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Abstract: Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer
treatment. The metabolic reprogramming that accompanies the development of malignancy
creates targetable differences between cancer cells and normal cells, which may be exploited for
therapy. There is also emerging evidence regarding the role of stromal components, creating an
intricate metabolic network consisting of cancer cells, cancer-associated fibroblasts, endothelial cells,
immune cells, and cancer stem cells. This metabolic rewiring and crosstalk with the tumour
microenvironment play a key role in cell proliferation, metastasis, and the development of treatment
resistance. In this review, we will discuss therapeutic opportunities, which arise from dysregulated
metabolism and metabolic crosstalk, highlighting strategies that may aid in the precision targeting of
altered tumour metabolism with a focus on combinatorial therapeutic strategies.

Keywords: cancer cell metabolism; tumour microenvironment; metabolic reprogramming;
targeted therapy; immunotherapy

1. Introduction

To sustain the rapid proliferation characterising cancer cells, corresponding alterations to tumour
metabolism must occur to fuel the elevated bioenergetic demands. This understanding has led to the
introduction of ‘Deregulating Cellular Energetics’ as a new hallmark of cancer [1]. Initial observations
by Otto Warburg described an unusual reliance of cancer cells on glycolysis despite sufficient
oxygen, which was later termed the ‘Warburg effect’ to describe this form of aerobic glycolysis [2].
This metabolic reprogramming, while less efficient in terms of ATP production, confers cancer cells
with much-needed metabolic intermediates that can be channelled into biosynthetic pathways, such as
the pentose-phosphate pathway (PPP) for nucleotide synthesis [3].

While this aerobic ‘Warburg’ glycolytic phenotype had been regarded as the norm in cancer cells,
it is becoming increasingly clear that the metabolic needs of tumour cells do not rely on a single
metabolic strategy. Recent studies suggest that certain subtypes of cancer cells may preferentially
utilize oxidative phosphorylation (OXPHOS) for energy production in glucose-limiting conditions [4].
In addition, OXPHOS dependency may be induced by certain therapies, such as prolonged tyrosine
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kinase inhibitor (TKI) therapy in certain oncogene-addicted cancers [5,6]. This reflects a phenomenon
termed ‘metabolic flexibility’ where cancer cells adjust their metabolic phenotypes in order to gain a
selective advantage for cell growth and survival under hostile conditions throughout tumorigenesis
up to the time of metastasis [7]. The significance of these metabolic alterations may diverge not only
according to intrinsic signalling pathways within the cancer cell, but also rely on the interaction of
cancer cells with their surrounding tumour microenvironment (TME), ranging from immune cells and
stromal cells to extracellular matrix (ECM) components and soluble factors [8]. There is also emerging
evidence to suggest that metabolic reprogramming within cancer stem cell (CSC)-like phenotypes
contributes to treatment resistance, therapeutic failure, and cancer relapse.

This review aims to highlight the complex interplay of regulatory cell signalling pathways,
interactions between cancer cells and their TME, and the contributions of CSCs to the intricate and
coordinated induction of metabolic pathways. Understanding the regulation of cellular metabolism is
key for unravelling cancer metabolism as an attractive target for therapeutic exploitation. In particular,
we will focus on resistance mechanisms as a result of dysregulated metabolism and metabolic crosstalk,
highlighting strategies that may lead to the improved precision targeting of cancer cell metabolism
(CCM).

2. Altered Cancer Cell Metabolism

2.1. Metabolic Dependencies in Cancer Cells

Cancer cells display a distinct metabolic phenotype compared to non-neoplastic cells. As a whole,
these changes in metabolic fluxes are achieved by extensive metabolic reprogramming to fuel anabolic
growth in nutrient-replete conditions and to support catabolism under nutrient scarcity. Broadly,
this involves extracellular uptake of simple nutrients (glucose, amino acids, etc.), which are channelled
into biosynthesis via the core metabolic pathways of glycolysis, the tricarboxylic acid (TCA) cycle,
the PPP, and non-essential amino acid synthesis, which is followed by subsequent ATP-dependent
processes to produce complex biomolecules (Figure 1). Many cancers are known to upregulate
glucose consumption, and the classical Warburg phenotype has been reported in a variety of tumour
types [9–11]. However, a majority of tumours still retain oxidative capacity to produce ATP via
OXPHOS [4,12–15]. Apart from glucose, fatty acids (FAs) and amino acid metabolites are diverted to
the TCA cycle to sustain mitochondrial ATP production. Transporters are also upregulated to increase
the extracellular uptake of raw materials, including serine and glutamine [16–23]. This not only
serves as building blocks for protein synthesis, but also maintains activity of the mTORC signalling
system [24]. Subsequently, in a process known as glutaminolysis, glutamine is converted to glutamate,
then α-ketoglutarate (α-KG), which serves as another means utilised by cancer cells to fuel the
TCA cycle [25] (Figure 1). Glutamine dependency has been reported in non-small cell lung cancer
(NSCLC), breast cancer, and brain tumours, and has been associated with greater metastatic potential,
therapy resistance, and aggressive clinical phenotype [26–29]. The specific metabolic dependencies of
tumours may be heterogeneous and depend on the driver oncogenes present, microenvironmental
interactions, and effect of treatments.
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Figure 1. Overview of cancer cell metabolic reprogramming. Cancer cells require extensive metabolic 
reprogramming to fuel anabolic growth via increased nucleotide biosynthesis, protein synthesis, and 
FA synthesis. There is elevated glycolysis even under aerobic conditions (Warburg effect), which 
allows for the production of intermediates to be channelled into the PPP for nucleotide biosynthesis. 
However, a majority of tumours still retain oxidative capacity to produce ATP via OXPHOS. 
Glutaminolysis is also upregulated in many tumours for the production of α-KG to fuel the TCA cycle. 
Increased glutaminolysis also produces glutathione (GSH) to defend against oxidative stress. Central 
to these metabolic changes is the PI3K/Akt/mTOR pathway. Downstream effectors that are activated 
by mTORC signalling include the transcription factors HIF-1 and SREBP. 

G6P, glucose-6-phosphate; α-KG, α-ketoglutarate; ATP, adenosine 5′-triphosphate; GSH, 
glutathione; HIF-1, hypoxia-inducible factor-1; mTORC, mTOR complex 1; OXPHOS, oxidative 
phosphorylation; RTK, receptor tyrosine kinase; SREBP, sterol regulatory element-binding protein. 

2.2. Metabolic Reprogramming by Oncogenes and Tumour-Suppressor Genes 

Despite the great heterogeneity between tumours, metabolic reprogramming seems to involve a 
common, finite set of pathways to support anabolism, catabolism, and redox homeostasis [30]. 
Primarily, the PI3K/Akt/mTOR pathway acts as the central regulator of cellular energetics and 
metabolism, and acts to increase glycolysis and FA synthesis via hypoxia-inducible factor 1-α (HIF-
1α) and sterol regulatory element-binding protein (SREBP) activation, respectively [31] (Figure 1). 
This network is then co-opted by tumours in malignancy, where mutations in the receptor tyrosine 
kinases upstream of phosphoinositide 3-kinase (PI3K) (e.g., EGFR and HER2), the p110α catalytic 
subunit of PI3K, the downstream kinase Akt, and the negative PI3K regulator phosphatase and tensin 
homologue (PTEN) are frequently observed in cancers [32]. Furthermore, many tumours reside in 
hypoxic environments, as the rapid proliferation exceeds the rate of angiogenesis [33]. To enable 
successful adaptation to hypoxia, tumours often upregulate HIF-1α signalling, which is a 
downstream effector of the PI3K/Akt/mTOR pathway. 

While HIF-1α activation results in glycolysis, the glucose depletion due to rapid proliferation 
may lead to reduced energy stores and increased AMP/ATP intracellular levels. This subsequently 
activates the AMP-activated protein kinase (AMPK)–liver kinase B1 (LKB1) pathway. AMPK/LKB1 
activation maintains energy stores by stimulating catabolic pathways that produce ATP, mostly by 
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Figure 1. Overview of cancer cell metabolic reprogramming. Cancer cells require extensive metabolic
reprogramming to fuel anabolic growth via increased nucleotide biosynthesis, protein synthesis, and FA
synthesis. There is elevated glycolysis even under aerobic conditions (Warburg effect), which allows for
the production of intermediates to be channelled into the PPP for nucleotide biosynthesis. However,
a majority of tumours still retain oxidative capacity to produce ATP via OXPHOS. Glutaminolysis is also
upregulated in many tumours for the production ofα-KG to fuel the TCA cycle. Increased glutaminolysis
also produces glutathione (GSH) to defend against oxidative stress. Central to these metabolic changes
is the PI3K/Akt/mTOR pathway. Downstream effectors that are activated by mTORC signalling include
the transcription factors HIF-1 and SREBP.

G6P, glucose-6-phosphate; α-KG, α-ketoglutarate; ATP, adenosine 5′-triphosphate; GSH, glutathione;
HIF-1, hypoxia-inducible factor-1; mTORC, mTOR complex 1; OXPHOS, oxidative phosphorylation; RTK,
receptor tyrosine kinase; SREBP, sterol regulatory element-binding protein.

2.2. Metabolic Reprogramming by Oncogenes and Tumour-Suppressor Genes

Despite the great heterogeneity between tumours, metabolic reprogramming seems to involve a
common, finite set of pathways to support anabolism, catabolism, and redox homeostasis [30]. Primarily,
the PI3K/Akt/mTOR pathway acts as the central regulator of cellular energetics and metabolism,
and acts to increase glycolysis and FA synthesis via hypoxia-inducible factor 1-α (HIF-1α) and sterol
regulatory element-binding protein (SREBP) activation, respectively [31] (Figure 1). This network is
then co-opted by tumours in malignancy, where mutations in the receptor tyrosine kinases upstream
of phosphoinositide 3-kinase (PI3K) (e.g., EGFR and HER2), the p110α catalytic subunit of PI3K,
the downstream kinase Akt, and the negative PI3K regulator phosphatase and tensin homologue
(PTEN) are frequently observed in cancers [32]. Furthermore, many tumours reside in hypoxic
environments, as the rapid proliferation exceeds the rate of angiogenesis [33]. To enable successful
adaptation to hypoxia, tumours often upregulate HIF-1α signalling, which is a downstream effector of
the PI3K/Akt/mTOR pathway.

While HIF-1α activation results in glycolysis, the glucose depletion due to rapid proliferation
may lead to reduced energy stores and increased AMP/ATP intracellular levels. This subsequently
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activates the AMP-activated protein kinase (AMPK)–liver kinase B1 (LKB1) pathway. AMPK/LKB1
activation maintains energy stores by stimulating catabolic pathways that produce ATP, mostly by
enhancing OXPHOS and mitochondrial biogenesis. Mechanistically, AMPK enhances sirtuin-1 (SIRT1)
activity by increasing cellular NAD+ levels, leading to the deacetylation and modulation of the activity
of downstream SIRT1 targets especially peroxisome proliferator-activated receptor gamma coactivator
1-α (PGC-1α) and the fork-head transcription factors FOXO1 and FOXO3a, triggering expression of
genes that control mitochondrial biogenesis and activity [34].

FA synthesis is regulated by the transcription factor SREBP-1 [35], which regulates enzymes
required in the synthesis of FA from acetyl-CoA, enzymes of the PPP for NADPH production,
and enzymes that convert acetate and glutamine into acetyl-CoA [36]. Cancers with constitutively
elevated rates of FA synthesis utilise mechanisms to keep SREBP-1 active, including sustained mTORC1
signalling, where the effector S6 kinase of mTORC1 activates SREBP-1 and SREBP-2 activity [36].
Elevated PI3K signalling also activates extracellular FA uptake to further sustain intracellular FA levels
for FA synthesis [37].

