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Abstract: The intermediacy of short-lived isoindenes, generated in the course of metallotropic
or silatropic shifts over the indene skeleton, can be shown by Diels-Alder trapping with
tetracyanoethylene, leading to the complete elucidation of the dynamic behaviour of a series
of polyindenylsilanes. Cyclopentadienones, bearing ferrocenyl and multiple phenyl or naphthyl
substituents undergo [4 + 2] cycloadditions with diaryl acetylenes or triphenylcyclopropene to
form the corresponding polyarylbenzenes or cycloheptatrienes. The heptaphenyltropylium cation,
[C7Ph7

+], was shown to adopt a nonplanar shallow boat conformation. In contrast, the attempted
Diels-Alder reaction of tetracyclone and phenethynylfluorene yielded electroluminescent tetracenes.
Finally, benzyne addition to 9-(2-indenyl)anthracene, and subsequent incorporation of a range of
organometallic fragments, led to development of an organometallic molecular brake.

Keywords: isoindenes; tetracyanoethylene; ferrocenylhexaphenylcycloheptatriene; tropylium ions;
hexanaphthylbenzene; X-ray crystallography; organometallic molecular brake

1. Introduction

While Diels-Alder cycloadditions have been the cornerstone of much elegant natural product
chemistry, as in the first total synthesis of a steroid (cortisone by Woodward [1]) or in the preparation of
molecules having unprecedented symmetry such as cubane by Eaton [2], triquinacene by Paquette [3],
and cubic graphite by Pascal [4], or exhibiting novel materials properties as in Mullen’s superacenes [5],
they can also play a role in the elucidation of reaction mechanisms. Herein, we discuss the use of
Diels-Alder reactions to trap proposed short-lived intermediates, to provide convenient high yield
routes to sterically crowded organic and organometallic molecules and, even when they do not proceed
as anticipated, to lead to unexpected novel products.

2. Diels-Alder Trapping of Isoindenes

2.1. Metallotropic Shifts

In the first example, we consider one of the now classic studies of fluxional behaviour in
organometallic chemistry. The preparation of bis(cyclopentadienyl)dicarbonyliron, (C5H5)2Fe(CO)2,
raised a fascinating mechanistic observation: X-ray crystallography revealed that while one of the
cyclopentadienyl rings was η5-bonded, in the other ring only a single carbon was attached to the iron
atom. Moreover, although this latter fragment exhibited 1H NMR signals in the ratio 1:2:2 at low
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temperature, these peaks coalesced as the temperature was raised [6]. It was eventually established
that the (η5-C5H5)FeCO)2 (Fp) moiety was undergoing a series of [1,2] migrations (subsequently
reformulated in Woodward-Hoffmann terms as [1,5]-suprafacial sigmatropic shifts), as shown in
Scheme 1.
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Scheme 1. Metallotropic shifts around a cyclopentadiene ring, where Fp = (C5H5)Fe(CO)2.

However, when one ligand was replaced by an indenyl substituent, as in Scheme 2, a potential
problem arose. If such a [1,5] shift were to occur, this would involve the intermediacy of an isoindene
with partial disruption of aromaticity and, presumably, a substantially increased barrier to migration.
This question is not resolvable by simply raising the temperature to monitor peak coalescence between
the H(1) and H(3) sites because, already at 70 ◦C, there is evident decomposition with loss of the
carbonyl ligands and formation of benzoferrocene [7,8].
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Scheme 2. Consecutive [1,5] metallotropic shifts leading to interconversion of enantiomers.

We chose to reinvestigate this system taking advantage of the development of the 2D EXSY NMR
technique that facilitates the observation of chemical exchange processes without the need to raise the
temperature such that line broadening is evident. This approach is ideal for temperature-sensitive
molecules in which the barrier to exchange is high. The spectrum shown in Figure 1 clearly reveals
exchange of the sp3-bonded and sp2-bonded protons–H(1) and H(3), respectively, and the barrier
was evaluated as ~85 kJ mol−1 [9], markedly higher than the 45 kJ mol−1 value previously found for
migration round the cyclopentadienyl ring in (η5-C5H5)Fe(CO)2(η1-C5H5).

Conclusive evidence for the intermediacy of the isoindene was provided by its reaction with
tetracyanoethylene (TCNE) at room temperature to form the Diels-Alder adduct, 1, that was
unambiguously characterised by X-ray crystallography (Figure 1) [9], even though it had been suggested
that the absence of an available diene unit would render the system incapable of participating in
a [4 + 2] cycloaddition [10].
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(η5-C5H5)(CO)2Fe(η1-C9H7) at 45 °C, and (right) molecular structure of 1, the Diels-Alder adduct of 
tetracyanoethylene (TCNE) to the isoindene intermediate. 

2.2. Silatropic Shifts 

In closely related systems, the [1,5]-migration of a trimethylsilyl (germyl or stannyl) substituent 
around the indenyl ring was investigated, and the intermediate isoindenes were trapped by 
Diels-Alder reaction with maleic anhydride or TCNE [11–14], as depicted in Figure 2.  

