No. of restraints	Topological isomer	Acm ₂ -precursor
All	64	144
NOE distance restraints	61	142
Intraresidue	21	91
Sequential	26	42
Medium range	7	3
Long range	7	6
Disulfide bond	3	2
Deviations from idealized covalent geometry		
Bonds(Å)	$0.0074 \pm 1.83e-4$	$0.0134 \pm 3.53e-4$
Angle(°)	$0.718 \pm 3.16e-4$	$1.98 \pm 2.97e-2$
Impropers(°)	$0.371 \pm 8.76e-4$	$0.786 \pm 1.07e-2$
Mean coordinate RMSD from mean structure ^a		
Backbone heavy atoms	0.01 ± 0.01 Å	0.41 ± 0.16 Å
All heavy atoms	0.29 ± 0.17 Å	1.41 ± 0.28 Å

Table S1. Data collection and refinement statistics.

^a Root mean square deviation (RMSD) was calculated using 10 possible structures.

Table S2. Hydrogen bonds in the backbone structure of the native form, topological isomer and Acm₂-precursor peptide.

	Hydogen bond			stunatura	
STh(6-18)	donor ^a		acceptor ^a	structure	
Native form	Leu9(H _N)	\leftrightarrow	Cys6(CO)		
	Cys10(H _N)	\leftrightarrow	Cys7(CO)	Type I β-turn	
	$Cys11(H_N)$	\leftrightarrow	Cys6(CO)		
	Cys15(H _N)	\leftrightarrow	Asn12(CO)	Type I β-turn	
	Cys18(H _N)	\leftrightarrow	Cys15(CO)	Type II β-turn	
Topological isomer	$Cys7(H_N)$	\leftrightarrow	Cys10(CO)		
	Cys11(H _N)	\leftrightarrow	Gly17(CO)		
	Cys15(H _N)	\leftrightarrow	Asn12(CO)	Type I β-turn	
Acm ₂ -precursor	$Cys7(H_N)$	\leftrightarrow	Cys10(CO)		
	$Ala14(H_N)$	\leftrightarrow	Asn12(CO)	γ-turn	

^{*a*} The structural information about hydrogen bonds in the native form of ST_h(6–18) were based on the X-ray structure of [Mpr⁵]-ST_P(5–17). The residue numbers of ST_P(5–17) were adjusted to those of ST_h(6–18).

Topological regulation of the bioactive conformation of a disulfide rich peptide, Heat-stable enterotoxin;

Figure S1. Scheme for synthesis of the topological isomer of $ST_h(6-18)$ by the stepwise formation of disulfide bonds.

Figure S2. RP-HPLC profiles of the reaction solutions at each step of stepwise regioselective formation of disulfide bonds with linear gradient from 10 to 50% CH₃CN in 40 min (l.0%/min). (A) After air-oxidation of the deprotected peptide in the first step, analytical HPLC of Acm₂-peptides showed two major peaks. The arrow indicates the Acm₂-precursor peptide used for following I₂-oxidation. (B) Re-chromatogram of the peak fraction of Acm₂-precursor peptide in Fig. S2A. (C) I₂-oxidation under the ordinary condition using 50% MeOH produced the topological isomer.

Topological regulation of the bioactive conformation of a disulfide rich peptide, Heat-stable enterotoxin; Shimamoto, S. et al.

Figure S3. RP-HPLC profiles of the Acm₂-precursor peptide after air-oxidation. The peak 1 indicates the fraction contained the Acm₂-peptide with C1-C3 and C4-C6 connectivity. The peak 2 indicates the fraction containing the Acm₂-precursor peptide. The asterisks indicate the impurities derived from the reagents used for the reaction (Shimonishi Y. et al., *FEBS Lett* **1987**, 215, (1), 165–70).

Topological regulation of the bioactive conformation of a disulfide rich peptide, Heat-stable enterotoxin;

Figure S4. RP-HPLC profiles of Acm₂-precursor peptide incubated in (A) 50% AcOH, (B) 50% MeOH/0.1 M HCl, and (C) 50% *i*-PrOH/0.1 M HCl at 25°C for 0, 72, and 120 hr, respectively.

Topological regulation of the bioactive conformation of a disulfide rich peptide, Heat-stable enterotoxin; Shimamoto, S. et al.

Figure S5. CD spectra of the native form (*solid red line*) and topological isomer (*solid blue line*) of ST_h(6–18) in 20 mM sodium phosphate buffer (pH 6.5). CD spectra of Acm₂-precursor peptide in 50% MeOH/0.1 M HCl (*solid line*), 50% *i*-PrOH/0.1 M HCl (*dashed line*), and 20 mM sodium phosphate buffer (pH 6.5) (*chain line*) at 25°C.

Figure S6. The superpositions of 10 lowest energy structures of (A) the topological isomer and (B) Acm₂-precursor peptide of ST_h(6–18).

Topological regulation of the bioactive conformation of a disulfide rich peptide, Heat-stable enterotoxin; Shimamoto, S. et al.

Figure S7. The superpositions of 10 lowest energy structures of Acm₂-precursor peptide of ST_h(6–18). The backbone structures were illustrated by cartoon representation, and the two disulfide bonds and two Cys(Acm) residues were illustrated by stick representation. The C1-C4, C3-C6 linkage, and two Cys(Acm) residues were colored by *blue, green* and *red,* respectively.