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Abstract: Topoisomerases in the type IA subfamily can catalyze change in topology for both DNA
and RNA substrates. A type IA topoisomerase may have been present in a last universal common
ancestor (LUCA) with an RNA genome. Type IA topoisomerases have since evolved to catalyze the
resolution of topological barriers encountered by genomes that require the passing of nucleic acid
strand(s) through a break on a single DNA or RNA strand. Here, based on available structural and
biochemical data, we discuss how a type IA topoisomerase may recognize and bind single-stranded
DNA or RNA to initiate its required catalytic function. Active site residues assist in the nucleophilic
attack of a phosphodiester bond between two nucleotides to form a covalent intermediate with a
5′-phosphotyrosine linkage to the cleaved nucleic acid. A divalent ion interaction helps to position
the 3′-hydroxyl group at the precise location required for the cleaved phosphodiester bond to be
rejoined following the passage of another nucleic acid strand through the break. In addition to type IA
topoisomerase structures observed by X-ray crystallography, we now have evidence from biophysical
studies for the dynamic conformations that are required for type IA topoisomerases to catalyze the
change in the topology of the nucleic acid substrates.
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1. Introduction

Normal cell growth requires replication of the genome and regulated transcription. Certain
enzymes play crucial roles in these vital cellular processes. For example, DNA polymerase enzymes
are essential for DNA replication [1] and RNA polymerases are required for transcription [2]. Because
cellular genomes exist as very long double-stranded DNA, topoisomerases are needed for their unique
role as master regulators of DNA topology during DNA replication, transcription, recombination,
chromosome remodeling and many other genomic processes [3–7]. Topoisomerases catalyze the
interconversion of different topological forms of DNA by creating transient breaks on one or both
strands of the DNA duplex [8,9]. The twin supercoiling domain model proposed by Liu and Wang
described the topological problems encountered during transcription that would require topoisomerase
action ahead and behind the elongating RNA polymerase complex [10,11]. In bacteria, topoisomerase
I belonging to the type IA subfamily relaxes the negative supercoiling generated by transcription
behind the RNA polymerase complex to prevent the formation of DNA–RNA hybrids/R-loops that
in turn can inhibit the transcription process [6,10,12–14]. In addition to the relaxation of negatively
supercoiled DNA and preventing hypernegative supercoiling, type IA topoisomerases can also
catalyze the decatenation of replication intermediates [15–19] and the knotting or unknotting of
single-stranded DNA circles or nicked duplex DNA [20,21]. Every living organism has at least one
type IA topoisomerase that can resolve topological barriers, including replication and recombination
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intermediates or other entangled DNA structures, by passing DNA through a transient break in a
single strand of DNA [7]. The ability to unknot single-stranded RNA circles was first observed for
Escherichia coli topoisomerase III [22]. This RNA topoisomerase activity might have been related to the
similarity between E. coli topoisomerase III (TOP3) and an ancestral type IA topoisomerase present
in the RNA world. The interest in the physiological significance of RNA topoisomerase activity was
greatly heightened by the findings that human topoisomerase IIIβ (TOP3B) has both DNA and RNA
topoisomerase activities [23,24]. Furthermore, mutations in human TOP3B are linked to disorders
in neurodevelopment and mental health [23–27]. Many other type IA topoisomerases in all three
domains of life have been found to possess RNA topoisomerase activity [28–30]. While TOP3B is
likely to participate in the regulation of transcription-associated supercoiling and R-loops within the
nucleus [31–34], TOP3B has been shown to bind to mRNA within the cytoplasm [23–25] and may play
a role in translation. Potential roles of TOP3B in unlinking molecules of mRNA or overcoming torsional
stress of mRNA have been proposed [29], but the exact cellular functions of the RNA topoisomerase
activity remain to be fully elucidated. Remarkably, TOP3B has recently been demonstrated to be a
host factor hijacked for the efficient viral replication of positive-sense single-stranded RNA viruses
that include flaviviruses and coronaviruses [35]. Figure 1 shows some of the potential topological
barriers occurring during the life cycle of a positive-sense single-stranded RNA virus that may
require the RNA topoisomerase activity of human TOP3B. TDRD3 plays an important role in the
stabilization and activation of the DNA and RNA topoisomerase activities of human and Drosophila
TOP3B [28,31,36]. CRISPR/Cas9-based deletion that targeted the TOP3B–TDRD3 complex did not
affect Flavivirus translation and replication, but was found to diminish the late-stage production of
infectious virus particles [37]. It is not known yet if the TOP3B–TDRD3 complex is involved similarly
in the different stages of the coronavirus life cycle.
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Figure 1. Some of the potential topological problems during the life cycle of a positive-sense single-
stranded RNA virus that may require the RNA topoisomerase activity of human TOP3B. Genome 
circularization can be mediated by RNA–RNA interactions and proteins binding to the 5′ and 3′ ends. 
Decatenation of the catenated circular viral genome by TOP3B is required to remove blocks of (A) 
viral protein translation, (B) viral RNA transport and packaging. (C) When a translating ribosome or 
a helicase unwinds a duplex region in a viral RNA hairpin, and if the hairpin is bound to an immobile 
RNP or cellular matrix, the helical torsion will need to be relaxed by TOP3B. The figure is modified 
from a published version for potential TOP3B action on mRNA in [29]. 