Driver oncogenes are also involved in reprogramming of tumour energetics. Oncogenic MYC
activity is known to promote aerobic glycolysis through the constitutive elevation of lactate
dehydrogenase (LDH) A, upregulation of the glucose transporter GLUT1, and upregulation of
several glycolytic enzymes including phosphofructokinase 1 (PFK-1) and enolase [38,39]. MYC has
also been implicated in upregulating the uptake and catabolism of glutamine [20]. Specifically,
MYC induces expression of genes needed for glutamine metabolism, including glutaminase (GLS),
glutamine synthetase (GLUL), and the glutamine cell-entry transporter SLC1A5 (ASCT2) [19,20,40].

Similarly, oncogenic KRAS is known to co-opt the metabolic effects of PI3K and MYC pathways to
promote tumourigenesis. In KRAS-driven pancreatic ductal adenocarcinoma (PDAC), the constitutive
MAPK signalling diverts glucose intermediates into hexosamine biosynthesis, and the PPP increases
protein glycosylation and nucleotide synthesis [41]. Cells transformed by KRAS also show increased
expression of genes related to glutamine metabolism and have greater glutamine dependency for
anabolic synthesis [42,43]. In addition, the alteration of mitochondrial metabolism by oncogenic KRAS
promotes carcinogenesis via the activation of growth factor signalling [44]. Finally, tumour-suppressor
genes (TSGs) also contribute to the metabolic reprogramming of cancer cells. Loss of p53 triggers
OXPHOS [45], and certain tumours are known to retain wild-type p53 to maintain glycolysis, such as in
hepatocellular carcinoma (HCC) [46]. Mutant p53 has also been shown to drive Warburg glycolysis [47].

2.3. Resistance to Conventional Therapies

Despite advancements in cancer treatment and the availability of multi-modality therapy,
development of resistance is still a major barrier contributing to treatment failure. In this section,
we will discuss how metabolic reprogramming in cancer cells contributes to therapy resistance.

2.3.1. Resistance to Cell Signalling Pathway Inhibitors

Many cancers demonstrate treatment-induced metabolic adaptation as a mechanism of therapy
resistance. In particular, treating oncogene-addicted tumours with TKIs led to resistance development in
melanoma and NSCLC, which is accompanied by a metabolic switch to OXPHOS for survival [5,48–51].
This metabolic switch is thought to contribute to treatment resistance, therapeutic failure, and cancer
progression [52]. Treatment of EGFR-mutant NSCLC with the 3rd-generation TKI, osimertinib, led to
acquired resistance with glycolytic suppression and metabolic switch to OXPHOS [51]. Similar findings
have been observed in gefitinib-treated EGFR-mutant NSCLC and vemurafenib-treated BRAF-mutant
melanoma. OXPHOS inhibition restored sensitivity to TKI therapy, and was able to prolong survival
and reduce tumour burden in-vivo [6].

Various mechanisms have been proposed to account for the relationship between OXPHOS and
TKI resistance. For instance, treatment of BRAF-mutant melanomas with BRAF inhibitor, vemurafenib,
or with MEK inhibitor, selumetinib, leads to microphthalmia-associated transcription factor (MITF)
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signalling and elevated expression of the mitochondrial master regulator, PGC-1α. This results in
a PGC-1α-mediated induction of an OXPHOS gene programme and mitochondrial genesis [5,49].
Another proposed mechanism of treatment-induced upregulation of OXPHOS is via STAT3 signalling.
Various oncogene-addicted cancer cells engage in a positive feedback loop leading to STAT3 activation
in response to pathway-targeted therapy, limiting drug response [53]. It has been shown that the
non-canonical STAT3 signalling via GRIM-19-dependent import of STAT3 into the mitochondria
increases activity of complexes I and II of the electron transport chain (ETC), and, therefore, OXPHOS,
leading to TKI therapy resistance [54].

2.3.2. Resistance to Chemotherapy

Metabolic reprogramming in response to conventional chemotherapy have also been described
and may potentially be responsible for contributing to the resistant phenotype.

Glucose metabolism contributing to chemotherapy resistance. Enhanced glucose uptake and
improved aerobic glycolysis have been shown to contribute to intrinsic and/or acquired resistance to
chemotherapy [55,56]. Various glycolytic enzymes have been implicated, including pyruvate kinase
muscle isozyme (PKM2). PKM2 catalyses the final step of glycolysis, and, hence, a key regulator of
the switch between energy metabolism and anabolic synthesis: either routing glucose metabolism
to pyruvate into the TCA cycle, or diverting glucose-derived carbons into other anabolic pathways.
PKM2 overexpression has been implicated in carboplatin-resistant NSCLC and is associated with
elevated glycolysis compared to parental non-resistant cells [57]. Increased PKM2 is also observed
in sera and tissues from colorectal cancer (CRC) patients with poor response to 5-fluorouracil. Thus,
PKM2 upregulation may also be linked to 5-fluorouracil resistance in CRC [58]. Other enzymes in
glucose metabolism have also been associated with resistance to chemotherapies. Paclitaxel resistance
in NSCLC is associated with increased expression of pyruvate dehydrogenase kinase-2 (PDK2) and
upregulation of glycolysis. Cisplatin resistance in ovarian cancer was associated with increased
expression and activity of glucose-6-phosphate dehydrogenase (G6PD), which enabled greater NADPH
production via the PPP for redox homeostasis [55].

Glutamine metabolism contributing to chemotherapy resistance. Elevated glutaminolysis and
GSH production is also thought to contribute to chemotherapy resistance. Altered CCM leading
to raised GSH levels confers tumours with a greater ability to maintain redox homeostasis [59].
Cisplatin-resistant lung cancer cells have higher levels of glutamate cysteine ligase (GCL), which is
the first enzyme of the GSH biosynthetic pathway, and, consequently, elevated GSH. The increased
GSH production is thought to counteract the higher levels of reactive oxygen species (ROS) induced
by common chemotherapeutic drugs such as cisplatin, and, thereby, protects the cancer cells from
oxidative damage [60,61]. Consistent with this, blocking glutamate flux using riluzole was able to
selectively kill cisplatin-resistant cells in-vitro and in-vivo [62], and inhibition of GSH biosynthesis with
buthionine sulfoximine was found to synergise with cisplatin in breast cancer in-vitro and in-vivo [63].

FA metabolism contributing to chemotherapy resistance. Altered lipid metabolism is another
key player in the development of chemoresistance. FA synthase (FASN) overexpression induces
resistance to anti-tumoral drugs such as doxorubicin and mitoxantrone in breast cancer cells [64],
docetaxel resistance in HER2-positive breast cancer [65], gemcitabine resistance in pancreatic cancer [66],
and cisplatin resistance in ovarian cancer [67]. FASN overexpression is thought to confer tumour
cells with an increased survival advantage and reduce apoptosis under the stress of chemotherapy.
In breast cancer cells, FASN overexpression suppressed drug-induced production of ceramide and,
thus, reduced caspase 8-mediated apoptosis under treatment with doxorubicin [64].

3. Metabolic Crosstalk with the TME

The homeostasis of the TME is controlled by an intimate crosstalk within and across cancer
cells and their various cellular compartments, including endothelial, stromal, and immune cells
(Figure 2) [68]. While metabolites that are consumed and released by tumour cells induce changes to
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TME components in order to support the malignant phenotype, TME cells also play a role in shaping
and reprogramming tumour cells by directing paracrine effects, which activate signal transduction.Molecules 2020, 25, x FOR PEER REVIEW 6 of 41 
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causing polarisation towards pro-tumorigenic T cell subtypes. 
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the associated cancer cells are reprogrammed toward OXPHOS. Consequently, CAFs produce lactate, 
which is exported via the monocarboxylate transporter (MCT)-4 into the TME, and taken up by 
tumour cells via the MCT-1 transporter. Such metabolic coupling have been reported in several 
tumour types [72–75]. This is supported in CAFs by an upregulation of glycolysis-related enzymes, 
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Figure 2. Key players of the metabolic crosstalk in the TME. Key players involved in the extensive,
bidirectional crosstalk between tumour cells and the TME include CAFs, ECs, and immune cells.
Tumours release factors such as PDGF and TGF-β, causing metabolic reprogramming in CAFs towards
aerobic glycolysis, releasing energetic substrates such as lactate into the TME in a phenomenon known
as ‘tumour-feeding.’ Meanwhile, tumour depletion of lactate, glutamine, and FAs in the TME lead to EC
aberrant angiogenesis, which promotes proliferation and metastasis. VEGF is also released by tumours
to promote EC proliferation. Tumour cells also induce metabolic changes to immune cells and cause
immunosuppression. This is due to metabolic competition between immune cells and tumours for the
same nutrients, producing an ‘exhausted’ T cell phenotype. Metabolic wastes, including lactate and
kynurenine, are also released and impair T cell function, causing polarisation towards pro-tumorigenic
T cell subtypes.

CAFs, cancer-associated fibroblasts; PDGF, platelet-derived growth factor; TGF-β, transforming growth
factor beta; VEGF, vascular endothelial growth factor.

3.1. Cancer-Associated Fibroblasts

Often, the rapid growth of solid tumours produces a hypoxic and hypoglycaemic tumour core [69].
While this may be accompanied by aberrant angiogenesis, the vasculature produced are frequently
leaky with poor integrity. The resultant hypoxic and nutrient-poor environment hinders tumour
growth. Tumour cells overcome this nutrient limitation by reprogramming stromal cells in the
TME. Cancer-associated fibroblasts (CAFs) are a key stromal component with a fundamental role in
providing metabolic support to tumour cells, thereby facilitating tumour initiation, growth, invasion,
and dissemination [70]. This is enabled by metabolic reprogramming of CAFs, releasing energetic
substrates into the TME, a phenomenon termed ‘tumour-feeding’ [70,71].

Several modes of tumour-feeding have been postulated (Figure 2). Firstly, in a ‘reverse Warburg
effect,’ CAFs undergo metabolic reprogramming switching toward a glycolytic phenotype, whereas the
associated cancer cells are reprogrammed toward OXPHOS. Consequently, CAFs produce lactate,
which is exported via the monocarboxylate transporter (MCT)-4 into the TME, and taken up by tumour
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cells via the MCT-1 transporter. Such metabolic coupling have been reported in several tumour
types [72–75]. This is supported in CAFs by an upregulation of glycolysis-related enzymes, such as
hexokinase 2 (HK2) and 6-phosphofructokinase liver type (PFKL), and is thought to occur via signalling
with platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-β) [76–78].

In addition to lactate, CAFs also supply tumours with glutamine. For example, in regions
of glutamine scarcity in the ovarian tumour core, CAFs were reported to undergo metabolic
reprogramming to upregulate glutamine anabolism to supply tumour cells [79]. The glutamine
released into the TME is subsequently uptaken by cancer cells and converted to glutamate, which fuels
the TCA cycle and supports energy production in cancer cells [79].

Apart from the direct release of metabolites into the TME, stromal cells have also been reported to
fuel cancer metabolism by releasing metabolites carried in exosomes. These CAF-derived exosomes
supply amino acids, lipids, and TCA cycle intermediates to fuel cancer metabolism [80]. CAFs have
been reported to release paracrine signals to induce epigenetic changes and metabolic reprogramming
of PDAC cells, resulting in changes similar to KRAS-driven oncogenic transformations by increasing
anabolic metabolism and pro-tumourigenic changes in cancer cells [81].

3.2. Endothelial Cells

Tumour angiogenesis is the proliferation of a network of blood vessels that provide oxygen and
nutrient support for tumours. In the past, the angiogenic switch was thought to be mediated by
angiogenic molecules. However, it is now evident that distinct metabolic signatures of endothelial
cells (ECs) are deregulated in cancer and vascular EC function can be modulated by metabolites [82]
(Figure 2).

ECs are largely glycolytic and depend on glucose for proliferation. This phenotype is promoted by
tumour paracrine signalling. For example, conditioned media from hypoxic glioma cells induced ECs
to upregulate surface GLUT1 to enhance glucose uptake [83]. In addition, vascular endothelial growth
factor (VEGF) signalling by tumours causes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3) upregulation in ECs, which activates PFK-1 to further augment the glycolytic phenotype [84].
Lactate is also enriched in the TME, which can trigger tube formation in ECs via HIF-1α-dependent
NF-κB activation [85,86].

Tumours also modulate amino acid availability in the TME, which have pleiotropic effects in
vessel sprouting. ECs require glutamine for TCA cycle anaplerosis and non-essential amino acid
synthesis. Depriving ECs of glutamine or inhibition of GLS1, thus, causes vessel sprouting defects
due to impaired EC proliferation and migration [87,88]. VEGF signalling also requires glycine to
promote angiogenesis and serine is also required for mitochondrial function in ECs [89,90]. Thus,
tumour-dependent depletion of amino acids in the TME contributes to vascular defects and aberrant
angiogenesis seen in some tumours.

Finally, FAs supply the carbon needed for dNTP synthesis during EC sprouting [91]. FA carbons
are used by ECs to replenish the TCA cycle, and are incorporated into aspartate (nucleotide precursor)
and uridine monophosphate (precursor in pyrimidine synthesis), supplying adequate dNTPs for
proliferation [91]. Altered CCM may, therefore, alter FA availability to support EC proliferation.

4. Tumour Immune Microenvironment

The immune system interacts intimately with tumour development in a complex, bidirectional
crosstalk that can both inhibit and enhance tumour growth and progression. This interaction has
gained recognition as a hallmark of cancer and immunotherapy has become an established pillar of
cancer therapy [1]. Immune cells execute their function most effectively when they are able to respond
swiftly to environmental stimuli through phenotypic shifts, enhanced by the radical reprogramming
of immune cell metabolism [92]. On the other hand, impaired metabolic flexibility results in an
ineffective anti-tumour immune response, and may be explained by the mutual metabolic requirements
of immune cells and tumour cells, which compete for similar essential nutrients such as glucose and
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glutamine. Besides nutrient availability, high production of metabolites such as lactate, kynurenine,
and other metabolic by-products of cancer metabolism can be harmful for immune cells, resulting in
tumour immunosuppression [93].

4.1. T Cells

The effects of altered tumour metabolism on T cell function is summarised in Figure 3.
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Figure 3. Effect of tumour metabolism on T cell function. (1) Altered cancer cell metabolism results in
nutrient competition, depriving T cells of essential nutrients essential for robust anti-tumour activity,
including glucose and key amino acids. Resultant exhausted T cell phenotype shows upregulation
of inhibitory receptors including PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT, impaired production and
release of effector cytokines (IFNγ, IL-2, and TNF-α), as well as impaired degranulation. (2) Depletion
of key nutrients and aberrant metabolite signalling promotes pro-tumourigenic T cell phenotypes.
(3) Cancer cell metabolism produces lactate and other ‘waste’ metabolites that inhibit T cell function
and promote T cell exhaustion.

A2AR: Adenosine 2A receptor; AHR: aryl hydrocarbon receptor; Csk: C-terminal Src kinase; IDO:
indoleamine-pyrrole 2,3-dioxygenase; Lck: lymphocyte-specific protein tyrosine kinase; mTORC1:
mammalian target of rapamycin complex 1; NFAT: nuclear factor of activated T-cells; OXPHOS:
oxidative phosphorylation; TCA: tricarboxylic acid cycle; Teff; effector T cells; Treg: regulatory T cells.

4.1.1. Altered CCM Deprives T cells of Nutrients Essential for Anti-Tumour Activity and Induces
Polarisation of Immunosuppressive T Cell Subsets

When a T cell is activated, there is a dramatic metabolic reprogramming mediated through the
PI3K/Akt/mTOR pathway, greatly reminiscent of the metabolic reprogramming observed in cancer cells.
This ‘Warburg phenotype’ adopted by activated T cells involves upregulation of aerobic glycolysis,
increased glucose metabolism through the PPP, increased glutaminolysis, and increased FA synthesis.
This leads to a competition between effector T cells (Teff) and tumour cells for similar nutrients
especially glucose, thereby impairing the Teff anti-tumour response. Furthermore, glucose limitation
is reported to produce an ‘exhausted’ T cell phenotype, characterised by increased programmed cell
death protein 1 (PD-1) expression on the surfaces of T cells, which accounts for the greater proportion
of ‘exhausted’ T cells in tumours and leads to cancer immune evasion [94–96]. Tumour-mediated
T cell exhaustion is also characterised by the upregulation of other inhibitory receptors including
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), T-cell immunoglobulin, and mucin-domain
containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and T cell immunoreceptor with Ig and
immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) [97–100]. Decreased glucose
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metabolism was also found to impair the epigenetic reprogramming required for T cell activation.
Reduced flux through the glycolytic pathway leads to insufficient acetyl-CoA to maintain α-KG
levels required for cofactor function for histone acetylation, resulting in reduced interferon γ (IFNγ)
expression and impaired helper T cell (Th1) activity [101].

Similar to glucose, activated T cells have a higher requirement for amino acids, most notably
glutamine. Glutamine is utilised by active T cells and is required for the inflammatory responses of
Th1 and Th17 cells [102,103], and decreased glutamine availability in the TME is reported to blunt
anti-tumour immunity by limiting essential biosynthetic pathways for T cell proliferation. A concern
with targeting metabolic pathways is the extensive overlap between the metabolic phenotypes of
tumour cells and activated immune cells. Theoretically, GLS inhibition can limit T cell metabolism
along with crippling tumour metabolism since increased glutaminolysis is a hallmark of both tumour
cells and activated T cells. However, Leone et al., 2019, showed that, while glutamine blockade in cancer
cells led to suppression of oxidative and glycolytic metabolism, by contrast CD8+ T cells responded
by upregulating acetate metabolism, generating high levels of acetyl-CoA for direct fuelling of the
TCA cycle as well as indirect fuelling via increased glucose anaplerosis through pyruvate carboxylase
activation. These resulted in upregulation of oxidative metabolism with CD8+ T cells adopting a
long-lived, highly activated phenotype [104]. These divergent responses to GLS inhibition serves
as a ‘metabolic checkpoint’ and an opportunity to simultaneously inhibit tumour metabolism while
boosting anti-tumour immune activity. Other amino acids required for T cell activity includes arginine
and tryptophan. Tumour-depletion of arginine in the TME can impair T cell anti-tumour immunity,
particularly memory T cell immunity [105]. Tryptophan deficiency is also known to inhibit mTORC1
activity in T cells, impairing T cell activation and proliferation [106].

The effect of FAs is less well-characterised because different T cell subsets utilise FAs differently.
Of note, memory T cells are more dependent on FA oxidation (FAO) for energy and are unable to
develop in the absence of FAs in culture. However, recent studies suggest that FAs used by memory
T cells for FAO are derived from extracellular glucose, rather than direct utilisation of extracellular
FAs [107]. Currently, the role of FAs in T cell metabolism is unclear, and further studies are required.

In addition, nutrient depletion in the TME alters T cell differentiation and induces the polarisation
of immunosuppressive T cell subsets [108,109]. Glucose deficiency enriches for regulatory T cells (Tregs)
because, in contrast to Teffs that rely on aerobic glycolysis, Tregs rely more on FAO. FOXP3 metabolic
reprogramming leads to MYC and glycolysis suppression, which enhances OXPHOS and NADH
oxidation. These adaptions confer Tregs a metabolic advantage in the low-glucose, high-lactate
microenvironment in the TME, shifting the balance to favour Treg enrichment over Teffs and facilitating
tumour immune evasion [110]. Glutamine deficiency in the TME may also shift T cell differentiation
toward a pro-tumourigenic phenotype, as glutamine deficiency disproportionately impairs Th1 and
Th17 subsets more than Tregs, thereby enriching for Tregs in the TME [108].

4.1.2. CCM-Derived ‘Waste’ Metabolites Inhibit T Cell Function and Promotes T Cell Exhaustion

Lactate is reported to inhibit T cell proliferation and cytokine production [111,112]. Tumour-derived
lactate accumulates in the TME, leading to impaired T cell export of lactate and intracellular build-up.
Elevated lactate suppresses glycolytic enzymes via end-product inhibition, impairing T cell metabolism
and function. Lactate build-up in the TME also causes T cell acidification, preventing translocation of
nuclear factor of activated T cells (NFAT) into the nucleus and NFAT-mediated transcription. This,
thus, inhibits IFNγ production and impairs T cell response [112]. Finally, lactate is reported to inhibit
the PI3K/Akt/mTOR pathway in T cells, blunting T cell activation [113,114].

Other tumour-derived ‘waste’ metabolites are also suggested to play a key role in T cell
immunosuppression (Figure 3). Adenosine is released by tumours into the TME and inhibits
the T cell anti-tumour response. Upon binding to Adenosine A2A receptor (A2AR), signalling leads
to an increase in cAMP levels, protein kinase A (PKA) phosphorylation of Csk, which subsequently
inhibits Lck and antagonising TCR signalling. This leads to reduced T cell activation, cytokine production,
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and anti-tumour immunity [115]. Kynurenine, the first breakdown product in indoleamine 2,3-dioxygenase
(IDO)-dependent tryptophan degradation, has also been reported to exert immunosuppressive effects
and induce T cell apoptosis [106,116].

4.2. Myeloid-Derived Suppressor Cells, Tumour-Associated Macrophages, and Dendritic Cells

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells of myeloid
origin that contribute to TME immunosuppression and exert suppression on T cell and innate immune
cell responses. The altered CCM environment influences MDSC functionality, which can further bolster
their immunosuppressive effects.

For example, the hypoxic TME leads to HIF-1α signalling, which aids in MDSC differentiation
to tumour-promoting tumour-associated macrophages (TAMs) [117]. Lactate similarly induces
polarisation toward the pro-tumourigenic M2 macrophage phenotype via HIF-1α signalling [118],
and induces upregulation of PD-L1 on myeloid cells, facilitating Teff suppression [119]. Furthermore,
hypoxia and lactate in the TME induce a metabolic switch from glycolysis toward OXPHOS, which is
consistent with the enrichment and continued functionality of MDSCs and TAMs in a primarily
hypoglycaemic TME [120].

The anti-tumour functions of macrophages are also inhibited by altered cancer metabolism.
Extracellular lactate reduces activation of monocytes, as measured by reduced glycolysis-dependent
tumour necrosis factor (TNF) production [121]. Tumour prostaglandin E2 (PGE2) production is also
found to subvert myeloid cell function. This was reported in various oncogene-addicted tumour
models [122]. For example, in a BRAF-mutant model of melanoma, and NRAS-mutant models
of melanoma, breast, and CRC, PGE2 production impairs myeloid cell activation especially the
antigen-presenting ability required for T cell activation [122].

Dendritic cells (DCs) are also key players in anti-tumour immunity. Activation of DCs involves
metabolic reprogramming not unlike that of T cells, switching from OXPHOS to aerobic glycolysis.
Competition with tumour cells in the TME for essential nutrients, in particular glucose, can severely
limit DC activity and antigen-presenting ability [123]. In addition, a low energy state leads to
elevated AMPK signalling, which inhibits glycolysis and promotes greater OXPHOS and FAO. This is
reminiscent of a tolerogenic DC phenotype [124]. In addition, FAO induction in tumour-associated
DCs (TADCs) was found to drive the production of IDO, which results in Treg polarisation and further
immunosuppression of T cells in a model of melanoma [125]. Expression of the inhibitory receptor
CTLA-4 on Tregs can also induce IDO activity by DCs [126]. This immunosuppressive crosstalk between
dysregulated immune cells serve to drive a positive-feedback loop whereby immunosuppression is
self-maintained and further propagated in the TME [123].

4.3. Natural Killer Cells and Neutrophils

Other cells of the innate immune system are also intricately linked to metabolic changes in
the TME. Due to the greater energetic demands of natural killer (NK) cells, in particular increased
glycolysis, NK cells are also subject to competition with tumour cells for glucose. Thus, the perennial
problem of glucose and nutrient deprivation in the TME also impairs NK function. Furthermore,
the aberrant production of metabolites as a consequence of altered CCM also impacts NK activity.
Metabolic reprogramming of NK cells upon activation requires the SREBP transcription factors.
25-hydroxycholesterol (25-HC) is a cholesterol-derived metabolite produced by various cancers, such as
glioblastoma [127], and can inhibit translocation of SREBP from the ER to the Golgi, impairing NK
activation [128]. Elevated lactate in the TME also reduces NFAT signalling in NK cells, reducing IFNγ

production, CD25 levels, and tumour-killing capabilities [112].
Neutrophils are frequently discounted from a metabolic perspective as purely glycolytic. The low

glucose availability in the TME is predicted to limit neutrophil ROS production, which can disrupt
CD4+ T cell viability and function. However, tumour-directed metabolic reprogramming can switch
neutrophils to an oxidative phenotype. For instance, 4T1 tumours was found to induce a metabolic
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shift to produce mitochondria-rich oxidative neutrophils through aberrant stem cell factor (SCF)/c-Kit
signalling. Oxidative neutrophils can use mitochondrial FAO to support NADPH oxidase-dependent
ROS production in the hypoglycaemic TME. Thus, tumour-mediated SCF/c-Kit signalling can induce
an oxidative phenotype in neutrophils to overcome to metabolic limitations, resulting in maintained
ROS production despite the hypoglycaemic TME, and, hence, sustained immunosuppression [129].

4.4. PD-1 and CTLA-4 Signalling and the Effects of Immune Checkpoint Blockade on Metabolic Pathways

PD-1 and CTLA-4 are immune checkpoints that serve as negative regulators of T cell function [130].
Signalling via PD-1 limits T cell activation, preventing excess inflammation and tissue damage [131].
This regulatory function is hijacked by cancer cells that upregulate the ligands PD-L1 and PD-L2
on their surface to dampen anti-tumour immunity [132]. PD-1 contains two intracellular tyrosine
motifs that, when engaged by its ligands, result in phosphorylation of tyrosine residues, leading to
recruitment of protein tyrosine phosphatases (PTPs) such as SHP2 [132]. PTPs antagonise positive
signals from the TCR and CD28, hence antagonising downstream pathways including PI3K/Akt, Ras,
ERK, Vav, and PLCγ, which are key pathways required for metabolic reprogramming of activated
T cells [133–135].

Cancer therapy has entered the ‘immunotherapy era’ with anti-PD-1/PD-L1 and anti-CTLA-4
antibodies being incorporated into the treatment for melanoma, triple-negative breast cancer (TNBC),
NSCLC, and metastatic renal cell carcinoma (RCC), among others. Such immune checkpoint blockade
(ICB) therapy, aimed at reversing the immune suppression caused by tumour cells, also shapes the
TME by affecting tumour metabolism [136]. Ligation of PD-1 on activated T cells impair glycolysis
or amino acid metabolism [137], while PD-1 blockade upregulates GLUT1 to restore glucose uptake,
promoting glycolysis in effector T cells [94]. Furthermore, PD-1 promotes FAO of endogenous lipids
by increasing expression of CTP1A and upregulating lipolysis [137]. ROS generation by activators
of mTOR, AMPK, and PGC-1α were found to synergise with PD-1 blockade [138]. Taken together,
this strengthens the role of combining PD-1 blocking therapies with metabolism-based therapies for
more efficacious anti-tumour immunity.

Ligation of CTLA-4 also leads to similar inhibition of key metabolic reprogramming. However,
CTLA-4 signalling on T cells inhibits glycolysis without augmenting FAO [137]. This suggests diverging
roles of these two immune checkpoints: CTLA-4 sustains the metabolic profile of non-activated
cells, while PD-1 functions to dampen metabolic reprogramming in activated cells [137]. Regardless,
the function of PD-1 and CTLA-4 in antagonising key metabolic pathways in T cells are mechanisms
tumours used to limit anti-tumour immunity, and provides an explanation for the capacity of T cells to
be metabolically invigorated by ICB.

4.5. Resistance to Immunotherapies

However, in reality, only a small proportion of patients respond well to ICB [139]. Studies have
uncovered several reasons for this gap, including poor tumour immunogenicity, tumour editing,
and lack of sufficient tumour-infiltrating T cells in a ‘cold’ tumour [140,141].

The altered metabolism in cancer cells is often associated with dysregulated expression of key
metabolic enzymes. The aberrantly expressed enzymes have pleiotropic effects that contribute to
immunosuppression, limiting the effectiveness of immunotherapies. For example, many cancers
display MYC-dependent upregulation of the alternatively spliced PKM2 enzyme as a mechanism to
enhance aerobic glycolysis [142]. Furthermore, independent of its enzymatic action on glycolysis,
PKM2 promotes the expression of PD-L1 on tumour surfaces and, hence, promotes immune
suppression [143]. PKM2 activity also aids in recruitment of MDSCs, and is associated with increased
metastasis and poor prognosis in HCC [144].

Tumour metabolism also limits the effectiveness of immunotherapies by affecting the tumour
mutation rate and antigenicity [145]. Metabolism is tightly linked to DNA repair through chromatin
remodelling, epigenetic modifications, and regulation of the redox status [146]. Altered tumour



Molecules 2020, 25, 4831 12 of 40

metabolism can promote chromatin remodelling and epigenetic modifications in multiple ways,
such as by supplying acetyl and methyl groups and producing metabolites that act as key cofactors or
inhibitors of epigenetic enzymes, such as α-KG, succinate, fumarate, and 2-hydroxyglutarate [147].
Furthermore, the enhanced nucleotide biosynthesis in tumours promotes DNA repair [92]. Taken together,
these processes lead to a reduced mutation rate and, hence, reduced tumour antigenicity, thereby limiting
the effectiveness of immunotherapies.

Finally, CAFs in the TME may also contribute to immunotherapy resistance by several mechanisms.
Firstly, the release of immunosuppressive cytokines TGF-β and IL-6 by CAFs lead to reduced
proliferation and trafficking capacity of antigen-presenting DCs, thereby impairing T cell priming
against tumour antigens [145,148]. CAFs also directly upregulate immune checkpoint ligands on
their surface, including PD-L1 and PD-L2 [149,150]. Next, CAFs impair T cell migration to the
tumour bed. Through tight regulation of the local chemokine gradient, CAFs limit T cell attraction
to the TME [151,152]. CAFs also impair T cell access to the tumour, directly via inhibition of T cell
migration through a TGF-β-dependent gene programme [153] as well as indirectly by altering the
composition of the ECM, creating a denser ECM network, which functions as a physical barrier to
T cell infiltration [154,155].

5. Cancer Stem Cells and Metabolic Reprogramming in CSCs as a Mechanism of Therapeutic
Resistance

The CSC model postulates that a small, metabolically distinct, and quiescent CSC population
is responsible for resistance to therapies that target rapid proliferation [156]. This adds further to
the complexity of the TME as CSCs reside in, actively remodel, and are reciprocally modulated by
each element of the TME. This leads to an intricate crosstalk between CSCs and cancer cells, stromal
components, and the immune milieu, generating a wide variety of resistance mechanisms [157].

A number of studies suggest stronger glycolytic metabolism in CSCs as compared to differentiated
tumour cells [158–160]. Interestingly, elevated MYC was independently identified as the main driver of
stemness in all of these cancer types [159]. This has been linked to a MYC-driven glycolytic programme,
consistent with what is observed in induced pluripotent stem cells [160], leading to the notion that,
rather than distinct metabolism being a ‘by-product’ of cancer stemness, metabolism may be the
‘driver’ controlling stemness characteristics. On the other hand, emerging evidence suggests that CSCs
demonstrate extensive metabolic flexibility and acquiring increased oxidative metabolism confers
greater ability to overcome therapy-induced stressful metabolic environments promoting CSC survival.

Therapy-induced enrichment of CSC populations was observed in various cancer models [6]. In a
model of BCR-ABL driven chronic myeloid leukaemia (CML), persistent leukaemic stem cells (LSC)
responsible for treatment resistance and relapse depended on OXPHOS upregulation for survival.
Subsequently, combination therapy of OXPHOS inhibition plus BCR-ABL targeted therapy was able
to selectively eradicate CML LSCs in-vitro and in-vivo [161]. Similarly, in a mouse model of PDAC,
resistant cells surviving KRAS ablation showed more features of CSCs and reliance on OXPHOS
for survival. Treatment with OXPHOS inhibitors also resulted in eradication of CSCs in-vitro and
in-vivo [162]. Mechanistically, the metabolic switch to OXPHOS in pancreatic CSCs was found to be
dependent on the MYC/PGC-1α balance [163]. Suppression of MYC and subsequent increase in PGC-1α
stimulated PGC-1α-dependent mitochondrial biogenesis and OXPHOS dependency. Consequently,
treatment of pancreatic CSCs with metformin led to an energy crisis and apoptosis [163].

6. Therapeutic Opportunities Targeting Altered CCM

With greater understanding of dysregulated cancer metabolism and the metabolic interplay of
cancer cells, TME and CSCs, therapies can be developed to target these processes and overcome
therapeutic resistance. In the following sections, we will highlight promising strategies that target
altered pathways of metabolism, alone or in combination with other available anti-cancer therapies.
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6.1. Glycolysis Inhibitors

Hexokinase catalyses the first step in glycolysis of which the HK2 isoform is upregulated
by many tumours and is needed to maintain the high glycolytic rate. HK2 is, thus, a potential
target for inhibition [164]. Various HK2 inhibitors have been identified, including 2-deoxyglucose
(2-DG), 3-bromopyruvate (3-BP), and lonidamine (LND). In particular, 2-DG is a glucose mimetic that
competitively inhibits the production of glucose-6-phosphate (G6P) from glucose and causes ATP
depletion and cell death [165]. As a single-agent therapy, 2-DG had shown promising results and
reached phase I/II clinical trials for the treatment of solid tumours and hormone refractory prostate
cancer, but, unfortunately, was halted due to limited efficacy on tumour growth and significant toxicities
(NCT00633087). Detailed phase II and III clinical trials have also been performed for LND in several
tumour types. Unfortunately, LND only showed modest clinical activity, and further research was
halted due to concerns over liver enzyme abnormalities and its lack of specificity [166].

PFKFB3 is a potent regulator of glycolysis and is frequently upregulated in cancers [167].
Various inhibitors of PFKFB3 have been reported, including the weak PFKFB3 inhibitor,
3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). A derivative of 3PO, PFK15, showed improved
pharmacokinetic and anti-neoplastic properties in-vitro and in-vivo. PFK15 was able to cause a rapid
induction of apoptosis in transformed cells and showed anti-tumour effects in-vivo [168]. Another 3PO
derivative, PFK158, is currently under evaluation in a phase I trials for advanced solid malignancies
(NCT02044861) [169].

Finally, small molecular inhibitors of GLUT transporters are undergoing evaluation.
Phloretin antagonises GLUT2 in TNBC and suppressed cell growth and metastasis of TNBC
in-vitro and in-vivo [170]. STF-31 is a selective GLUT1 inhibitor, which showed effectiveness in
Von Hippel–Lindau-dependent RCC models [171]. Another GLUT1 inhibitor, WZB117, was able to
inhibit cancer growth and viability in-vivo, and was synergistic with cisplatin and paclitaxel [172].
GLUT3 inhibition has also been shown to be effective in delaying the resistance to temozolamide in
the treatment of glioblastoma multiforme (GBM) [173]. The FDA-approved antiviral drug, ritonavir,
was found to have GLUT4 inhibitory activity in multiple myeloma (MM) and is synergistic with
metformin [174,175]. Of note, tumours expressing high levels of the cystine-glutamate antiporter xCT
(SLC7A11) are heavily dependent on the PPP to supply reducing power in the form of NADPH [176],
and GLUT inhibition selectively kills SLC7A11 high cancer cells in-vitro and in-vivo [177], presenting a
metabolic vulnerability that can be targeted. Finally, an ongoing phase I trial is evaluating the role of
ritonavir in combination with metformin in treating patients with relapsed or refractory MM or chronic
lymphocytic leukaemia (CLL) (NCT02948283). Further work on small molecule GLUT inhibitors are
required to establish safety and efficacy for translation to clinic.

6.2. OXPHOS Inhibitors

Strategies for inhibiting OXPHOS range from direct or indirect inhibition of mitochondrial
respiratory chain complexes or inhibiting mitochondrial biosynthesis.

6.2.1. Biguanides

Of the complex I inhibitors, the biguanides, metformin, and phenformin, have been most
extensively studied in cancer prevention and treatment [178,179]. Their anti-tumour activity relates
to mTOR inhibition by the activation of AMPK and LKB1, thus reducing cellular proliferation.
Proof-of-concept studies have confirmed biological evidence supporting the anti-proliferative
effects of metformin in endometrial cancers, which are strongly associated with aberrations in
the PI3K/AKT/mTOR pathway [180]. Observational studies have reported that the likelihood of
developing cancer in type II diabetic patients treated with metformin is 30% lower than that of patients
taking alternative oral hypoglycaemic agents (OHGAs). In a meta-analysis, metformin was found to be
a useful adjuvant agent in preventing cancer relapse with the greatest benefits seen in prostate cancer
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and CRC [181]. Multiple trials investigating the effect of metformin as monotherapy and in combination
with chemotherapy or TKI therapy are underway (e.g., NCT03137186, NCT01243385). However,
there are doubts on whether metformin is able to reach sufficiently high concentrations to inhibit
OXPHOS in-vivo. This is due to the requirement of uptake via organic cation transporters (OCTs),
which may be reduced in various tumour types [182]. Phenformin, on the other hand, may have intrinsic
pharmacokinetic properties to overcome this limitation. Being more hydrophobic, phenformin is able
to cross biological membranes without requiring active transport. It is, therefore, nearly 50 times as
potent as metformin due to its higher absorption and tissue bioavailability [183]. Phenformin had
demonstrated more potent inhibition of cell proliferation compared to metformin in multiple tumour
types (breast, lung, colon, melanoma, GBM, and prostate) [183]. Phenformin is also proposed to
delay treatment resistance to conventional cancer therapies. For instance, in osimertinib-resistant
EGFR-mutant NSCLC, which is reported to undergo a metabolic switch from glycolysis to OXPHOS,
phenformin was able to delay the long-term development of osimertinib resistance [51]. There are
also proposed biomarkers to indicate susceptibility and increase the efficacy of biguanide therapy.
For example, LKB1 deficient cells show increased sensitivity to metabolic stress and were predictive
of susceptibility to phenformin therapy, supporting its role as a potential biomarker for OXPHOS
inhibition [179]. Unfortunately, due to its association with a higher incidence of lactic acidosis,
phenformin had been withdrawn from clinical use as an OHGA and, hence, limited clinical studies are
available looking into the effect of phenformin for cancer therapy [184].

6.2.2. IACS and Other Complex I Inhibitors

Another complex I inhibitor, IACS-010759, recently demonstrated preclinical efficacy in inhibiting
growth of CLL and acute myeloid leukaemia (AML) [185]. IACS-010759 is potent and can be
administered orally, and has progressed to phase I trials in advanced solid tumours, which was
reported to be well-tolerated with preliminary evidence of anti-tumour activity. Maximum tolerated
dose (MTD) expansions are planned for patients with TNBC, pancreatic cancer, and castration-resistant
prostate cancer. Given the diverse metabolic dependencies of tumours, it is crucial to have means
to stratify tumours to better predict their susceptibility to metabolism-based treatments. The loss of
enolase 1 (ENO1) was found to be predictive of sensitivity to IACS-010759 in some brain tumour cell
lines (D423, Gli56) [186]. Loss of SMARCA4, a component of the SWI/SNF chromatin remodelling
complex, also results in greater reliance on OXPHOS, and cells are more sensitive to OXPHOS
inhibition by IACS-010759 in NSCLC [187]. These findings have led to plans to investigate the efficacy
of IACS-010759 in molecularly-selected tumours (ENO1 loss and SMARCA4 mutation) (NCT03291938,
NCT02882321) [188].

Some of the other complex I inhibitors initially demonstrated promising results but were subsequently
withdrawn due to toxicity. For instance, BAY87-2243 had advanced to phase I studies (NCT01297530).
However, the trial was terminated due to significant toxicities (grade III nausea/vomiting). A phase Ib
study was completed for ME-344. However, further research halted due to significant grade III/IV toxicities
and lack of clinical efficacy in unselected patients with small cell lung cancer, ovarian cancer, and cervical
cancers [189]. Other complex I inhibitors include carboxyamidotriazole (CAI). In particular, CAI had
completed phase III clinical trial for advanced NSCLC (NCT00003869). Unfortunately, no additional
clinical benefit was reported with the addition of CAI over placebo following chemotherapy [190].

6.2.3. Complex II-V Inhibitors

Apart from complex I inhibitors, various compounds that inhibit complexes II-V of the
mitochondrial ETC have also been investigated. These include the low-affinity complex II inhibitor
α-tocopheryl succinate, complex III inhibitor atovaquone, and the complex IV inhibitor arsenic trioxide,
which is used for treating acute promyelocytic leukaemia [4]. However, many of these compounds
have pleiotropic effects apart from mitochondrial inhibition, and it may be difficult to distil and
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attribute their therapeutic effects to OXPHOS inhibition. Presently, limited data is available studying
the anti-tumour efficacy of complex II-IV inhibitors, and further research is warranted.

A novel Complex V (F0F1 ATP synthase) inhibitor, gboxin, selectively accumulates in the
mitochondria due to its positive charge. This leads to increased proton gradient and pH in the cancer
cell mitochondria, thereby inhibiting ATP production via the ATP synthase [191]. In GBM cells,
gboxin rapidly and irreversibly compromises oxygen consumption, leading to gboxin-mediated cell
death [191].

6.2.4. Indirect Inhibition of Mitochondrial Complexes and Mitochondrial Protein Synthesis

Treatment-induced metabolic switch to OXPHOS has been hypothesized to involve mitochondrial
STAT3 (mSTAT3), which indirectly promotes OXPHOS by interacting with retinoic-interferon-induced
mortality 19 (GRIM-19) and the ETC complexes I and II [192]. Thus, indirect OXPHOS inhibition can also
be achieved by mSTAT3 inhibition. OPB compounds able to indirectly inhibit OXPHOS via their action
on mSTAT3, with several OPB compounds reaching clinical trials (OPB-51602, OPB-111077, OPB-31121)
in treatment-refractory solid tumours as well as in haematological malignancies. OPB-51602 had been
evaluated in a phase I first-in-human study (NCT01184807), demonstrating promising anti-tumour
activity in EGFR-mutant NSCLC with prior EGFR-TKI exposure [193]. OPB-111077, a second-generation
compound with an improved safety profile, had completed phase I evaluation in treatment-refractory
solid tumours [194]. Further trials are underway in patients with diffuse large B-cell and
oncogene-addicted solid tumours (NCT03158324) [194].

Mitochondrial dysfunction may also be induced by inhibiting mitochondrial protein translation.
This can be achieved by using the antibiotic tigecycline, which was identified in a screen with
OXPHOS-dependent leukaemia cells [195]. Subsequent studies using tigecycline to treat TKI-resistant
CML cells were able to successfully eliminate the OXPHOS-dependent CSC population thought to
be responsible for treatment resistance [161]. Another antibiotic, salinomycin, inhibits OXPHOS and
was able to eliminate the CSC gene expression signature in in-vivo studies of breast cancer [196].
Mitochondrial metabolism can also be targeted by the mitochondrial chaperone TRAP1 inhibitor,
gamitrinib, which leads to impairments to mitochondrial protein folding [197].

6.3. Glutamine Blockade

The pleiotropic effects of glutamine metabolism on cancer proliferation and signalling makes
glutamine blockade another potential strategy for targeting cancer metabolism. Proposed strategies
include depleting cancer cell glutamine supply, blocking glutamine uptake transporters, using glutamine
mimetics as anti-metabolites, and the most promising, selective inhibition of GLS.

The mitochondrial enzyme GLS is a key component of glutaminolysis, which produces
α-KG for the replenishment of TCA cycle intermediates. Small molecule GLS inhibitors such as
bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), CB-839, and compound 968,
are able to inhibit GLS isoforms not commonly expressed in normal cells, allowing for greater
selectivity in targeting cancer cells while reducing toxicity to normal cells [198,199]. The GLS1
inhibitor, CB-839, has reached the furthest in the developmental pipeline, and is selective, more potent,
and demonstrates greater bioavailability compared to BPTES [200,201]. In early phase studies,
CB-839 showed safety and tolerability in solid tumours with promising signs of clinical activity
in multiple tumour types including TNBC, NSCLC, and mesothelioma (NCT02071862) [202,203].
In particular, for RCC, radiographic stable disease (SD) or partial response (PR) was observed in 9 of
15 (60%) efficacy-evaluable RCC patients [202]. No specific biomarker of patient selection for GLS
inhibition has been established, but studies have evaluated tumour GLS overexpression and the specific
GLS1 variant that is overexpressed. GLS1 exists two main splice variants: KGA, the full length GLS1,
and GAC, which has an alternative carboxy-terminus and a lower molecular weight [204]. Of these,
only the GAC splice variant is sensitive to GLS inhibition by CB-839 [200].
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Depletion of the cancer cell glutamine supply can be achieved via L-asparaginase, a recognised
treatment for acute lymphoblastic leukaemia (ALL), which removes the amide nitrogen from glutamine
to form glutamic acid [205]. Serum L-asparaginase activity strongly correlates with glutamine depletion
in the blood and improved treatment outcomes in ALL patients [206].

Inhibitors have been developed for the glutamine uptake transporter SLC1A5 (ASCT2), which is
upregulated across many tumour types to increase glutamine uptake [207,208]. A pharmacological
agent used as a common preclinical tool to inhibit SLC1A5 is the L-glutamine analogue,
l-γ-glutamyl-p-nitroanilide (GPNA). Pharmacological inhibition of SLC1A5 with GPNA was able
to decrease lung cancer cell growth and viability by inhibiting glutamine-dependent mTORC1
signalling [209,210]. In an immunohistochemistry study on NSCLC patients, SLC1A5 protein
expression was found to be a significant prognostic marker, and is a potential diagnostic marker for
glutamine-dependent NSCLC [209]. However, toxicity in healthy cells slowed progress in bringing
SLC1A5 inhibitors into clinical use [211].

Finally, targeting glutamine metabolism is also proposed to be effective in eradicating the CSC
populations thought to be responsible for cancer relapse. Glutamine deprivation was found to diminish
the proportion of CSC-like cells in various cancers including NSCLC, pancreatic cancer, and GBM [212].
Pharmacological inhibition of GLS was also shown to be effective in eradicating the GBM stem-like cell
population, which is thought to be responsible for therapy resistance and tumour recurrence [213].

7. Targeting Stromal Components

7.1. CAFs

In the ‘reverse Warburg’ effect, CAFs undergo aerobic glycolysis and release lactate to fuel tumour
OXPHOS [73]. Since this involves lactate export via MCT-4 into the TME, and subsequent lactate
import via MCT-1 into the tumour, this metabolic crosstalk can potentially be blocked by MCT-1/MCT-4
inhibition. MCT-4 inhibition is able to block lactate export from tumours, resulting in lactate
build-up, intracellular acidification, and end-product inhibition of glycolytic enzymes, which cripples
tumour metabolism [214]. Syrosingopine is a dual MCT-1/MCT-4 inhibitor that leads to lactate
accumulation and LDH inhibition in a mouse model of liver cancer, leading to reduced NAD+

levels [214]. Most other small-molecule MCT inhibitors developed to date are specific to MCT-1,
with one drug (AZD3965) currently in clinical trials. However, AZD3965 is ineffective when MCT-4 is
expressed [215], thus restricting its application to tumours that lack MCT-4.

The glutamine-based ‘tumour-feeding’ by CAFs may also be targeted. Inhibition of GLUL in
CAFs, together with GLS inhibition in cancer cells, led to a synergistic effect in reducing tumour weight
and metastasis in ovarian cancer mouse models when compared to monotherapy by disrupting the
metabolic crosstalk between CAFs and ovarian tumour cells [79]. Similarly, GLS inhibition (by CB-839
and BTPES) in TNBC showed high efficacy initially, as TNBC is greatly reliant on exogenous glutamine
for metabolism [200]. However, resistant cells soon emerged, which were able to respond to decreased
glutamine inhibition by uptake of extracellular, CAF-derived pyruvate to replenish the TCA cycle,
thus nullifying the effects of GLS inhibition [216].

7.2. ECs

As discussed in earlier sections, aberrant vessel sprouting is contributed by altered CCM leading
to changes in the TME that impairs the normal vascularisation process in ECs. Thus, targeting CCM is
a strategy to achieve tumour vessel normalisation as a potential anti-cancer treatment. Since tumour
ECs (TECs) are highly glycolytic compared to normal proliferating ECs [217], one strategy is a blockade
of glycolysis by inhibiting the glycolytic activator PFKFB3 with 3PO. Treatment with 3PO was found
to promote tumour vessel normalisation, impairing cancer metastasis by tightening the EC barrier,
and enhanced the efficiency of chemotherapy [84].
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The hyperproliferative nature of TECs is also proposed to lead to greater dependency on
mitochondrial metabolism, especially given the intense competition for nutrients in the TME,
where glycolysis is likely already maximised by relying on mitochondrial ATP production to sustain
angiogenesis [218]. As such, treating proliferating ECs with the weak mitochondrial uncoupler, Embelin,
led to reduced OXPHOS, impairing tumour growth, and decreased microvessel density in mouse
tumour models [219].

8. Targeting Metabolic Flexibility as a Mechanism of Resistance to CCM Inhibitors

Unfortunately, targeting inherent metabolic dependencies in isolation has met with halting failures
due to metabolic plasticity in cancer cells. Upon inhibition of a particular pathway, tumours may
simply reprogram their metabolism and upregulate a separate compensatory pathway, allowing escape
from dependency on a single pathway. For instance, when various cancer cells were exposed to a
continuous glycolytic block with 2-DG, a recurrent reprogramming mechanism was observed that
led to escape from glycolytic addiction and, hence, escape from 2-DG susceptibility. This involved
sustained mTORC1 signalling, directing glucose flux via the PPP back into glycolysis, nullifying the
glycolytic block via anaplerosis [220]. This heightened metabolic flexibility is promoted by the
pre-existing genetic and epigenetic instability in cancer cells, leading to rapid metabolic adaptation in
response to inhibitors, and, in turn, therapy resistance [221,222]. Evidently, this flexibility and ease of
switching to other pathways to fuel their metabolism poses a great challenge in developing successful
CCM-targeting strategies.

Uncovering these mechanisms and metabolic tendencies has revealed evolutionary canalisations
that can be exploited using a ‘synthetic lethality’ approach. In this section, combinatorial strategies
involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy,
chemotherapy, and immunotherapy will be highlighted with multiple combinations showing promising
advancements in clinical trials (Tables 1–4).

Table 1. Dual metabolic inhibitor combinations for cancer therapy.

Targeted
Metabolism

Metabolic
Inhibitor 1 Metabolic Inhibitor 2 Preclinical Data Clinical Data

OXPHOS +
Glycolysis

Metformin
2-deoxyglucose (2-DG)

Breast, prostate, GBM,
sarcoma, PDAC,

oesophageal, ovarian
cancers [223–229]

HK2 deletion HCC [230]

IACS-010759
(complex I
inhibitor)

Phosphogluconate
dehydrogenase

(PGD) inhibition

Hereditary leiomyomastosis
RCC [231]

2-DG CLL [185]

BAY87-2243
(B87) Dimethyl α-KG (DMKG) Multiple: NSCLC, CRC,

glioma, breast, sarcoma [232]

Glutaminolysis +
Glycolysis CB-839 3-BP (HK2 inhibitor) Renal [233]

OXPHOS +
Metabolite
Transporter

Metformin
Syrosingopine (MCT-1 and

MCT-4 inhibitor) Liver [214]

Ritonavir
(GLUT4 inhibition)

Phase I—MM, CLL
(NCT02948283)
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Table 2. Metabolic inhibitors in combination with targeted therapy for cancer therapy.

Targeted
Metabolism Metabolic Inhibitor Cell Signalling Pathway

Inhibitor Preclinical Data Clinical Data

OXPHOS

Phenformin BRAF inhibition
(Dabrafenib + Trametinib) Melanoma [5,234] Phase I—Melanoma

(NCT03026517)

VLX600
(mitochondrial

inhibitor)
cKIT inhibition (Imatinib) GIST [235]

IACS-010759
(complex I inhibitor) Ibrutinib MCL [48]

Metformin

BRAF TKI (vemurafenib or
dabrafenib + trametinib)

Phase I/II—Melanoma
(NCT01638676)

Phase I/II—Melanoma
(NCT02143050)

EGFR TKI (erlotinib,
afatinib or gefitinib)

Phase II—NSCLC
(NCT03071705) [236]

OPB compounds
(OPB-51602,

OPB-1110077)

EGFR TKI Cell signalling
pathway inhibitors

Phase I—NSCLC
(NCT01184807) [193]

Phase IIa—Oncogene-addicted
cancers (NCT03158324)

Glycolysis

3PO Nintedanib, sunitinib Breast [237]

PFK158 (PFKFB3
inhibitor) Vemurafenib Melanoma [238]

PFK15 (PFKFB3
inhibitor) Rapamycin AML [239]

2-DG Afatinib NSCLC [240]

2-DG
HK2 silencing Sorafenib HCC [230,241]

Glutaminolysis GLS inhibition
(BPTES, CB-839)

BRAF TKI Melanoma [50]

Osimertinib Phase I/II—NSCLC
(NCT03831932)

Erlotinib Phase I—NSCLC (NCT02071862)

Palbociclib Phase I/II—Solid tumours
(NCT03965845)

Cabozantinib

Multiple: melanoma,
glioma, NSCLC,
sarcoma, PDAC,

prostate [242]

Phase I—RCC
(NCT02071862) [243]

Phase II—RCC (CANTATA:
NCT03428217)

Metabolic
inhibition +

mTOR Pathway
inhibition

Compound 968 Rapamycin GBM [244]

CB-839 Everolimus
Phase Ib—RCC (NCT02071862)

Phase II—RCC (ENTRATA:
NCT03163667)

Metformin

Rapamycin Pancreatic [245]

Everolimus Breast [246,247] Phase Ib—Solid tumours [248]

Temsirolimus

Phase I—advanced/refractory
cancers (NCT01529593),

solid tumours or lymphoma
(NCT00659568) [249]

Sapanisertib (TAK-228)
mTOR1/2 inhibitor

Phase I—solid tumours
(NCT03017833)

Table 3. Metabolic inhibitors in combination with chemotherapy.

Targeted
Metabolism Metabolic Inhibitor Chemotherapy Preclinical Data Clinical Data

Glycolysis 3-BP (HK2 inhibitor)

Platinum drugs
(cisplatin, oxaliplatin) CRC [250]

5-fluorouracil CRC [251]

Doxorubicin Neuroblastoma [252]

Daunorubicin,
mitoxantrone,
doxorubicin

MM, AML, HCC [253]
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Table 3. Cont.

Targeted
Metabolism Metabolic Inhibitor Chemotherapy Preclinical Data Clinical Data

Glycolysis

2-DG

Etoposide Lymphoma [254]

Doxorubicin +
radiotherapy Breast [255]

Doxorubicin, paclitaxel
Docetaxel

Osteosarcoma,
NSCLC [256] Phase I—various [257]

PKM2 modulation
Cisplatin Cervical [258]

Bladder [259]

Docetaxel Lung [260]

Glutaminolysis CB-839

Paclitaxel TNBC [200]

Phase I—TNBC
(NCT02071862) [261]

Phase II—TNBC
(NCT03057600) [262]

Docetaxel Phase I—NSCLC (NCT02071862)

Cepecitabine Phase I/II—solid tumours
(NCT02861300)

Mitochondrial
Metabolism

CPI-613/Devimistat (PDH
and α-KG dehydrogenase

complex inhibitor)

FOLFIRINOX
(oxaliplain, folinic acid,
irinotecan, fluorouracil)

Phase I—PDAC
(NCT01835041) [263]

Phase III—PDAC (AVENGER 500
trial, NCT03504423)

Cytarabine +
mitoxantrone

Phase III—AML (ARMADA 2000
trial, NCT03504410) [264]

Metformin

Doxorubicin Prostate, lung [265]

Carboplatin NSCLC [57]

5-fluorouracil Phase II—CRC
(NCT01941953) [266]

Irinotecan Phase II—CRC (NCT01930864)

Neo-adjuvant
chemotherapy (TCH+P)

Phase II—HER2-positive breast
(HERMET trial, NCT03238495)

Radiotherapy Phase II—prostate (NCT02945813)

Enzalutamide Phase II—prostate (IMPROVE
trial, NCT02640534)

IACS-010759 (complex I
inhibitor)

Cytarabine +
doxorubicin AML [267]

OPB-111077 Bendamustine +
rituximab

Phase I—diffuse large B cell
lymphoma (DLBCL)

(NCT04049825)

Dicholoroacetate (PDK2
inhibitor)

Paclitaxel NSCLC [268]

5-fluorouracil CRC [269]

Other
enzymes

CB-1158/INCB001158
(Arg1 inhibitor) Chemotherapy Phase I/II—solid tumours

(NCT03314935)

Indoximod/1-methyl-d-
tryptophan (IDO1 inhibitor)

Taxane chemotherapy Phase II—breast (NCT01792050)
Gemcitabine Phase I/II—PDAC (NCT02077881)

Table 4. Metabolic inhibitors in combination with immunotherapy.

Targeted
Metabolism Metabolic Inhibitor Immunotherapy Preclinical Data Clinical Data

Glutaminolysis
CB-839

Anti-PD-1, anti-PD-L1 Colon [270]

Nivolumab Phase I/II—melanoma, RCC,
NSCLC (NCT02771626)

Pembrolizumab +
carboplatin + pemetrexed Phase II—NSCLC (NCT04265534)

JHU083 Anti-PD-1 Lymphoma, colon,
melanoma [104]

Amino acid
metabolism

CB-1158/INCB001158
(Arg1 inhibitor)

Anti-PD-1
Pembrolizumab
Daratumumab

Solid tumours [271] Phase I/II—solid tumours (NCT02903914)
Phase I/II—MM (NCT03837509)
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Table 4. Cont.

Targeted
Metabolism Metabolic Inhibitor Immunotherapy Preclinical Data Clinical Data

Amino acid
metabolism

Epacadostat/INCB024360
(IDO1 inhibitor)

Checkpoint inhibitors
(various)

Phase I/II—solid tumours
(multiple clinical trials)

Pembrolizumab

Phase III—melanoma
(NCT02752074) [272]

Phase III—melanoma, urothelial
carcinoma, HNSCC (Keynote-ECHO
trials: NCT02752074, NCT03361865,

NCT03374488, NCT03358472)

Navoximod/GDC-0919
(IDO1 inhibitor) Atezolizumab Phase Ib—solid tumours

(NCT02471846, NCT02048709)

Other
CPI-444/ciforadenant

(A2AR antagonist)
Atezolizumab Phase I—RCC, prostate (NCT02655822)

Phase I/II—NSCLC (NCT03337698)

Daratumumab Phase I—MM (NCT04280328)

8.1. Dual Metabolic Pathway Inhibition

Dual inhibition of OXPHOS and glycolysis is able to effectively disrupt energy metabolism and
has proven to be effective against tumour growth in multiple preclinical cancer models (Table 1).
For example, dual inhibition of glycolysis with 2-DG and OXPHOS with metformin-inhibited tumour
growth preclinically in a broad spectrum of tumour models, including breast cancer, prostate cancer,
GBM, and sarcoma [223–229]. Similarly, HK2 depletion in HCC sensitises cells to metformin [230].
Moreover, treatment of OXPHOS-competent hereditary leiomyomatosis RCC with the complex I
inhibitor IACS-010759 plus simultaneous inhibition of the glycolytic enzyme phosphogluconate
dehydrogenase (PGD) led to synthetic lethality [231]. Likewise in CLL cells, simultaneous inhibition of
OXPHOS by IACS-010759 and glycolysis by 2-DG had a more pronounced effect than either inhibitor
alone, providing a strong biological rationale for dual metabolic inhibition to deprive cancer cells of
ATP [185].

Apart from OXPHOS and glycolysis inhibitor combinations, other dual metabolic inhibitor
combinations have also been investigated. Many tumours rely on glutamine-mediated TCA cycle
anaplerosis as an alternative source of carbon, and targeting glucose metabolism alone leads to
compensatory dependency on glutaminolysis, providing the biological rationale for dual glutaminolysis
plus glycolysis blockade [273]. Simultaneous glutaminolysis blockade with CB-839 and glycolysis
inhibition with the HK2 inhibitor 3-BP was investigated in mice with renal tumours. The data showed
promising results, as dual inhibition was able to significantly reduce overall lesions, while neither
drug alone did [233]. Another combination strategy is to couple OXPHOS inhibition together with
metabolite transporter blockade. Dual inhibition of the lactate transporters MCT-1 and MCT-4 with
syrosingopine was found to be synthetic lethal with metformin due to NAD+ depletion in a mouse
model of liver cancer [214]. A phase I study of metformin plus GLUT4 inhibition with ritonavir for
relapsed/refractory MM or CLL is due to be completed in October 2020 (NCT02948283).

8.2. Metabolic Inhibition and Cell Signalling Pathway Inhibition

As a common theme, oncogene-addicted tumours that become resistant to primary TKI therapy
develop OXPHOS dependency [274], and OXPHOS inhibition has been shown to resensitise cells to
TKI therapy [5,232,235]. As a result, BRAF inhibitor-resistant melanoma was susceptible to complex I
inhibition with phenformin, which re-sensitised cells to BRAF inhibition [5,234]. Similarly, the cKIT
inhibitor imatinib was synergistic with the mitochondrial inhibitor VLX600 to limit the growth of GIST
in mouse models [235]. Promising preclinical data have led to clinical trials testing OXPHOS inhibitor
and TKI inhibitor combinations.

An ongoing phase I trial is evaluating the safety and efficacy of phenformin in combination with
dabrafenib and trametinib in BRAF-mutant melanoma (NCT03026517). Various trials with metformin
plus BRAF inhibitor combinations are also ongoing for numerous tumour types, including melanoma
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(NCT01638676, NCT02143050). A randomised phase II trial was conducted for the use of metformin in
combination with front-line EGFR-TKI for EGFR-mutant NSCLC, with promising results (NCT03071705).
The median progression-free survival and overall survival were significantly longer in the EGFR-TKIs
plus the metformin group compared to EGFR-TKIs group [236]. Similarly, an ongoing clinical trial
is evaluating the safety and efficacy of OPB compounds in combination with targeted therapies in
oncogene-addicted tumours (NCT03158324).

While some tumours upregulate OXPHOS, others are reported to increase glycolysis in response
to primary TKI therapy [275]. As a result, studies using glycolysis inhibition plus TKI therapies have
shown promising preclinical results (Table 2). PFKFB3 inhibition with 3PO effectively suppressed
tumour growth in combination with multi-kinase inhibitors nintedanib and sunitinib in a mouse
model of breast cancer [237]. Similarly, promising data has been shown for derivatives of 3PO, PFK158,
and PFK15 in combination with vemurafenib for BRAF-mutant melanoma cells in-vitro [238], and in
combination with rapamycin for AML, respectively [239], with plans for phase I/II trials of PFK158 in
combination with targeted agents underway. Preclinical success had also been seen with glycolytic
inhibition using 2-DG in combination with TKI therapy. For instance, 2-DG treatment was synergistic
with and able to resensitise NSCLC to the second-generation irreversible EGFR-TKI afatinib [240].
2-DG was also synergistic with sorafenib in inducing apoptosis of sorafenib-resistant HCC cells [241].
Similarly, HK2 silencing in combination with sorafenib produced the same effect in inhibiting HCC
tumour growth [230].

Glutamine metabolism also plays a key role in metabolic reprogramming in treatment resistance
to targeted therapy with raised GSH levels conferring tumours with greater ability to maintain
redox homeostasis [59,275]. Furthermore, another proposed mechanism by which oncogene-addicted
cancers develop resistance to TKI therapy is via switching to glutaminolysis as a means of increasing
OXPHOS [50]. This is shown by the development of OXPHOS dependency with acquired resistance
to BRAF inhibitors upon treatment in BRAF-mutant melanoma [50]. Interestingly, this shift toward
oxidative metabolism is associated with a switch from glucose to glutamine metabolism, suggesting a
possible link between these two metabolic pathways and resistance to targeted therapies. Treatment of
melanoma cells with the GLS inhibitor BPTES enhanced the anti-tumour activity of BRAF inhibition by
suppressing the switch toward glutamine metabolism and OXPHOS [50] (Table 2).

Building on this idea, ongoing phase I/II studies of the GLS inhibitor CB-839 in combination with
osimertinib is being tested for EGFR-mutant NSCLC (NCT03831932) and CB-839 with palbociclib for
solid tumours (NCT03965845) (Table 2). In RCC, preclinical models showed CB-839 synergism with
cabozantinib (Cabo), a VEGFR2/MET/AXL inhibitor, leading to inhibition of metabolic pathways and
enhanced anti-tumour activity [242,243]. A completed phase I study reported encouraging clinical
activity and tolerability in heavily pre-treated RCC patients, comparing favourably to historical Cabo
monotherapy (NCT02071862) [243]. This has led development into a randomised phase II study of
Cabo with CB-839/placebo in RCC (CANTATA, NCT0342821).

Preclinical studies showed that treatment with mTOR kinase inhibitors led to acquired resistance
associated with compensatory upregulation of glutamine metabolism. Combined inhibition of mTOR
kinase and GLS resulted in synergistic tumour cell death and growth inhibition in mice bearing
GBM [244] (Table 2). This concept is also utilised in clinical trials for treating RCC. A prior phase Ib
study of the GLS inhibitor CB-839 plus the mTOR inhibitor everolimus demonstrated impressive disease
control rates, prompting a further randomised phase II study evaluating the efficacy of everolimus with
CB-839/placebo in RCC (ENTRATA (CB-839 with Everolimus vs. Placebo with Everolimus in Patients
With RCC), NCT03163667). Preliminary data show promising results with tolerable safety profiles in
heavily-treated patients, including those refractory to multiple TKIs and immune checkpoint inhibitors.

mTOR inhibition may also be combined with biguanides such as metformin. While Akt activity is
compensatorily induced by mTOR inhibition, metformin is able to counteract this upregulation of Akt
by activating AMPK, providing scientific rationale for combining these two classes of agents [249,276].
Several preclinical studies combining mTOR inhibition with mitochondrial inhibitors, such as
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metformin, showed synergistic inhibition of tumour growth in pancreatic and breast cancer [245–247].
However, a completed phase Ib trial showed that the combination of everolimus and metformin is poorly
tolerated in patients with advanced cancer [248]. On the other hand, the combination of metformin
with other mTOR inhibitors have been more promising. Two completed phase I studies investigating
the combination of metformin plus temsirolimus for advanced/refractory cancers (NCT01529593) and
solid tumours or lymphoma (NCT00659568) showed the combination was well-tolerated with modestly
promising effectiveness [249] (Table 2). Plans for phase II trials for this combination is underway.
Finally, phase I trials for treating solid tumours with metformin in combination with sapanisertib,
another mTOR1/2 inhibitor, is now recruiting (NCT03017833) (Table 2).

8.3. Metabolic Inhibition Plus Chemotherapy

Metabolic inhibitors are thought to reduce cancer cells therapy resistance by reducing the levels of
key metabolites necessary for DNA damage repair, thus enhancing chemotherapy sensitivity [7,277].
This highlights the rationale for metabolic inhibitor plus chemotherapy combinations to increase the
efficacy of chemotherapy with an array of combinations in the developmental pipeline (Table 3).

For example, HK2 inhibitor, 3-BP, induces the imbalance of intracellular redox through glycolytic
inhibition, leading to large amounts of ROS production and intracellular accumulation [278]. 3-BP
was found to be a chemosensitizer in combination with cisplatin and oxaliplatin in cell models
of CRC [250] (Table 3). Similarly, 3-BP is able to act as a chemosensitizer in combination with
the first-line chemotherapy drug for CRC, 5-fluorouracil [251]. Another proposed mechanism of
3-BP activity is via decreasing ATP production, leading to reduced activity of the ABC transporters,
which are ATP-dependent efflux pumps, thereby restoring sensitivity to chemotherapy drugs such as
daunorubicin, mitoxantrone, and doxorubicin in various cancer cell lines [253]. Although 3-BP usage
in human studies was halted due to toxicities, this illustrates a proof-of-concept in the synergistic effect
of glycolytic inhibition with chemotherapy.

Glycolysis inhibitor, 2-DG, was found to synergise with etoposide-induced cytotoxicity in the
treatment of mouse models of lymphoma [254]. Similarly, combined treatment with 2-DG and
doxorubicin enhanced the in-vitro efficacy of breast cancer radiotherapy [255]. Early studies also
demonstrated synergism in treating mouse xenografts of human osteosarcoma and lung cancer cell
lines with 2-DG + doxorubicin and 2DG + paclitaxel, respectively [256], leading to a phase I trial of
2-DG in combination with docetaxel was studied in various malignancies, which demonstrated safety
and feasibility [257]. Finally, a novel candidate for glycolytic inhibition is via PKM2 modulation with
early preclinical studies demonstrating synergism with cisplatin in overcoming chemoresistance in
cervical [258] and bladder cancer [259] as well as in combination with docetaxel in human lung cancer
xenografts in mice [260].