 
Figure 2. Molecular structure of 2, the Diels-Alder adduct of TCNE to the isoindene intermediate 
derived from 1-trimethylsilylindene. 

In bis(indenyl)dimethylsilane, interconversion of the meso and dl isomers was monitored by 
following the NMR behaviour of the methyl groups (Scheme 3). In the mirror-symmetric meso 
isomer they are nonequivalent, whereas in the dl case the C2 symmetry renders the methyls 
equivalent. Again, the intermediate isoindene was trapped as its Diels-Alder TCNE adduct [15].  

Figure 1. (Left) 500 MHz 2D EXSY NMR spectrum showing exchange between Ha and Hb in
(η5-C5H5)(CO)2Fe(η1-C9H7) at 45 ◦C, and (right) molecular structure of 1, the Diels-Alder adduct of
tetracyanoethylene (TCNE) to the isoindene intermediate.

2.2. Silatropic Shifts

In closely related systems, the [1,5]-migration of a trimethylsilyl (germyl or stannyl) substituent
around the indenyl ring was investigated, and the intermediate isoindenes were trapped by Diels-Alder
reaction with maleic anhydride or TCNE [11–14], as depicted in Figure 2.
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Figure 2. Molecular structure of 2, the Diels-Alder adduct of TCNE to the isoindene intermediate
derived from 1-trimethylsilylindene.

In bis(indenyl)dimethylsilane, interconversion of the meso and dl isomers was monitored by
following the NMR behaviour of the methyl groups (Scheme 3). In the mirror-symmetric meso isomer
they are nonequivalent, whereas in the dl case the C2 symmetry renders the methyls equivalent.
Again, the intermediate isoindene was trapped as its Diels-Alder TCNE adduct [15].

This work has been extended to bis-, tris- and tetrakis-indenyl systems [16,17]. A particularly
dramatic case is tris(indenyl)methylsilane, 3, which gives rise to RRR, RRS, RSS and SSS isomers in
a 1:3:3:1 ratio, where the R and S labels refer to the absolute configuration of C(1) in each indenyl ring,
as shown in Scheme 4.

A combination of 1H-1H COSY, 1H-13C and 1H-29Si shift-correlated NMR data revealed the
unequivocal assignment of the proton and carbon-13 nuclei in all the different indenyl ring
environments, and 1D-selective inversion and 2D-EXSY spectra allowed the elucidation of their
molecular dynamics [17]. As depicted in Figure 3, the exchange pathways between indenyl sites in
3 can be mapped onto a cube (for the eight different indenyl ring environments), and a hypercube
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(for the exchange of 1H in sp2 and sp3 environments) and again involve successive [1,5]-suprafacial
sigmatropic shifts via isoindene intermediates. Gratifyingly, several triple Diels-Alder TCNE adducts,
4, have been isolated and fully characterized by X-ray crystallography [18,19].Molecules 2020, 25, x FOR PEER REVIEW 4 of 26 
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Comparison of silyl migrations across a series of benzo- and dibenzo-indenes revealed a diminution
of the barrier whereby the additional benzo rings enhanced the aromatic character of the intermediate
isoindenes. Typically, calculations at the unrestricted Hartree-Fock level yielded a barrier of
109 kJ mol−1 for trimethylsilylindene, 100 kJ mol−1 for the angular benzindene and 90 kJ mol−1

for the dibenzindene (trimethylsilylcyclopenta[l]phenanthrene). As before, all the isoindenes
underwent ready Diels-Alder addition with TCNE. Evidently, additional benzo rings stabilise the
isoindene. Indeed, in the dibenzindene the intermediate lies only 9 kJ mol−1 above the ground state.
Gratifyingly, the experimentally determined migration barriers correlate well with the theoretical
predictions [20–22], as listed in Figure 4.
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This latter result provides an ideal rationale for the observation that,
when cyclopenta[l]phenanthrene was heated at reflux in dibutyl ether, the product (85% yield)
was the dimer, 5, shown in Figure 5 [23]. Its structure was established initially via a beautifully
resolved 1H-1H-COSY NMR spectrum, together with other 2D NMR data, and subsequently by X-ray
crystallography as the Diels-Alder adduct of the starting material with its own isoindene—a striking
demonstration of the stabilising effect of the additional benzo rings!
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Figure 5. 500 MHz 1H-1H COSY NMR spectrum in the aromatic region, and molecular structure, of
the Diels-Alder dimer formed by reaction of cyclopenta[l]phenanthrene with its own isoindene [23].
Figure 5 is reprinted with permission of the American Chemical Society.

3. Diels-Alder Cycloadditions of Alkynes or Triphenylcyclopropene to Cyclopentadienones

3.1. Geometric Factors in CnPhn Ring Systems

In the solid state, ligands or complexes possessing a cyclic array of CnPhn moieties adopt
propeller-type arrangements such that the external rings make a dihedral angle, θ, with the plane
of the central ring. Such a geometry provides a compromise between the coplanar arrangement,
θ = 0◦, which maximises orbital overlap but may introduce steric strain, and the orthogonal rotamer,
θ = 90◦, that minimises steric interactions but disrupts π conjugation. Furthermore, in the series
CnPhn, where n = 3–7, the angle subtended at the centre of the internal ring by the adjacent phenyls
(ω = 360◦/n) decreases from 120◦, 90◦, 72◦, 60◦ to 51.4◦, respectively. However, although increasing the
ring size lengthens the radial distance of the external phenyls from the centre of the molecule, this is
more than compensated for by the diminishing value of ω. Overall, the net result of increasing the
ring size is to place the phenyls in a more restricted locale [24].

Cyclopentadienones are versatile precursors to organic and organometallic derivatives
of five, six and seven-membered rings, as exemplified in Scheme 5. Typically, reactions of
tetraarylcyclopentadienones and alkynes provide convenient routes to multifunctionalised arenes and
their organometallic derivatives, in particular those bearing several sterically demanding substituents.
The syntheses and molecular dynamics of such systems have been reviewed [24].
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Ions or molecules of the type [CnArn]x± continue to attract attention, not only for their
relevance to the Hückel 4n + 2 rule, but also as ligands bonded to organometallic fragments.
Thus, [C3Ph3

+], [C4Ph4
2−], [C5Ph5

−], C6Ph6 and [C7Ph7
+] would be expected to exist as stable

species. Indeed, those where n ranges from 2 to 6, have all been characterised crystallographically as
free ligands or as metal complexes. However, the structure of the [C7Ph7

+] motif remained a challenge
for almost four decades after its initial preparation.

3.2. Syntheses and Structures of Heptaarylcycloheptatrienes

The first synthesis of heptaphenylcycloheptatriene, 6, was reported by Battiste in
1961 from the Diels-Alder cycloaddition of 1,2,3-triphenylcyclopropene to tetracyclone
(tetraphenyl-cyclopentadienone) in refluxing xylene [25,26]. Reaction with bromine in CCl4 furnished
the bright red salt [C7Ph7

+]Br−. The yellow-orange tribromide, [Br3
−] and tetrafluoroborate salts were

also prepared. Subsequently, the corresponding heptaphenylcycloheptatrienyl anion, [C7Ph7
−] and the

radical [C7Ph7
•] were characterised spectroscopically [27,28]. In the former case, the 8π electron count

might have suggested a triplet ground state (analogous to 4π cyclobutadiene), but the observation
of a well-defined 1H NMR spectrum and failure to detect an EPR signal indicated a singlet structure,
implying a lowering of the seven-fold symmetry.

Heptaphenylcycloheptatriene prepared by the Battiste method, was formed directly with
elimination of carbon monoxide when triphenylcyclopropene and tetracyclone were heated in refluxing
xylene. However, when these reagents were stirred at room temperature for six days, the intermediate
ketone, 7, was obtained in 80% yield [29]. As shown in Figure 6, all three cyclopropyl phenyls
in 7 are exo and, most importantly, the single hydrogen is positioned endo [29]. This is in accord
with Battiste’s report that, in the Diels-Alder adduct of triphenylcyclopropene and cyclopentadiene,
the single hydrogen is also endo, but that assignment was based only on NMR data [30].
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Figure 6. Molecular structures of (left) the Diels-Alder adduct of tetracyclone and
triphenylcyclopropene, 7, and (right) heptaphenylcycloheptatriene, 6 [29]. Figure 6 is reprinted
with permission of the American Chemical Society.

The structure of heptaphenylcycloheptatriene also appears in Figure 6 and reveals that the
unique phenyl substituent is axial and straddles the molecular mirror plane. The molecule adopts
a boat conformation such that the fold angles between planes containing C(6)-C(7)-C(1) [plane 1],
C(1)-C(2)-C(5)-C(6) [plane 2] and C(2)-C(3)-C(4)-C(5) [plane 3] are 55◦ for [plane 1/plane 2] and 35◦

for [plane 2/plane 3]. These may be compared with the corresponding interplanar angles in C7H8,
which are 36◦ for [plane 1/plane 2] and 40◦ for [plane 2/plane 3]. Thus, the conformation of the
seven-membered boat in C7Ph7H is markedly different from that found in cycloheptatriene itself [31],
especially with respect to the greater bending of the sp3 carbon out of the C(1)-C(2)-C(5)-C(6) plane
(55◦ v 36◦).

The corresponding cycloaddition reaction of triphenylcyclopropene and
2,5-dimethyl-3,4-diphenylcyclopentadienone (which occurs as its Diels-Alder dimer, and must therefore
be cracked before use) yielded the expected cycloheptatriene C7Ph5Me2H, 8. However, the complexity
of the 1H and 13C NMR spectra, in particular the nonequivalence of the methyl groups in both
regimes, revealed that the product cannot be the anticipated symmetrical isomer 8A, shown in Figure 7.
Moreover, the singlet character of both methyl signals in the 1H spectrum eliminates 8C and leaves
8B and 8D as the only viable candidates. The identification of the product as 8B was determined by
a combination of 2D and nOe experiments [29].
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Diels-Alder adduct of triphenylcyclopropene and 2,5-dimethyl-3,4-diphenylcyclopentadienone.

Similarly, the reaction of triphenylcyclopropene and 2,5-diphenyl-3,4-di-(p-tolyl)-cyclopentadienone
proceeded with elimination of CO and furnished a mixture giving rise to seven equally intense 1H
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NMR methyl resonances, attributable to the four isomers A through D in the ratio 1:2:2:2, as shown in
Figure 8.Molecules 2020, 25, x FOR PEER REVIEW 9 of 26 
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acid, formation of crystalline red plates was observed, and the resulting data set was resolvable. In 
fact, the crystals were found to be [C7Ph7+][CF3CO2¯](CF3CO2H)2 in which the cations were arranged 
in hexagonally packed layers that sandwiched a network of hydrogen-bonded trifluoracetates and 
trifluoroacetic acid molecules [32]. Evidently, this acid-anion network stabilises the crystalline 
edifice, whereas in the earlier cases the bromides or tetrafluoroborates apparently behaved merely as 
layers of molecular ball-bearings that lacked directionality and failed to impose order on the system.  

The molecular structure of the cation, 13, and of the crystal packing, are shown as Figures 9 and 
10 and reveal that the seven-membered ring is not planar but adopts a shallow boat conformation 
such that the interplanar angles between C(6)-C(7)-C(1) [plane 1], C(1)-C(2)-C(5)-C(6) [plane 2], and 
C(2)-C(3)-C(4)-C(5) [plane 3] are 13° for [plane 1/plane 2] and 18° for [plane 2/plane 3], noticeably 
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Figure 8. The four isomers (A–D) arising from [1,5]-hydrogen shifts upon ring-opening of the
Diels-Alder adduct of triphenylcyclopropene and 2,5-diphenyl-3,4-di-(p-tolyl)cyclopentadienone.

Evidently, such molecules must arise via hydrogen migrations, but the symmetry-allowed
[1,5]-suprafacial sigmatropic shift can only occur when the migrating hydrogen is positioned axially
to facilitate the rearrangement shown in Scheme 6. Apparently, after cheletropic elimination of
CO and opening of the three-membered ring in 9, the conformation of the newly generated
heptaphenylcycloheptatriene, 10, must be sufficiently long-lived to allow rapid [1,5] suprafacial
sigmatropic shifts, as in 11, before ring flipping to the other boat conformation, 12, prevents any further
hydrogen migrations [29].
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3.3. The Heptaphenyltropylium Cation

As noted above, in 1961 Battiste prepared salts of the heptaphenyltropylium cation with
bromide, tribromide and tetrafluoroborate counterions [26]. With the aim of extending the CnPhn

series to include [C7Ph7
+], we acquired numerous X-ray data sets on crystals of the bromide and

tetrafluoroborate salts but, despite the determined efforts of a number of crystallographers in Europe
and North America, no structural data were forthcoming because of an unresolvable disorder problem.
Serendipitously, however, in an NMR tube containing C7Ph7Br in trifluoroacetic acid, formation of
crystalline red plates was observed, and the resulting data set was resolvable. In fact, the crystals
were found to be [C7Ph7

+][CF3CO2
−](CF3CO2H)2 in which the cations were arranged in hexagonally

packed layers that sandwiched a network of hydrogen-bonded trifluoracetates and trifluoroacetic acid
molecules [32]. Evidently, this acid-anion network stabilises the crystalline edifice, whereas in the
earlier cases the bromides or tetrafluoroborates apparently behaved merely as layers of molecular
ball-bearings that lacked directionality and failed to impose order on the system.
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The molecular structure of the cation, 13, and of the crystal packing, are shown as Figures 9
and 10 and reveal that the seven-membered ring is not planar but adopts a shallow boat conformation
such that the interplanar angles between C(6)-C(7)-C(1) [plane 1], C(1)-C(2)-C(5)-C(6) [plane 2],
and C(2)-C(3)-C(4)-C(5) [plane 3] are 13◦ for [plane 1/plane 2] and 18◦ for [plane 2/plane 3], noticeably
less bent than those found for the precursor C7Ph7H. The peripheral phenyls are each twisted very
markedly out of the plane containing their attached central ring carbon and neighbouring ring
atoms by 76◦–82◦ (average 80◦), and may be compared to the values for dihedral angles found
in C6Ph6 (67◦–75◦) [33,34], (η5-C5Ph5)MLn complexes (~50◦) [35–37], (η4-C4Ph4)MLn complexes
(average ~36◦) [38,39] and for the [C3Ph3

+] cation (~5◦) [40,41].
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Figure 10. View of the crystal packing of [C7Ph7
+][CF3CO2

−](CF3CO2H)2 depicting the alternating
layers of cations (grey) and anions/solvates (red/yellow).

3.4. Boron and Nitrogen Analogues of Heptaphenylcycloheptatrienes

In a closely analogous system, addition of diphenylacetylene to pentaphenylborole, 14, yielded
heptaphenyl-7-borabicyclo[2.2.1]heptadiene, 15, which, upon heating at reflux in toluene for 24 h,
formed heptaphenylborepin, 16 [42]. One can envisage this proceeding via a migration of the boron
to form the [4.1.0]bicyclo isomer, 17, that undergoes disrotatory ring opening to furnish the target
molecule (Scheme 7). The relationship with the isoelectronic heptaphenyltropylium ion is reflected in
its electronic spectrum which exhibits peaks at 412, 276 and 245 nm (405, 283 and 258 nm in C7Ph7

+).
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It would be interesting to know whether heptaphenylborepin is planar or nonplanar. However, we are
unaware of any relevant X-ray structural data.Molecules 2020, 25, x FOR PEER REVIEW 11 of 26 
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The successful elucidation of the structure of the heptaphenyltropylium ion prompted us to 
consider the introduction of a ferrocenyl substituent that might enhance the stability of the potential 
cation [C7Ph6Fc+], where Fc = (η5-C5H4)Fe(η5-C5H5). To this end, the KCN-catalysed reaction of 
benzaldehyde and formylferrocene yielded the benzoin PhC(=O)-CH(OH)Fc. It is noteworthy that 
only a single benzoin was formed; the other possible isomer, FcC(=O)-CH(OH)Ph, would require the 
intermediacy of a carbanion adjacent to the ferrocenyl fragment which, as is well known, 
preferentially stabilises cations [44]. Oxidation of the benzoin to form the corresponding benzil, and 
reaction with dibenzyl ketone, furnished the required 3-ferrocenyl-2,4,5-triphenyl- 
cyclopentadienone, 22. This versatile precursor reacts with diphenylacetylene to form 
ferrocenylpentaphenylbenzene, 23, and also with triphenylcyclopropene to generate 

Scheme 7. Synthetic route to heptaphenylborepin, C6BPh7.

By way of contrast, the reaction of tetracyclone with diphenylazirine yields initially the
2H-hexaphenylazepine, 18, that subsequently undergoes a [1,5]-hydrogen shift to form the
thermodynamically favoured 3H-hexaphenylazepine, 19. The proposed mechanism (Scheme 8) invokes
Diels-Alder addition to form the intermediate 20, in which the hydrogen is positioned endo. Loss of
CO could then either bring about ring opening directly to form 2H-hexaphenylazepine, or proceed via
the azanorcaradiene, 21, that undergoes disrotatory electrocyclic rearrangement. Formation of another
possible isomer, the 1H-azepine was not observed. In some related cases, the 1-azirine was prepared in
situ by thermolysis of the appropriate vinyl azide [43].
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3.5. Ferrocenyl-Substituted Polyaryl-Benzenes and -Cycloheptatrienes

The successful elucidation of the structure of the heptaphenyltropylium ion prompted us to
consider the introduction of a ferrocenyl substituent that might enhance the stability of the potential
cation [C7Ph6Fc+], where Fc = (η5-C5H4)Fe(η5-C5H5). To this end, the KCN-catalysed reaction of
benzaldehyde and formylferrocene yielded the benzoin PhC(=O)-CH(OH)Fc. It is noteworthy that
only a single benzoin was formed; the other possible isomer, FcC(=O)-CH(OH)Ph, would require the
intermediacy of a carbanion adjacent to the ferrocenyl fragment which, as is well known, preferentially
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stabilises cations [44]. Oxidation of the benzoin to form the corresponding benzil, and reaction
with dibenzyl ketone, furnished the required 3-ferrocenyl-2,4,5-triphenyl-cyclopentadienone, 22.
This versatile precursor reacts with diphenylacetylene to form ferrocenylpentaphenylbenzene, 23,
and also with triphenylcyclopropene to generate ferrocenylhexaphenylcycloheptatriene, 24, (Scheme 9),
both of which have been characterised by X-ray crystallography (Figure 11) [45].
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Figure 11. Molecular structures of (left) ferrocenylpentaphenylbenzene, 23, and (right)
ferrocenylhexaphenylcycloheptatriene, 24. Figure 11 is reprinted with permission of the American
Chemical Society.

A curious feature of the structure of ferrocenylpentaphenylbenzene is the orientation of the
peripheral phenyls relative to the central ring. In hexaphenylbenzene, the molecule adopts a propeller
conformation in which the phenyl substituents are all canted in the same direction with a twist angle
of ca. 67◦ [33]. However, in C6Ph5Fc the ferrocenyl ring bonded to C(1) is oriented at 51◦ to the central
ring, and the phenyls attached to C(2) through C(6) adopt dihedral angles of 64◦, 70◦, 81◦, 89◦ and 120◦

(Figure 12). The net effect is to provide a series of peripheral rings each displaced slightly more than
their immediately preceding neighbours. One is tempted to suggest that rotation of the ferrocenyl
moiety would induce a domino effect whereby all the phenyls would turn in a synchronous fashion,
but verification of such a scenario would require extensive labelling studies.
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Turning now to the structure of ferrocenylhexaphenylcycloheptatriene, 24, the seven-membered
ring adopts a boat conformation such that the fold angles between planes containing C(6)-C(7)-C(1)
[plane 1], C(1)-C(2)-C(5)-C(6) [plane 2], and C(2)-C(3)-C(4)-C(5) [plane 3] are 54◦ for [plane 1/plane 2]
and 34◦ for [plane 2/plane 3], similar to those seen in C7Ph7H. Once again, the peripheral substituents
in C7Ph6FcH are markedly twisted out of the plane defined by their attached central ring carbon and its
neighbours. These dihedral angles were found to be 56◦, 82◦, 81◦, 68◦, 55◦, 132◦ and 142◦ for positions
C(1) through C(7) [45]. At this point, we recall that in suitably labelled polyphenylcycloheptatrienes
a series of [1,5]-hydrogen shifts generated a mixture of isomers [29]. However, despite the complexity
of the 1H and 13C NMR spectra of 24, it transpired that only a single isomer was formed from the
Diels-Alder cycloaddition of triphenylcyclopropene and 3-ferrocenyl-2,4,5-triphenylcyclopentadienone.
The X-ray crystal structure revealed that the ferrocenyl substituent is sited in the least hindered position,
at C(1) adjacent to the sp3-hybrised carbon of the CHPh unit. Clearly, this isomer must have arisen by
a [1,5]-hydrogen migration after decarbonylation, but prior to inversion of the cycloheptatriene ring,
as illustrated for the C7Ph5Me2H system in Scheme 6.

As noted above, one aim of the preparation of 23 was to attempt the isolation of the potential
cation [C7Ph6Fc+]. To this end, we tried to isolate the molecules in which the single hydrogen in
C7Ph6FcH had been replaced with bromide or methoxide, but to no avail. Finally, treatment of 23 with
triethyloxonium hexachloroantimonate, a known hydride abstractor, yielded deep blue crystals that
were submitted for X-ray crystallographic analysis. Disappointingly, this revealed the product to be
[C7Ph6FcH+][SbCl6−], 25, the ferricenium salt of the starting material (Scheme 10). The structure of
the cation closely resembles that of C7Ph6FcH, with only minor changes in the ferrocenyl unit, and of
course the presence of the hexachloroantimonate counterion. It may be the case that the steric bulk
of the ferrocenyl unit hinders the approach of the triethyloxonium reagent and, instead, an electron
transfer process intervenes [45].
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with dihedral angles of 60° [46]. However, there is a disorder because the molecule exists as a 
mixture of eight conformers whereby the naphthyls can be aligned all syn, i.e., 6:0, or in a 5:1 
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Scheme 10. Attempted preparation of the [C7Ph6Fc+] cation leads instead to oxidation of the iron.

3.6. Hexa(β-naphthyl)benzene and Ferrocenyl-penta(β-naphthyl)benzene

The analogous naphthyl-substituted systems, tetra(β-naphthyl)cyclopentadienone, 26,
and 3-ferrocenyl-2,4,5-tri(β-naphthyl)cyclopentadienone, 27, have also been prepared and their
Diels-Alder reactivity exploited [46,47]. As shown in Figure 13, tetra(β-naphthyl)cyclopentadienone
and di(β-naphthyl)acetylene, 28, undergo [4 + 2] cycloaddition and, after decarbonylation,
yield hexa(β-naphthyl)benzene, 29.
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Figure 13. (left) synthetic route to hexa(β-naphthyl)benzene, and (right) molecular structures of
tetra(β-naphthyl)cyclopentadienone, 26, and di(β-naphthyl)acetylene, 28.

In hexa(β-naphthyl)benzene the six peripheral substituents are oriented in a propeller fashion
with dihedral angles of 60◦ [46]. However, there is a disorder because the molecule exists as a mixture
of eight conformers whereby the naphthyls can be aligned all syn, i.e., 6:0, or in a 5:1 arrangement, or 4:2
(1,2), (1,3) or (1,4), or 3:3 (1,2,3), (1,2,4) or (1,3,5). Assuming independent rotation of one peripheral
ring at a time, these can interconvert according to Scheme 11 [46].

In contrast, in ferrocenyl-penta(β-naphthyl)benzene, 30, (Figure 14), the orientations of the
peripheral β-naphthyl rings paralleled the behaviour of the phenyls in C6Ph5Fc whereby each ring was
rotated more than its preceding neighbour. The dihedral angles of ferrocenyl at C(1) and naphthyls
attached to C(6) through C(2) adopt dihedral angles of 134◦, 106◦, 81◦, 62◦, 65◦ and 73◦, respectively [47].



Molecules 2020, 25, 4730 15 of 26Molecules 2020, 25, x FOR PEER REVIEW 15 of 26 

 

 
Scheme 11. The eight energy-minimised rotamers of hexa(β-naphthyl)benzene, 29, showing which 
can be directly interconverted by rotation of a single peripheral ring. 

In contrast, in ferrocenyl-penta(β-naphthyl)benzene, 30, (Figure 14), the orientations of the 
peripheral β-naphthyl rings paralleled the behaviour of the phenyls in C6Ph5Fc whereby each ring 
was rotated more than its preceding neighbour. The dihedral angles of ferrocenyl at C(1) and 
naphthyls attached to C(6) through C(2) adopt dihedral angles of 134°, 106°, 81°, 62°, 65° and 73°, 
respectively [47].  

 
Figure 14. Synthesis and molecular structure of ferrocenyl-penta(β-naphthyl)benzene, 30. Figure 14 
is reprinted from the Canadian Journal of Chemistry; © Canadian Science Publishing or its licensors. 

3.7. Other Organometallic Derivatives of C6Ph6 and C7Ph7H 

Having successfully prepared the ferrocenyl derivatives 23, 24 and 30, routes to other 
organometallic complexes of these sterically hindered systems were investigated. The reaction of 
hexaphenylbenzene with chromium hexacarbonyl leads to formation of the complex 
(C6H5)5C6[C6H5(η6-Cr(CO)3)], 31, in which the metal is coordinated to a peripheral ring [48]. 

Scheme 11. The eight energy-minimised rotamers of hexa(β-naphthyl)benzene, 29, showing which can
be directly interconverted by rotation of a single peripheral ring.

1 
 

 
Figure 14. Synthesis and molecular structure of ferrocenyl-penta(β-naphthyl)benzene, 30. Figure 14 is
reprinted from the Canadian Journal of Chemistry;© Canadian Science Publishing or its licensors.

3.7. Other Organometallic Derivatives of C6Ph6 and C7Ph7H

Having successfully prepared the ferrocenyl derivatives 23, 24 and 30, routes to
other organometallic complexes of these sterically hindered systems were investigated.
The reaction of hexaphenylbenzene with chromium hexacarbonyl leads to formation of the
complex (C6H5)5C6[C6H5(η6-Cr(CO)3)], 31, in which the metal is coordinated to a peripheral
ring [48]. Likewise, as illustrated in Scheme 12, the analogous reaction with C7Ph7H yields
(C6H5)6C7H[C6H5(η6-Cr(CO)3], 32, in which the chromium is attached to the unique phenyl in
the axial position [29]. This contrasts with the situation in 7-phenylcycloheptatriene in which the metal
tripod is η6-bonded to the 7-membered ring [49].



Molecules 2020, 25, 4730 16 of 26

Molecules 2020, 25, x FOR PEER REVIEW 16 of 26 

 

Likewise, as illustrated in Scheme 12, the analogous reaction with C7Ph7H yields 
(C6H5)6C7H[C6H5(η6-Cr(CO)3], 32, in which the chromium is attached to the unique phenyl in the 
axial position [29]. This contrasts with the situation in 7-phenylcycloheptatriene in which the metal 
tripod is η6-bonded to the 7-membered ring [49].  

Ph

Ph

Ph

Ph

Ph

Ph

Ph

H

Ph
Ph

PhPh

Ph

Ph

Ph

Ph

Ph

Ph

Ph 31

H

Cr(CO)3

Ph
Ph

PhPh
Cr(CO)3

32

Ph

Ph

Cr(CO)6

Bu2O / reflux,

Cr(CO)6

Bu2O / reflux,

 
Scheme 12. Reactions of C6Ph6 and C7Ph7H with chromium hexacarbonyl. 

In the somewhat less sterically hindered system, pentaphenylbenzene (the Diels-Alder adduct 
of tetracyclone and phenylacetylene) the reaction with chromium hexacarbonyl yielded two 
π-bonded Cr(CO)3 derivatives (Figure 15): the centrally bonded isomer, 33, and the peripherally 
complexed molecule, 34, in which the metal tripod is bonded to the least hindered phenyl adjacent to 
the ring hydrogen [50]. 

 

Figure 15. Molecular structures of (C6Ph5H)Cr(CO)3; (left) tripod bonded centrally, 33; (right) tripod 
bonded to a peripheral ring in 34. 

Attempts to coordinate molybdenum or tungsten tricarbonyls to the central ring of C7Ph7H 
were unsuccessful and so a different potential route, involving reaction with the primary 
Diels-Alder ketone adduct, 7, was considered. The intent was to try to coordinate a molybdenum 
carbonyl fragment onto its the open face in the expectation that subsequent metal-assisted 
cyclopropane ring opening and loss of CO would yield a complex in which the metal was bonded to 
the central ring. However, the isolated product was instead characterised by X-ray crystallography 
as the complex, 35, in which a Mo(CO)2 moiety was η5-bonded to a 1-hydroxy-2,3,4,5- 
tetraphenylcyclopentadienyl ligand and also η3-linked to a triphenyl allyl fragment (Scheme 13). 
Apparently, the ketone underwent a retro Diels-Alder process and suffered opening of the 
3-membered ring [29]. Greater success was achieved by treatment of C7Ph7Br with potassium metal 
to form the deep blue anion [C7Ph7¯], 36, that reacted with chlorotrimethylstannane or 
chlorodimethylsilane to form yellow σ-bonded complexes, as in 37 (Scheme 14). 

Scheme 12. Reactions of C6Ph6 and C7Ph7H with chromium hexacarbonyl.

In the somewhat less sterically hindered system, pentaphenylbenzene (the Diels-Alder adduct of
tetracyclone and phenylacetylene) the reaction with chromium hexacarbonyl yielded two π-bonded
Cr(CO)3 derivatives (Figure 15): the centrally bonded isomer, 33, and the peripherally complexed
molecule, 34, in which the metal tripod is bonded to the least hindered phenyl adjacent to the ring
hydrogen [50].
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Figure 15. Molecular structures of (C6Ph5H)Cr(CO)3; (left) tripod bonded centrally, 33; (right) tripod
bonded to a peripheral ring in 34.

