Bio-guided Isolation of Acetogenins from Annona cherimola deciduous leaves: Production of Nanocarriers to Boost the Bioavailability Properties.

M. Teresa Gutiérrez ${ }^{1 \dagger}$, Alexandra G. Durán ${ }^{1 \dagger}$, Francisco J. R. Mejías ${ }^{1}$, José M.G. Molinillo ${ }^{1}$, Diego Megias ${ }^{2}$, Manuel M. Valdivia ${ }^{3}$ and Francisco A. Macías ${ }^{1 *}$

[^0]Physical data S3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra S4-S8

Figure S1. Cell viability by dye exclusion against ovarian carcinoma cells (IGROV-1) for the first (A), second (B) and third (C) fractionations of A. cherimola deciduous leaves. Extracts were evaluated at 100 ppm for 24 h . Experiments were performed in triplicate and data are expressed as mean $\pm \mathrm{SD}, \mathrm{n}=3$. S9

Figure S2. $\mathrm{D}_{2} \mathrm{O}{ }^{1} \mathrm{H}$ NMR comparison between $\alpha-\mathrm{CD}, \alpha-\mathrm{CD} /$ urea polyrotaxane, SMPMs-ACGs and SMPMs-ACGs with phenol, from bottom to top................S10

Figure S3. ROESYAD 2D experiments.. S11
Figure S4. SMPMs wall thickness size distribution_.. S12
Figure S5. SMPMs size distribution_.. S13
Figure S6. PM3 model of the SMPM shell in the case of two units of α-CD and thirty-two molecules of urea. (A) Biased geometry, with a distance of $26.46 \AA$ between cyclodextrin molecules. (B) Truncated cone geometry, with a distance of $17.47 \AA$ A between cyclodextrin molecules (hydrogens are not represented)......S14

Figure S8. Critical micellar concentration experiment S16
Figure S9. XRD experiment of (A) α-cyclodextrin and (B) SMPMs-ACGs S17

Physical data

Molvizarin (1). This compound was obtained as a colourless oil in 0.001% yield; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{61} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]: 593.4417$, found: 593.4460.

Cherimolin-1 (2). This compound was obtained as a colourless oil in 0.0002% yield; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{O}_{8}[\mathrm{M}-\mathrm{H}]:$: 637.4679, found: 637.4723.

Motrilin (3). This compound was obtained as a colourless oil in 0.0002% yield;

HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{O}_{7}[\mathrm{M}-\mathrm{H}]:$: 621.4679, found: 621.4717.

Annonacin (4). This compound was obtained as a yellow oil in 0.003% yield; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 597.4736$, found: 597.4730.

Annonisin (5). This compound was obtained as a colourless oil in 0.001% yield; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{O}_{10}$ [M+HCOO]: 655.4421, found: 655.4424.
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Spectroscopy of ACGs 1-5 (${ }^{1} \mathrm{H}$ NMR $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Molvizarin (1)

Cherimolin-1 (2)

Motrilin (3)

Annonacin (4)

Annonisin (5)
(

Figure S1. Cell viability by dye exclusion against ovarian carcinoma cells (IGROV-1) for the first (A), second (B) and third (C) fractionations of A. cherimola deciduous leaves. Extracts were evaluated at 100 ppm for 24 h . Experiments were performed in triplicate and data are expressed as mean $\pm \mathrm{SD}, \mathrm{n}=3, * \mathrm{p}<0.05$ vs untreated cells (DMSO 0.1\%).

C

Figure S2. $\mathrm{D}_{2} \mathrm{O}{ }^{1} \mathrm{H}$ NMR comparison between $\alpha-\mathrm{CD}, \alpha-\mathrm{CD} /$ urea polyrotaxane, SMPMs-ACGs and SMPMs-ACGs with phenol, from bottom to top.

Figure S3. (Top) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of SMPMs-ACGs $/ \alpha-\mathrm{CD}$ at different ppm to differenciate alpha-cyclodextrin signals and annonacin signals. (Bottom) ROESYAD 2D experiment of SMPMs-ACGs/ $\alpha-C D$.

Figure S4. SMPMs wall thickness size distribution that are associated with $\alpha=$ CD/urea, with a mean size of 96.02 nm .

Membranes Diameter

Figure S5. SMPMs size distribution that are associated with α-CD/urea, with a mean size of 96.02 nm . Two normal distributions can be observed at 60 and 140 nm of mean.

External Diameter of SMPMs

Figure S6. PM3 model of the SMPM shell in the case of two units of α-CD and thirty-two molecules of urea. (A) Biased geometry, with a distance of $26.46 \AA$ between cyclodextrin molecules. (B) Truncated cone geometry, with a distance of $17.47 \AA$ é between cyclodextrin molecules (hydrogens are not represented).

Figure S7. Calibration curve for annonacin in CHCl_{3}.
Calibration Curve of Annonacin

Figure S8. Critical micellar concentration experiment

Figure S9. XRD experiment of (A) a-cyclodextrin and (B) SMPMs-ACGs

[^1]
[^0]: 1 Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cadiz, Spain; mariateresa.gutierrezva@alum.uca.es (M.T.G.); alexandra.garcia@uca.es (A.G.D.); javi.rodriguezmejias@uca.es (F.J.R.M.); chema.gonzalez@uca.es (J.M.G.M.); famacias@gm.uca.es.(F.A.M.)
 2 Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, E-28029, Spain; dmegias@cnio.es (D.M.)
 3 Department of Biomedicine, Biotechnology and Public Health, School of Science, Institute of Biomolecules (INBIO), University of Cadiz, 11510 Puerto Real, Cádiz, Spain; manuel.valdivia@uca.es (M.M.V.)

 * Correspondence: famacias@gm.uca.es. Telephone: +34-956-012770
 ${ }^{\dagger}$ These authors contributed equally to this work

[^1]:

