

Supporting information

Bio-guided Isolation of Acetogenins from *Annona cherimola* deciduous leaves: Production of Nanocarriers to Boost the Bioavailability Properties.

M. Teresa Gutiérrez¹⁺, Alexandra G. Durán¹⁺, Francisco J. R. Mejías¹, José M.G. Molinillo¹, Diego Megias², Manuel M. Valdivia³ and Francisco A. Macías^{1*}

- ¹ Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cadiz, Spain; mariateresa.gutierrezva@alum.uca.es (M.T.G.); alexandra.garcia@uca.es (A.G.D.); javi.rodriguezmejias@uca.es (F.J.R.M.); chema.gonzalez@uca.es (J.M.G.M.); famacias@gm.uca.es.(F.A.M.)
- ² Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, E-28029, Spain; dmegias@cnio.es (D.M.)
- ³ Department of Biomedicine, Biotechnology and Public Health, School of Science, Institute of Biomolecules (INBIO), University of Cadiz, 11510 Puerto Real, Cádiz, Spain; manuel.valdivia@uca.es (M.M.V.)
- * Correspondence: famacias@gm.uca.es. Telephone: +34-956-012770
- * These authors contributed equally to this work

Physical dataS3
¹ H and ¹³ C spectraS4-S8
Figure S1. Cell viability by dye exclusion against ovarian carcinoma cells
(IGROV-1) for the first (A), second (B) and third (C) fractionations of A. cherimola
deciduous leaves. Extracts were evaluated at 100 ppm for 24 h. Experiments were
performed in triplicate and data are expressed as mean \pm SD, n = 3S9
Figure S2. D ₂ O ¹ H NMR comparison between α -CD, α -CD/urea polyrotaxane,
SMPMs-ACGs and SMPMs-ACGs with phenol, from bottom to topS10
Figure S3. ROESYAD 2D experiments S11
Figure S4. SMPMs wall thickness size distributionS12
Figure S5. SMPMs size distributionS13
Figure S6. PM3 model of the SMPM shell in the case of two units of α -CD and
thirty-two molecules of urea. (A) Biased geometry, with a distance of 26.46 ${\rm \AA}$
between cyclodextrin molecules. (B) Truncated cone geometry, with a distance of
17.47 Å between cyclodextrin molecules (hydrogens are not represented)S14
Figure S7. Calibration curve for annonacin in CHCl ₃ S15
Figure S8. Critical micellar concentration experimentS16
Figure S9. XRD experiment of (A) α-cyclodextrin and (B) SMPMs-ACGs S17

Molvizarin (1). This compound was obtained as a colourless oil in 0.001% yield; HRMS (ESI) calcd for C₃₅H₆₁O₇ [M-H]⁻: 593.4417, found: 593.4460.

Cherimolin-1 (2). This compound was obtained as a colourless oil in 0.0002% yield; HRMS (ESI) calcd for C₃₇H₆₅O₈ [M-H]⁻: 637.4679, found: 637.4723.

Motrilin (3). This compound was obtained as a colourless oil in 0.0002% yield;

HRMS (ESI) calcd for C37H65O7 [M-H]-: 621.4679, found: 621.4717.

Annonacin (4). This compound was obtained as a yellow oil in 0.003% yield; HRMS (ESI) calcd for $C_{35}H_{64}O_7$ [M+H]⁺: 597.4736, found: 597.4730.

Annonisin (5). This compound was obtained as a colourless oil in 0.001% yield; HRMS (ESI) calcd for C₃₆H₆₃O₁₀ [M+HCOO]⁻: 655.4421, found: 655.4424.

MDPI 'H-NMR and ¹³C-NMR Spectroscopy of ACGs 1–5 (¹H NMR 600 MHz, ¹³C NMR 150 MHz, CDCl₃)

Molvizarin (1)

- 7.17

MDPI

MDPI

Figure S1. Cell viability by dye exclusion against ovarian carcinoma cells (IGROV-1) for the first (**A**), second (**B**) and third (**C**) fractionations of *A. cherimola* deciduous leaves. Extracts were evaluated at 100 ppm for 24 h. Experiments were performed in triplicate and data are expressed as mean \pm SD, n = 3, * p < 0.05 vs untreated cells (DMSO 0.1%).

MDPI

Figure S2. D₂O ¹H NMR comparison between α -CD, α -CD/urea polyrotaxane, SMPMs-ACGs and SMPMs-ACGs with phenol, from bottom to top.

Figure S3. (Top) ¹H-NMR of SMPMs-ACGs/ α -CD at different ppm to differenciate alpha-cyclodextrin signals and annonacin signals. (Bottom) ROESYAD 2D experiment of SMPMs-ACGs/ α -CD.

MDPI Figure S4. SMPMs wall thickness size distribution that are associated with α^{-1} CD/urea, with a mean size of 96.02 nm.

Membranes Diameter

Figure S5. SMPMs size distribution that are associated with α -CD/urea, with α mean size of 96.02 nm. Two normal distributions can be observed at 60 and 140 nm of mean.

External Diameter of SMPMs

Figure S6. PM3 model of the SMPM shell in the case of two units of α -CD and thirty-two molecules of urea. (A) Biased geometry, with a distance of 26.46 Å between cyclodextrin molecules. (B) Truncated cone geometry, with a distance of 17.47 Å between cyclodextrin molecules (hydrogens are not represented).

Figure S8. Critical micellar concentration experiment

Figure S9. XRD experiment of (A) a-cyclodextrin and (B) SMPMs-ACGs

