insertion process [93]. Mechanistic studies indicated that the main step is the
formation of a Cu(I) carbene species, followed by migratory insertion and protonation to produce the
final products, as shown in Scheme 61.

3.3. Tertiary C–H Alkylation of Azoles

The inclusion of a tertiary alkyl group in the azole scaffold is challenging due to the steric
effects and possible isomerization. In 2012, Xia and coworkers successfully reported a well-known
Pd-catalyzed C–H benzylation of azoles employing benzyl chlorides to generate a quaternary
carbon center [94]. Mechanistically, a Pd(0) species undergoes oxidative addition to generate the
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benzylpalladium(II) complex B, followed by a transmetalation step with lithium/azole species A to form
intermediate C. Finally, reductive elimination delivers the mono-benzylated product D. The authors
used Na2CO3 as base to synthesize the tribenzylated products via nucleophilic substitution with benzyl
chloride (Scheme 62).Molecules 2020, 25, x FOR PEER REVIEW 26 of 33 
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4. Alkynylation

The transition metal-catalyzed alkynylation of azoles provides a straightforward method to access
diversely substituted azole acetylenes. In 2010, Piguel and coworkers disclosed copper-catalyzed direct
alkynylation of various azoles with 1,1-dibromo-1-alkenes (Scheme 63, left) [95]. The authors proposed
that the Cu(III)-intermediate readily undergoes reductive elimination to deliver the desired product in
moderate to good yields under mild reaction conditions. Later in 2012, Zhu and coworkers reported
alkynylations of oxazoles and benzothiazoles using a palladium catalytic system employing inexpensive
gem-dichloroalkenes as user-friendly electrophiles with a broad scope (Scheme 63, right) [96].

In 2010, Miura and coworkers reported a pioneering example of the metal-catalyzed direct C–H
alkynylation of azoles with terminal alkynes. The reaction proceeded by using a stoichiometric or
sub-stoichiometric quantity of copper. Subsequently, the same group further developed nickel-catalyzed
direct alkynylation of azoles [97]. In the presence of a NiBr2·diglyme catalytic system with O2 as
oxidant, they coupled various arylacetylenes with benzoxazoles to afford the desired products in low to
moderate yields. In the proposed reaction mechanism, an (alkynyl)nickel intermediate, generated with
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Ni and a base, undergoes transmetalation with the heteroaryllithium. The desired product results after
reductive elimination (Scheme 64).Molecules 2020, 25, x FOR PEER REVIEW 27 of 33 
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In 2013, Lee and coworkers exploited the well-known Pd catalytic system for decarboxylative
C–H alkynylation of benzoxazoles with α,β-ynoic acids [98]. The authors showed the superior activity
of 1,3-bis(diphenylphosphanyl)propane (dppp) as ligand for Pd to inhibit dimerization. The proposed
mechanism involved (i) silver-oxide-catalyzed α,β-ynoic acid decarboxylation, (ii) transmetalation to
form intermediate B, (iii) carbopalladation with the C–N double bond in the benzoxazole to afford C,
and (iv) β-hydride elimination (Scheme 65).
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In 2014, Theunissen, Evano and coworkers developed an alternative strategy for the alkynylation of
azoles with copper acetylides [99]. The use of preformed copper acetylides provided many advantages
over other approaches, such as better functional group tolerance, mild reaction conditions, and the
possibility of forming complex scaffolds (Scheme 66).
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Recently, Punji and coworkers reported a Ni(II)-catalyzed C(2)–H bond alkynylation of 
(benzo)thiazoles, (benz)imidazoles, and oxazoles with alkynyl bromides, with the use of neither a 
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Scheme 66. Direct alkynylation of arenes with Cu acetylides.

In 2015, Mannepalli and coworkers developed an air- and moisture-stable Pd(II) carbene complex
for the alkynylation of azoles with terminal alkynes and aryl propiolic acids by cross-dehydrogenative
or decarboxylative coupling, respectively [100]. A wide range of azoles including benzoxazoles,
benzothiazoles, imidazoles, and benzimizoles afforded the desired alkynylation products in moderate
to high yields (Scheme 67).

Molecules 2020, 25, x FOR PEER REVIEW 28 of 33 

 

many advantages over other approaches, such as better functional group tolerance, mild reaction 
conditions, and the possibility of forming complex scaffolds (Scheme 66). 