Two recent reviews on type IA topoisomerases have discussed the essential functions of bacterial 
type IA topoisomerase [14] and the many versatile collaborations engaged by eukaryotic TOP3 to 
carry out different topological transactions [38]. This review on the mechanism of type IA 
topoisomerases will focus more on the results from recent structural, biophysical, biochemical and 

Figure 1. Some of the potential topological problems during the life cycle of a positive-sense single-
stranded RNA virus that may require the RNA topoisomerase activity of human TOP3B. Genome
circularization can be mediated by RNA–RNA interactions and proteins binding to the 5′ and 3′ ends.
Decatenation of the catenated circular viral genome by TOP3B is required to remove blocks of (A) viral
protein translation, (B) viral RNA transport and packaging. (C) When a translating ribosome or a
helicase unwinds a duplex region in a viral RNA hairpin, and if the hairpin is bound to an immobile
RNP or cellular matrix, the helical torsion will need to be relaxed by TOP3B. The figure is modified
from a published version for potential TOP3B action on mRNA in [29].

Two recent reviews on type IA topoisomerases have discussed the essential functions of bacterial
type IA topoisomerase [14] and the many versatile collaborations engaged by eukaryotic TOP3 to carry



Molecules 2020, 25, 4769 3 of 16

out different topological transactions [38]. This review on the mechanism of type IA topoisomerases will
focus more on the results from recent structural, biophysical, biochemical and genetic studies that help
us gain a better understanding of how type IA topoisomerases can act as magicians to manipulate the
topology of both DNA and RNA, in addition to key remaining questions on the catalytic mechanism.

2. General Classification

Topoisomerases are classified into two major types, type I and type II topoisomerases, based on
their ability to cleave one or both DNA strands, respectively, during the catalytic process. According to
structural homologies and reaction mechanisms, type II topoisomerases can be subdivided into two
subgroups: type IIA (including gyrase and topoisomerase IV found in prokaryotes; topoisomerase
IIα and topoisomerase IIβ in humans) and type IIB (topoisomerase VI and VIII found in archaea and
bacteria) [39–41]. Type I topoisomerases can be divided into type IA and type IB, IC subgroups [41]. Type
IA topoisomerases, ubiquitous in bacteria, archaea and eukarya [41], can relax negatively supercoiled
DNA but not positive supercoils because of the requirement of single-stranded DNA for binding [42].
Type IA topoisomerase introduces a transient cleavage of the single DNA strand and forms a covalent
linkage to the 5′-terminal phosphate of the cleaved DNA, followed by the passing of an intact strand
(T-strand) of DNA through the DNA break in the cleaved G-strand and the subsequent religation
of the nicked G-strand of DNA. This process is referred to as the enzyme-bridged or enzyme-gated
mechanism [21,43,44]. Type IB and type IC topoisomerases form a covalent linkage to the 3′-terminal
phosphate during catalysis that involves a 360◦ rotation of the cleaved free end of DNA around the intact
strand to relax both positive and negative supercoils with the controlled swivel or controlled rotation
mechanism [4,45,46]. Type IC differs from type IB or any other known topoisomerase in sequence or
structure, with a unique fold in its N-terminal domain [47].

3. N-Terminal Type IA Core Domains—Binding and Positioning of the G-strand for Cleavage at
the Active Site

The first information of type IA topoisomerase structure came from the crystal structure of
the 67 KDa N-terminal fragment of E. coli topoisomerase I (PDB 1ECL) [44]. We can see in this
structure a type IA core domain structure formed by domains D1–D4 that is present in the N-terminal
region of all type IA topoisomerase I and topoisomerase III (Figure 2) determined subsequently for
E. coli topoisomerase III (PDB 1D6M) [48], Thermotoga maritima topoisomerase I (PDB 2GAI) [49],
Mycobacterium tuberculosis topoisomerase I (PDB 5D5H) [50], Streptococcus mutans topoisomerase I
(PDB 6OZW) [51], Mycobacterium smegmatis topoisomerase I (PDB 6PCM) [52], human topoisomerase
III alpha (PDB 4CGY) [53] and III beta (PDB 5GVC) [54]. In the structure of reverse gyrases from
Archaeoglobus fulgidus (PDB 1GKU) [55] and T. maritima (PDB 4DDU) [56], type IA core domains are
found in the C-terminal region preceded by the helicase-like domain [55]. The elucidation of the
crystal structure of E. coli topoisomerase I core domains [44] provided support and further detail
for the previously proposed enzyme-gated mechanism of catalysis that should be applicable for the
other members of the type IA subfamily of topoisomerases. The interior cavity of the torus structure
observed in this study was noted to be big enough to hold single- and double-stranded DNA substrates
to accomplish the relaxation of supercoiled DNA or catenation/decatenation of nicked double-stranded
DNA. The G-strand of DNA fits into a binding groove in domain D4, and follows the path of one
strand of a B form DNA, as observed in the subsequently obtained cocrystals of E. coli topoisomerase
III (PDB 1I7D) [57] and topoisomerase I (PDB 1MW8) [58]. The active site tyrosine is part of domain
D3 and situated at the interface of domains D1 and D3 and responsible for the transient breakage of
the G-strand of DNA along with the subsequent formation of the phosphoryl-tyrosyl covalent complex
(Figure 3). The D111N mutation of E. coli topoisomerase I was found to be extremely lethal because
the resulting deficiency in DNA religation leads to the accumulation of the covalent intermediate [59].
This mutation was utilized to obtain the crystal structure of the covalent complex formed between
E. coli topoisomerase I core domains and cleaved DNA (PDB 3PX7) [60]. While the conformation of
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the individual N-terminal domains remained largely the same in this covalent complex and in the
full-length E. coli topoisomerase I structure with the C-terminal domains present (PDB 4RUL) [61],
there are conformational changes in the N-terminal core domains including the relative orientations of
the individual domains that allow type IA topoisomerases to bind the G-strand and form the active
site (Figure 3A) as observed for E. coli topoisomerase I, E. coli topoisomerase III and M. tuberculosis
topoisomerase I [57,58,60,62].

A comparison between the structures of the topoisomerase–DNA complex and apoenzyme showed
that conformational change in domain D4 created the binding groove for the G-strand of DNA (Figure 3B).
This is brought about by the movement of an alpha helix that follows a strictly conserved glycine
residue (Gly194 in E. coli topoisomerase I, Figure 3D). The flexibility of this glycine may facilitate
this conformational change required for G-strand binding [63]. Polar and positively charged residues
in this alpha helix, including strictly conserved Arg195 and Gln197 in E. coli topoisomerase I and
Arg194 and Gln196 of M. tuberculosis topoisomerase I, have been noted to interact with the G-strand
phosphodiester backbone [57,60,62]. Site-directed mutagenesis of E. coli topoisomerase at Gly194, Arg195
and Gln197 confirmed that mutations at these residues reduced the relaxation activity significantly [63,64].
An additional strictly conserved arginine residue in domain D4 (corresponding to Arg507 in E. coli
topoisomerase I, Figure 3D) also interacts with a phosphate of the G-strand [60,62].

The deoxyribose and bases of the G-strand interact with other polar, positively charged and aromatic
residues that extend from the interface of core domains D1 and D3 into D4 (Figure 3B). Arg168 and
Asp172 in E. coli topoisomerase I are strictly conserved in type IA topoisomerases and have been shown
with site-directed mutagenesis to be required for the relaxation and G-strand DNA cleavage [60,64].
The R168C substitution in E. coli topoisomerase I was found recently in genetic studies to increase
the rate of sequence deletion and duplication events, resulting in a mutator phenotype [65]. Another
E. coli topoisomerase I mutation, R35P, was associated with an increase in short-sequence deletions
in the same study. It is not known if the genetic instability is due to the effect of the reduction in
topoisomerase I relaxation activity on DNA supercoiling, or the disruption of the enzyme catalytic cycle
by the mutation [65].
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Figure 2. Domain arrangement in E. coli topoisomerase I as seen in the crystal structure of the N-terminal
core domains (PDB 1ECL) or full-length enzyme (PDB 4RUL). D1: amino acids 4–36, 81–157 colored in
pink; D2: amino acids 216–278,405–472 colored in orange; D3: amino acids 279–404 colored in salmon;
D4: amino acids 61–80,158–215,473–590 colored in blue; D5: amino acids 591–635 colored in magenta;
D6: amino acids 636–706 colored in red; D7: amino acids 707–754 colored in cyan; D8: amino acids
755–795 colored in yellow; helix hairpin linker: amino acids 796–824 colored in gray; D9: amino acids
825–865 colored in green.
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Figure 3. Type IA topoisomerase core domains interactions with the G-strand. (A) Active site of the M.
tuberculosis topoisomerase I noncovalent complex (PDB 6CQ2) showing an interaction between the
catalytic tyrosine and adjacent arginine with the scissile phosphate of the G-strand (in gold). A Mg2+

ion (in green) interacts with the scissile phosphate and TOPRIM acidic residues. (B) Structure of the E.
coli topoisomerase I covalent complex (PDB 3PX7) showing the positioning of the G-strand by residues
interacting with the G-strand backbone and a cytosine base (shown in the space-filling display) at
a distance of four nucleotides from the phosphoryl tyrosine (PTR) formed from the cleavage of the
G-strand. (C) Alignment of residues strictly conserved at the active site and type IA topoisomerases
including bacterial topoisomerase I, reverse gyrase (RG) and topoisomerase III from prokaryotes and
eukaryotes. Species represented include Ec: E. coli, Tm: Thermotoga maritima. Mt: Mycobacterium
tuberculosis, Sm: Streptococcus mutans, Af: Archaeoglobus fulgidus, Sc: Saccharomyces cerevisiae, Hs: Homo
sapiens. (D) Alignment of residues (shown in red) that are strictly conserved in type IA topoisomerases
for interacting with the G-strand backbone. Residues conserved for the specific binding of a cytosine
base 4 nucleotides upstream of the scissile phosphate are shown in blue.

Topoisomerase I and reverse gyrase enzymes in the type IA topoisomerase family exhibit a
preference for a cytosine base at four nucleotides upstream (−4) of the DNA cleavage sites [66–68].
In the structure of the E. coli topoisomerase I covalent complex and M. tuberculosis topoisomerase I
noncovalent complex representing the pretransition state (PDB 6CQ1), this cytosine base fits into a
sterically restrictive cavity formed by residues that are conserved in the topoisomerase I and reverse
gyrase sequences (highlighted in blue in Figure 3D). In these crystal structures, a tyrosine side chain
(Tyr177 in E. coli topoisomerase I) wedges between the −4 and −5 DNA bases and creates a kink in
the G-strand. The substitution of Tyr177 with serine to abolish the base-stacking interaction resulted
in the complete loss of DNA cleavage and relaxation activity [69]. Phenylalanine at this position
(Figure 3D) likely plays the same role in reverse gyrases. Alanine substitution at Arg169 switched the
DNA cleavage sequence site preference to having an adenine at the −4 position instead of cytosine and
reduced the relaxation activity by 150-fold, while substitution at Arg173 reduced DNA cleavage and
relaxation activity less severely, and did not change the cytosine preference [69]. The specific binding
of the cytosine positions the phosphate four nucleotides downstream at the position for nucleophilic
attack by the active site tyrosine. Topoisomerase III sequences have different amino acid residues
present at positions corresponding to Arg169, Arg173 and Tyr177 in the alignment (Figure 3D), and
may have a different mechanistic basis for selectivity in cleavage sites.