Targeting glutaminolysis to counter GSH production is also a promising strategy to re-sensitise
tumours to chemotherapy [59]. Particular cancer types, such as TNBC, are also associated with elevated
GLS expression and glutamine dependency [279,280]. CB-839 synergises with paclitaxel by reversing
GLS-dependent mechanisms that lead to taxane resistance [200]. Leveraging on this, a phase I showed
the paclitaxel + CB-839 combination was well-tolerated and demonstrated clinical activity in heavily
pre-treated TNBC patients [261]. This led to a further phase II study of Paclitaxel + CB-839 in advanced
TNBC (NCT03057600) with preliminary findings, demonstrating clinical activity and tolerability [262].
Other GLS inhibition plus chemotherapy combinations are also being investigated, reaching various
stages of clinical trials (Table 3).

Another metabolic inhibitor plus chemotherapy combination that shows promising data is
completed via TCA cycle inhibition. CPI-613 (Devimistat, Rafael Pharmaceuticals, Cranbury, NJ, USA)
is a novel lipoic acid analogue that inhibits pyruvate dehydrogenase (PDH) and α-KG dehydrogenase
enzymatic complexes. Favourable clinical trial data led to FDA granting CPI-613 orphan drug
designation in pancreatic cancer, AML, myelodysplastic syndrome (MDS), peripheral T-cell lymphoma,
and Burkitt’s lymphoma, and CPI-613 in combination with various chemotherapy regimens have been
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tested in clinical trials for PDAC and AML. Currently, a pivotal multicentre, open-label, randomised
phase III trial (AVENGER 500, NCT03504423) is ongoing to evaluate the efficacy and safety of CPI-613
in combination with a modified FOLFIRINOX regimen for the first-line treatment of patients with
metastatic pancreatic cancer [263].

A separate phase III trial is also ongoing to study CPI-613 in patients with AML (ARMADA 2000,
NCT03504410). The ARMADA trial follows favourable results from multiple phase I/II studies of
CPI-613 and high dose cytarabine and mitoxantrone given to relapsed or refractory AML patients.
Given the favourable safety profile of this combination and the promising response achieved in these
trials, further clinical evaluation is warranted.

Various combinations of metformin plus chemotherapy regimens have also shown favourable
effects in preclinical models with some combinations reaching clinical trials [57,265]. The combination
of metformin plus 5-fluorouracil for treating refractory CRC had completed a phase II trial
(NCT01941953) [266]. Metformin in combination with the topoisomerase I inhibitor irinotecan
is also currently being evaluated in a phase II trial for refractory CRC (NCT01930864). Metformin plus
neo-adjuvant systemic therapy in HER2 positive breast cancer is being studied in a randomised phase
II trial (NCT03238495, HERMET trial). Another randomized, open-label phase II trial investigating
the role of metformin in addition to enzalutamide for castration-resistant prostate cancer is currently
recruiting (IMPROVE trial, NCT02640534). OXPHOS inhibition with OPB-111077 is currently underway
in a phase I trial for diffuse large B cell lymphoma (DLBCL) in combination with bendamustine and
rituximab (NCT04049825).

8.4. Metabolic Inhibition Plus Immunotherapy

Anti-tumour activity of immune checkpoint inhibition may be enhanced by metabolic modulation
of the TME. Promising preclinical data combining CB-839 with ICB has led to an ongoing phase
I/II study of CB-839 in combination with nivolumab in immunogenic tumours including melanoma,
RCC, and NSCLC (NCT02771626) (Table 4) [270]. Preliminary analyses demonstrated that CB-839
was well-tolerated when combined with nivolumab. Of note, of the eight evaluable RCC patients,
75% achieved SD on combination therapy, all of whom were progressing on a checkpoint inhibitor
at study entry. Another area of focus is NSCLC containing activating mutations in the NRF2/KEAP1
pathway. A key subset of these activated genes upregulate glutamine metabolism and dependency.
This clear mechanistic rationale had spurred a randomised double-blind phase II study evaluating
CB-839 in combination with standard of care chemo-immunotherapy in this subgroup of NSCLC
patients (NCT04265534).

Amino acid metabolism can also be targeted in combination with immunotherapy. Arg1 upregulation
in MDSCs depletes T cells of l-arginine in the tumour milieu [118], limiting T cell anti-tumour
activity. CB-1158 is an Arg1 inhibitor that reversed myeloid-mediated T cell inhibition in-vitro and
suppressed tumour growth in-vivo. Furthermore, CB-1158 treatment was synergistic in combination
with checkpoint blockade in multiple mouse models of cancer, resulting in increased tumour-infiltrating
CD8+ T cells and NK cells, inflammatory cytokines, and expression of IFN-inducible genes [271].
This has led on to a phase I/II trial of CB-1158 in combination with pembrolizumab in solid tumours
(NCT02903914). Currently, CB-1158 has been well-tolerated and achieves on-target inhibition, resulting in
increases in plasma arginine [281]. Another phase I/II trial investigating CB-1158 plus subcutaneous
daratumumab, compared to daratumumab monotherapy, in relapse or refractory MM, is currently
recruiting (NCT03837509) (Table 4).

Another enzyme, indoleamine 2,3-dioxygenase (IDO), catalyses the rate-limiting step in tryptophan
oxidation. This generates kynurenine, which simultaneously depletes T cells of the amino acid
while promoting exerting immunosuppression and induces T cell apoptosis [93,106]. Furthermore,
kynurenine acts as a ligand for the aryl hydrocarbon receptor (AHR), leading to Treg differentiation [282]
and pro-tumourigenic effects. IDO inhibitors seek to prevent tryptophan depletion to reduce the
production of immunosuppressive kynurenine. Multiple phase I/II trials showed encouraging results
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with small molecule inhibitors of IDO1, such as epacadostat, with improved responses to anti-PD-1
therapy (Table 4). However, recent results from ECHO-301, the first large phase III trial to evaluate
the efficacy of epacadostat in combination with pembrolizumab in advanced melanoma, showed no
indication that epacadostat provided an additional benefit. Thus, the current usefulness of IDO1
inhibition to enhance anti-PD-1 therapy remains uncertain. Other IDO1 inhibitors are being developed
and, in earlier phase trials, including navoximod, currently being tested in a phase Ib trial for solid
tumours in combination with atezolizumab [272] (Table 4).

Another immunometabolism-targeting pathway is via A2AR. CPI-444 (ciforadenant) is an A2AR
antagonist that can inhibit immuno-suppressive effects of adenosine on T cells, NK cells, macrophages,
and DCs. CPI-444 is currently in early-phase clinical trials in combination with atezolizumab for
advanced RCC, prostate cancer, and NSCLC (NCT02655822, NCT03337698) and in combination with
daratumumab for relapsed or refractory MM (NCT04280328).

9. Conclusions

Nearly a decade ago, cancer therapy entered a new era with the discovery of two additional
hallmarks of cancer, ‘reprogramming energy metabolism’ and ‘evading immune response.’
Following intensive research and several ground-breaking discoveries, checkpoint inhibitor therapy
has emerged as frontline therapy in multiple tumour types [283]. Targeting altered cell metabolism
is also recognized as a potential means of achieving therapeutic selectivity due to the fundamental
metabolic differences between normal and cancer cells. Yet, therapeutic advances have been much more
modest on the metabolic front partly due to the nuances in deciphering complex and interconnected
metabolic pathways. Moreover, the dynamic metabolic crosstalk between cancer cells and the TME,
including the immune system, adds further layers of complexity to metabolic inhibition.

Nevertheless, important strides have been made toward the clinical application of metabolic
inhibitors, which can be credited to the tremendous ongoing effort by researchers to tease out the
intricacies of tumour metabolism and identify compounds with favourable pharmacokinetic and
safety profiles. For one, the field has evolved from a small selection of agents with very narrow
therapeutic windows, such as arsenic trioxide and 2-DG, to a wide selection of candidates targeting
various pathways in which many have demonstrated tolerability in clinical trials. Glutamine has been
identified as an excellent therapeutic target due to its contributions to both OXPHOS and glycolysis, and,
not unexpectedly, the potent and selective GLS inhibitor, CB-839, has demonstrated great potential in
the developmental pipeline. It has now entered phase II studies, and the strategic direction, which has
been selected for its future development is in combination with chemotherapy, targeted therapies,
and immunotherapy [202,243,261].

However, the therapeutic success of cell metabolism inhibitors cannot be solely reliant on the
discovery of compounds with favourable pharmacologic properties. Biomarkers help stratify tumours,
according to their metabolic dependencies and are a crucial element of patient selection for metabolic
inhibition. To date, p53 or LKB1 loss, homozygous deletion of ENO1 and SMARCA4 mutations
are strong candidate biomarkers of OXPHOS inhibition [186–188]. On the other hand, despite the
excellent progress in the development of glutaminolysis inhibitors, a companion biomarker has yet to
be established [284].

The discovery of altered CCM as a mechanism of resistance to standard anti-cancer therapies is
arguably the most significant advancement in the field, serving as a platform for the discovery of rational
synthetic lethality combinations to overcome therapeutic resistance to conventional chemotherapy
and targeted therapies. Apart from targeting mechanisms of secondary resistance, preclinical studies
have raised the possibility of eradicating notoriously therapy-resistant CSCs [163,285]. Several of these
combinations have demonstrated both safety as well as promising activity in clinical trials [267]. Due to
the synergistic action of both compounds, synthetic lethality strategies may permit the use of lower
drug doses compared to single agent blockade, potentially mitigating drug toxicities.
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Cancer cells have the innate ability to escape the inhibition of a particular metabolic pathway by
upregulating compensatory pathways or deriving alternative routes of nutrient supply. At present,
the prevailing plasticity of the metabolic circuitry is thought to be the greatest limiting factor in the
success of metabolic inhibition, rendering the singular targeting of metabolic pathways ineffective.
Dual metabolic inhibition is a promising strategy to overcome this, especially combinations involving
the inhibition of glycolysis and OXPHOS, or glycolysis and glutaminolysis [185,223,230,231,233].
Though supported by robust preclinical data, the clinical evaluation of dual metabolic inhibitor
strategies remain in their infancy stages [286].

Emerging data have led to observations that metabolic plasticity is not merely limited to cancer
cells, but also involves the surrounding TME, especially the metabolically versatile immune milieu.
Altered CCM creates an unfavourable microenvironment, resulting in immunosuppression and
polarisation toward pro-tumourigenic cell types. Competing energetic requirements of tumour cells
and the immune environment result in the limited availability of key nutrients, blocking T cell activation
and proliferation. Furthermore, the immune checkpoint proteins on tumour cells, PD-1 and CTLA-4,
suppress T cell metabolism. Hence, it is now evident that specific metabolic dependencies of immune
cells lead to cancer immune evasion, which is a crucial discovery that may be exploited in order to
enhance anti-cancer immune responses. This validates treatment strategies that are underway to
evaluate various combinations of immune checkpoint blockades and metabolic inhibitors [79,270,272].

Although the development of metabolic inhibitors has been fraught with challenges and
disappointments, significant momentum has been gained in recent times, all the more so with
the discovery of effective drug combinations. With the aid of further translational studies and
well-designed therapeutic strategies, the routine use of metabolic inhibitors in the clinic may become a
reality in the near future.
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