 
Scheme 66. Direct alkynylation of arenes with Cu acetylides. 

In 2015, Mannepalli and coworkers developed an air- and moisture-stable Pd(II) carbene 
complex for the alkynylation of azoles with terminal alkynes and aryl propiolic acids by cross-
dehydrogenative or decarboxylative coupling, respectively [100]. A wide range of azoles including 
benzoxazoles, benzothiazoles, imidazoles, and benzimizoles afforded the desired alkynylation 
products in moderate to high yields (Scheme 67). 

 
Scheme 67. Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes, catalyzed by a 
Pd(II)–carbene complex. 

Subsequently in 2018, Joo and coworkers further extended the substrate scope of the transition 
metal-catalyzed alkynylation of azoles with terminal alkynes [101]. The nitro group at the four-
position of pyrazoles facilitates C–H cleavage to afford the desired alkynyl pyrazoles in moderate 
yields (Scheme 68). 

 
Scheme 68. Palladium-catalyzed cross-coupling of nitropyrazoles with terminal alkynes. 

Recently, Punji and coworkers reported a Ni(II)-catalyzed C(2)–H bond alkynylation of 
(benzo)thiazoles, (benz)imidazoles, and oxazoles with alkynyl bromides, with the use of neither a 
copper cocatalyst nor phosphine ligands [102]. The reactions featured good functional group 
tolerance and wide substrate scope, despite the high temperature required for the reaction (Scheme 
69). 

Scheme 67. Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes, catalyzed by a
Pd(II)–carbene complex.

Subsequently in 2018, Joo and coworkers further extended the substrate scope of the transition
metal-catalyzed alkynylation of azoles with terminal alkynes [101]. The nitro group at the
four-position of pyrazoles facilitates C–H cleavage to afford the desired alkynyl pyrazoles in
moderate yields (Scheme 68).
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Scheme 68. Palladium-catalyzed cross-coupling of nitropyrazoles with terminal alkynes.

Recently, Punji and coworkers reported a Ni(II)-catalyzed C(2)–H bond alkynylation of
(benzo)thiazoles, (benz)imidazoles, and oxazoles with alkynyl bromides, with the use of neither
a copper cocatalyst nor phosphine ligands [102]. The reactions featured good functional group
tolerance and wide substrate scope, despite the high temperature required for the reaction (Scheme 69).
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5. Conclusions and Perspectives 

In this review, we summarized recent developments in the transition metal-catalyzed direct C−H 
functionalization of azoles. These functionalizations are some of the most efficient methods to 
introduce various substituted olefins, alkanes, and alkynes to azoles. In addition to the importance 
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derivatives such as halo groups (Cl, Br, and I), carbonyl groups, and metal acetylides. Thus, compared 
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5. Conclusions and Perspectives

In this review, we summarized recent developments in the transition metal-catalyzed direct
C−H functionalization of azoles. These functionalizations are some of the most efficient methods to
introduce various substituted olefins, alkanes, and alkynes to azoles. In addition to the importance of
Pd in this field, researchers have widely explored several other transition metals such as Cu, Rh, Co, Ni,
and Ru. The major advantage of transition metal-catalyzed direct C–H activation is that it requires no
prefunctionalization of the starting azoles, resulting in, e.g., a wide scope, modularity, and high yields.
Despite considerable advances, many challenges remain, e.g., overcoming the need for strong and
harsh bases such as LiO and tBu anions, and the unavoidable use of activated derivatives such as halo
groups (Cl, Br, and I), carbonyl groups, and metal acetylides. Thus, compared with C−X/C−M coupling
reactions, organic chemists should prefer catalytic activation of inert C–H bonds for new C–C bond
formation reactions, starting from inexpensive and structurally diverse alkanes, alkenes, or alkynes.
Furthermore, another challenge is to develop recyclable and highly efficient transition metal catalyst
systems with low catalyst loading. Finally, researchers have partially solved the chemoselectivity and
regioselectivity issues in these reactions by means of incorporating a directing group or using the
sterics/electronics of the substrates. However, it is feasible to develop a suitable catalyst or fine-tune
reaction conditions to change/control the regioselectivity.
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