For RNA topoisomerase activity, the G-strand is expected to be accommodated in the same binding
groove in type IA topoisomerase core domains. The helix in D4 that follows the flexible glycine may play
a similar role in movement to facilitate G-strand binding and interact with the phosphodiester backbone
of the G-strand RNA. Structural and sequence variation in the binding groove may influence the relative
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efficiency of DNA versus RNA topoisomerase activity. Sequence selectivity of RNA cleavage by type IA
topoisomerases have not been analyzed. Alanine substitution at Arg173 of E. coli topoisomerase I was
found to have a more severe effect on the enzyme’s RNA unknotting activity than its DNA unknotting
activity, suggesting that the cytosine may need to be bound selectively at the −4 position for the RNA
G-strand cleavage by E. coli topoisomerase I [70]. In addition to the preference of a cytosine at the −4
position, there may also be structural features that are relevant for the binding and cleavage of RNA as
the G-strand due to the presence of the 2′-hydroxyl groups on the RNA ribose rings.

4. Mechanism of the G-strand Cleavage and Religation

Type IA topoisomerases achieve the relaxation of supercoiled DNA through a transesterification
reaction that includes two sequential nucleophilic attacks involving the active site tyrosine residue
situated in D3 and positioned at the junction of domains D1 and D3 [44]. In type IA topoisomerases,
the hydroxyl group in the side chain of the active site tyrosine residue is responsible for the first
nucleophilic attack on the scissile phosphate of a single-stranded DNA resulting in the cleavage of
the G-strand and the formation of the transient 5′-phospho-tyrosyl covalent linkage [66]. While the
cleaved G-strand segment with the 5′ phosphate is covalently linked to the enzyme, the cleaved
G-strand segment with the leaving 3′ hydroxyl is bound by multiple noncovalent interactions [60]. The
covalent and noncovalent interactions on both sides of the G-strand cleavage site not only facilitate the
enzyme-bridged T-strand passage through the break, but also prevent any inadvertent release of the
cleaved DNA that can harm the chromosome integrity. After the intact T-strand passes through the
nick, rejoining of the G-DNA backbone occurs through the second nucleophilic attack by the 3′-OH
group of the cleaved G-strand on the phosphotyrosine linkage to release the enzyme from the covalent
complex and allow the enzyme to release the substrate and be ready for the next catalytic cycle [71,72].

A number of conserved amino acids with acidic and basic side chains are present in close proximity
of active site tyrosine in type IA topoisomerases to play a role in G-strand cleavage and religation [73,74].
A water molecule has been postulated to be acting as the general base for deprotonation of the tyrosine
hydroxyl nucleophile for DNA cleavage [57,62]. The deprotonation of the nucleophile by water is
likely to be in concert with the formation of the transition state at the scissile phosphate, similar to
the nucleotide transfer mechanism proposed for DNA polymerases [75]. The positively charged side
chain of the strictly conserved arginine residue separated by one residue from the active site tyrosine
(Arg321 in E. coli topoisomerase I, Figure 3C) plays a critical role in stabilizing the negative charge
on the hydroxyl nucleophile and the transition state. The positive charge of divalent ions can also
activate the nucleophile and stabilize the transition state for both G-strand cleavage and religation
even though divalent ions are absolutely required only for G-strand religation, and can be absent for
cleavage of the G-strand by type IA topoisomerases. However, when Arg321 in E. coli topoisomerase
I or the corresponding Arg327 in Yersinia pestis topoisomerase I was substituted with an aromatic
residue, DNA cleavage could still take place but became divalent ion dependent [76]. Moreover, the
presence of divalent ions cannot compensate for the loss of this arginine residue in G-strand religation,
resulting in a dominant lethal cell killing because of the accumulation of topoisomerase I-mediated
DNA breaks [76]. A R338W mutation introduced at the corresponding arginine residue in human
topoisomerase IIIβ has been shown to facilitate trapping of the intracellular covalent complex with both
DNA and RNA [77], confirming a similar role for this arginine residue in the cleavage and rejoining of
the RNA G-strand.

Type IA and type IIA topoisomerases require divalent ions for catalytic activity. At the active sites of
these topoisomerases, divalent ions are coordinated by the TOPRIM motifs (with a conserved glutamate
and two conserved aspartates DxD) also seen in many nucleotidyl transferases/hydrolases [78]. In
the crystal structure of M. tuberculosis topoisomerase I [62], one Mg2+ ion is coordinated with the
negatively charged carboxylate side chain of Glu24 (corresponding to Glu9 in E. coli topoisomerase
I, Figure 3A) and Glu111 directly, and to Glu113 indirectly through a water molecule, in addition to
the scissile phosphate. The positive charge of Mg2+ can help to position the 3′-OH of the cleaved
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G-strand for a nucleophilic attack on the phosphotyrosine linkage and stabilize the transition state
for DNA rejoining. The DNA cleavage also became Mg2+ dependent when the first aspartate of the
DxD TOPRIM motif was mutated to asparagine without the negatively charged side chain [59,79].
Overexpression of the D111N mutant topoisomerase I is toxic to the cells because of deficiency in
DNA religation resulting in the accumulation of the cleavage complex on chromosomal DNA. The
D111N mutation in the E. coli topoisomerase I N-terminal core domain fragment enabled the isolation
of the covalent complex formed with cleaved oligonucleotide for structural determination [60]. Other
mutations that affect Mg2+ binding at the active site of bacterial topoisomerase I also resulted in
bacterial cell death when the mutant topoisomerase I was overexpressed because of the inhibition of
DNA religation and accumulation of DNA breaks [79–82]. The requirement for DNA religation is
more stringent than for DNA cleavage because both the phosphotyrosine linkage and 3′-hydroxyl
nucleophile have to be placed exactly at positions required for DNA rejoining to take place.

In the crystal structures of human topoisomerase IIIα [53] and human topoisomerase IIIβ [54],
DNA substrate is not present. A single Mg2+ is bound directly to the Glu side chain of the TOPRIM
motif and through a water molecule to the first Asp of the TOPRIM DxD. It is expected that upon
binding of the G-strand at the active site, the scissile phosphate will displace the water molecules seen
in the crystal structure as ligands for the Mg2+. It cannot be ruled out that a transient interaction with
additional Mg2+ not currently observed in the crystal structures of type IA topoisomerases can take
place during the course of DNA cleavage and rejoining.

In addition to acting as a ligand for Mg2+, the TOPRIM glutamate side chain has been proposed
to interact directly during DNA cleavage as a general acid [57] with the G-strand 3′-hydroxyl leaving
group to provide a proton from a nearby positively charged histidine (His365 in E. coli topoisomerase I)
side chain via proton relay through the D111 side chain [62,83]. Reversal of the proton relay may take
place during religation for the glutamate to act as a general base in the activation of the 3′-hydroxyl
nucleophile [60]. Mutation of the TOPRIM glutamate to alanine or glutamine abolished the DNA
cleavage and relaxation activity [62] but did not affect the RNA cleavage activity observed for M.
smegmatis topoisomerase I, suggesting that the 2′-OH of RNA could potentially participate in the
proton relay for the RNA cleavage [30].

5. C-Terminal Domains—Binding of T-strand

Though the type IA topoisomerase core domain that forms the characteristic torus structure
contains all the highly conserved motifs responsible for G-strand binding and cleavage religation,
the C-terminal domains of bacterial topoisomerase I have been shown to be required for removing
negative supercoils from DNA rapidly in a processive mechanism [61,72,84–87]. Results from these
studies indicated that the C-terminal domain of type IA topoisomerases possesses a significant affinity
to substrate DNA. Unlike the N-terminal core domains, the C-terminal domains among type IA
topoisomerases greatly varied in size and sequence. Two distinct types of structural motifs (Figure 4A)
have been observed in the crystal structures of bacterial topoisomerase I [28,49,50,61].

Tetracysteine motifs that form the zinc ribbon fold [88] can be found in the topoisomerase I gene
of a majority of bacterial species. The zinc ribbon fold comprises a four-stranded antiparallel β-sheet
with a Zn(II)-binding site on the top of the motif (Figure 4A). The crystal structure of full-length E. coli
topoisomerase I [61] showed three such Topo_C_ZnRpt zinc ribbon domains (D5-D7) followed by
two zinc ribbon-like domains (D8, D9) that did not bind to Zn(II) due to the absence of cysteines [89].
The four cysteines in the single zinc ribbon domain (D5) in T. maritima topoisomerase I did not bind
to the Zn(II) ion in the crystal structure but formed two disulfide bonds to stabilize the zinc ribbon
fold [49]. While the deletion of the C-terminal domains in E coli topoisomerase I resulted in the complete
loss of relaxation activity [90], T. maritima topoisomerase I retained some activity upon deletion of the
C-terminal domain [91].
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Figure 4. Structural motifs found in the C-terminal domains of bacterial topoisomerase I. (A) The
Topo_C_ZnRpt motif with the Zn(II) ion coordinated by four cysteines in E. coli topoisomerase I
(from PDB 4RUL) and Topo_C_Rpt motif with conserved GxxGPY residues (in the space-filling
display) in M. tuberculosis topoisomerase I (from PDB 5UJ1). (B) Comparison of ssDNA binding by the
C-terminal domain of E. coli topoisomerase I and M. smegmatis topoisomerase I (from the Supplementary
Information of [52]). Conserved aromatic residues from each C-terminal domain form π–π stackings
with the nucleotide bases.

In certain species of bacteria in the Actinobacteria phylum including members of the
Mycobacterium and Streptomyces genera, the C-terminal domains are organized with repeated
Topo_C_Rpt domains first predicted based on the M. tuberculosis topoisomerase I crystal structure [50]
that do not have Zn(II)-binding cysteines, ending with a tail rich in positively charged lysines and
arginines. The Topo_C_Rpt fold has an antiparallel four-stranded β-sheet flanked by a C-terminal
helix on one side (Figure 4A).

In the crystal structures of the topoisomerase–DNA complex, π–π stacking interactions between
tyrosine and phenylalanine amino acids at specific positions of the Topo_C_ZnRpt or Topo_C_Rpt
motifs and nucleotide bases are utilized for DNA binding by the C-terminal domains of E. coli and
M. smegmatis topoisomerase I (Figure 4B). Additional interactions with the ssDNA include hydrogen
bonds and cation–π interactions. Flexible loops connect between these C-terminal domains and to the
N-terminal core domains. Topoisomerase IIIα and IIIβ in higher eukaryotes have large numbers of
cysteines in their C-terminal domains that could potentially form multiple Zn(II)-binding motifs that
should be similar to the Topo_C_ZnRpt motifs in E. coli topoisomerase I. Structural studies are needed
to determine the exact folding of these C-terminal motifs in eukaryotic topoisomerase III enzymes.
In Actinobacteria such as Mycobacteria and Streptomyces, a lysine-rich C-terminal tail follows the
Topo_C_Rpt motifs to also participate in DNA binding [84,86]. Biochemical analysis demonstrated
that these elements in type IA topoisomerases contribute to the interaction with the single-stranded
DNA region in the substrate and are important for the processivity of enzyme activity [86,87,92–94].
There is further evidence that the bacterial topoisomerase I C-terminal domains have a specific role for
interacting with the T-strand in strand passage for the efficient recognition and relaxation of negatively
supercoiled DNA [52,61,86,95]. Figure 5 illustrates a model of relaxation of supercoiled DNA by
bacterial topoisomerase I that adds the binding of T-strand by C-terminal domains to the first step of
previously proposed topoisomerase I catalytic mechanism [72].
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Figure 5. Model for the relaxation of supercoiled DNA by bacterial topoisomerase I based on the crystal
structures of E. coli and Mycobacteria topoisomerase I. (i) Apo enzyme; (ii) C-terminal domains (green)
bind ssDNA as T-strand (red); (iii) ssDNA or G-strand (yellow) binds the N-terminal domains (blue);
(iv) Active site tyrosine (red circle) becomes accessible; (v) Cleavage of the G-strand and gate opening;
(vi) Passage of T-strand inside the toroid; (vii) Gate closing and trapping of T-strand; (viii) Religation of
the G-strand; (ix) Gate opening and release of dsDNA.

An RGG-box rich in arginines and glycines follows the Zn(II)-binding motifs in the C-terminal
domains of topoisomerase IIIβ found in higher eukaryotes [24,96]. A similar RGG-box is found in
many proteins involved in mRNA processing [97]. The deletion of the RGG-box from topoisomerase
IIIβ reduced both the DNA and RNA topoisomerase activities [24]. The RGG-box in topoisomerase
IIIβmay contribute to both DNA and RNA binding. Post-translational methylation of specific arginine
residues in the topoisomerase IIIβ RGG-box enhances the DNA and RNA topoisomerase activities, and
also the interaction between topoisomerase IIIβ and its auxiliary factor TDRD3 [32]. The acetylation of
lysine residues can also influence the topoisomerase activity of E. coli topoisomerase I [98,99].

It can be postulated that the last universal common ancestor (LUCA) of type IA topoisomerase
may resemble the bacterial and archaeal topoisomerase III enzymes consisting of the N-terminal
core domains and relatively short C-terminal domain. The C-terminal domains observed in the
topoisomerase I of bacteria and the topoisomerase III of higher eukaryotes have evolved to enhance the
interactions with nucleic acid substrates and protein–protein interactions using the repeated C-terminal
domains and basic amino acid residues. The protein–protein interactions with other cellular proteins
are relevant for the physiological functions and regulation of type IA topoisomerase activities [38].
Basic residues in the C-terminal domains of E. coli topoisomerase I [100] and the C-terminal tail of M.
smegmatis topoisomerase I [101] have been proposed to interact directly with the β′ subunit of RNA
polymerase for the function of topoisomerase I in transcription elongation [14,102,103] to suppress
hypernegative supercoiling and R-loop accumulation [14,104,105].

A recent report of an additional active site in the C-terminal domains of Helicobacter pylori
topoisomerase I [106] further illustrates the diverse properties of type IA topoisomerase C-terminal
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domains. There are eight tyrosine residues present in the C-terminal domains of H. pylori topoisomerase.
It is not known which of these tyrosine residues may act as an alternative active site nucleophile for
relaxation of negatively supercoiled DNA.

6. Opening and Closing of the G-strand Gate for Strand Passage

In the enzyme-bridged mechanism [21], the two ends of the cleaved G-strand in the covalent
intermediate formed by type IA topoisomerases need to be separated by a significant distance through
an extensive conformational change of the covalent complex to create the opening at the gate for
strand passage. Significant conformational changes of bacterial topoisomerase I have been detected
by bulk fluorescence measurements [107,108]. Trapped ion mobility spectrometry–mass spectrometry
(TIMS–MS) also demonstrated microheterogeneity of E. coli topoisomerase I conformational states [109].
The extent of gate opening was measured experimentally for E. coli topoisomerase I and topoisomerase
III in single-molecule assays [110]. The distance between the cleaved ends of single-stranded DNA
bound covalently to the topoisomerases was found to increase by as much as 6 nm. Such a distance was
estimated by molecular dynamics simulation to be required for the passage of a double-stranded DNA
through the break for a catenation/decatenation reaction involving double-stranded circular DNA with
a nick or single-stranded gap [110]. A significant opening of the G-strand gate would also be needed
for the passage of a single strand of DNA through the break to catalyze the relaxation of negatively
supercoiled DNA.

According to the model for type IA topoisomerase catalysis proposed when the crystal structure
of the core domains first showed [44] a toroid enclosed by interactions of D3 with D1 and D4, D3 must
move away from D1 and D4 for gate opening. Following the entry of DNA into the interior of the
toroid hole, D3 needs to be brought back by a conformational change to close the G-strand gate and
religate the break in the G-strand (Figure 5). Opening of the toroid hole also needs to occur at the end
of the catalytic cycle for the release of DNA from the interior.

A decatenation loop present in E. coli topoisomerase III but not topoisomerase I has been proposed
to keep the gate open to assist the catalysis of decatenation [111]. In contrast, the rapid closing of the
DNA gate formed by E. coli topoisomerase I observed in the single-molecule assays would allow a fast
rate of relaxation of negatively supercoiled DNA [110]. The hinge region between domains D2 and D4
could play an important role in the gate opening and closing. Combined techniques of magnetic tweezers
and total internal reflection fluorescence microscopy also detected E. coli topoisomerase I conformational
change that is necessary for strand passage, but an alternative model of sliding the domains past each
other to create a gate for capturing the T-strand of DNA into the interior of the toroid was proposed [112].

7. Key Remaining Questions

The mechanism of the G-strand gate opening and T-strand transport by type IA topoisomerases
remains to be fully elucidated. Communication between the N-terminal core domains and the C-terminal
domains bound to the T-strand may be required for coordinating the opening and closing of the G-gate
with strand passage. The guiding of the T-strand in and out of the toroid hole is also not well understood.
Direct evidence and characterization of additional transient intermediates that are part of the proposed
catalytic cycle would further our understanding of the mechanism at the molecular level.

The recent discovery of the RNA topoisomerase activity for type IA topoisomerases expanded
the scope of potential cellular functions for this ubiquitous class of topoisomerases. Even though the
interaction between topoisomerase IIIβ and mRNA in vivo has been linked to synaptic functions [23–25],
there is no direct experimental evidence so far for a change in cellular RNA topology catalyzed by
RNA topoisomerase activity. Separation of function mutations or inhibitors that can be identified for
topoisomerase IIIβwould be valuable research tools for investigating the cellular activity and function
of topoisomerase IIIβ.
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