Attempts to coordinate molybdenum or tungsten tricarbonyls to the central ring of C7Ph7H
were unsuccessful and so a different potential route, involving reaction with the primary Diels-Alder
ketone adduct, 7, was considered. The intent was to try to coordinate a molybdenum carbonyl
fragment onto its the open face in the expectation that subsequent metal-assisted cyclopropane ring
opening and loss of CO would yield a complex in which the metal was bonded to the central ring.
However, the isolated product was instead characterised by X-ray crystallography as the complex, 35,
in which a Mo(CO)2 moiety was η5-bonded to a 1-hydroxy-2,3,4,5-tetraphenylcyclopentadienyl ligand
and also η3-linked to a triphenyl allyl fragment (Scheme 13). Apparently, the ketone underwent a retro
Diels-Alder process and suffered opening of the 3-membered ring [29]. Greater success was achieved
by treatment of C7Ph7Br with potassium metal to form the deep blue anion [C7Ph7

−], 36, that reacted
with chlorotrimethylstannane or chlorodimethylsilane to form yellow σ-bonded complexes, as in 37
(Scheme 14).
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Scheme 15. Reactivity of triphenylcyclopropene. 
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Other per-substituted seven-membered ring systems include C7Cl8 [52], C7(CO2Me)7H [53], 
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bis(heptaphenylcycloheptatrienes) have been prepared by double Diels-Alder addition of 
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Perchlorocycloheptatriene, 40, was originally prepared by West and coworkers by 
cycloaddition of hexachlorocyclopentadiene with trichloroethylene [52]. However, this proceeds via 
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We note in passing that, although triphenylcyclopropene can be used in Diels-Alder
reactions, one should recall that when heated at reflux in xylene it dimerises to yield
3-triphenylcyclopropyl-triphenylcyclopropene, 38. Subsequent treatment with KNH2 furnishes
hexaphenylbenzene, whereas continued thermolysis leads to the ring expansion product
triphenylazulene, 39, with elimination of trans-stilbene as shown in Scheme 15 [51].
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3.8. Organometallic Derivatives of Persubstituted Cycloheptatrienes

Other per-substituted seven-membered ring systems include C7Cl8 [52], C7(CO2Me)7H [53],
C7Me7H [54] and the aforementioned heptaphenylborepin BC6Ph7 [42]. Furthermore, a number
of bis(heptaphenylcycloheptatrienes) have been prepared by double Diels-Alder addition of
triphenylcyclopropene to a series of linked bis(tetracyclone) precursors [55].

3.8.1. Octachlorocycloheptatriene, C7Cl8

Perchlorocycloheptatriene, 40, was originally prepared by West and coworkers by cycloaddition
of hexachlorocyclopentadiene with trichloroethylene [52]. However, this proceeds via a [2 + 2] rather
than a [4 + 2] cycloaddition to form the bicyclo[3.2.0]heptane, 41, which, after elimination of HCl and
reaction with AlCl3 at 150 ◦C, forms the perchlorotropylium ion, 42, that recaptures a chloride from
the heptachlorodialuminate anion (Scheme 16). The boat conformation of C7Cl8 has been determined
X-ray crystallographically (Figure 16) and revealed that the fold angles between planes containing
C(6)-C(7)-C(1) [plane 1], C(1)-C(2)-C(5)-C(6) [plane 2], and C(2)-C(3)-C(4)-C(5) [plane 3] are 52◦ for
[plane 1/plane 2] and 32◦ for [plane 2/plane 3], similar to those found in C7Ph7H. Reaction with
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a number of metal carbonyls led to formation of the dodecachlorofulvalene, 43, possibly via a metal
carbene intermediate [56].
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sodium iodide was expected to yield (η7-C7Me7)W(CO)3I, but in fact the product isolated was 
(η5-C7Me7)W(CO)3I, 45, in which the uncoordinated double bond is folded away from the complexed 
5-atom plane through 60°, as shown in Scheme 17, once again emphasising the severe steric 
hindrance engendered by the seven methyl substituents [57]. 
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3.8.2. The heptamethyltropylium Cation, [C7Me7
+]

We note that in a comprehensive study by Tamm, heptamethylcycloheptatriene C7Me7H, formed
via ring expansion of hexamethylbenzene by a carbene, rather than by a Diels-Alder reaction, and also
its corresponding cation [C7Me7

+], 44, have been prepared and fully characterised [54]. The cation
was shown to adopt a nonplanar boat conformation such that the fold angles between planes
containing C(6)-C(7)-C(1) [plane 1], C(1)-C(2)-C(5)-C(6) [plane 2], and C(2)-C(3)-C(4)-C(5) [plane 3]
were 21◦ for [plane 1/plane 2] and 30◦ for [plane 2/plane 3], noticeably larger than those seen in the
heptaphenyltropylium cation. This may be rationalised in terms of the greater steric demand of the
three-dimensional methyl groups relative to the flat phenyl substituents that can rotate markedly out
of the central plane. Reaction of the cation with (EtCN)3W(CO)3 and sodium iodide was expected to
yield (η7-C7Me7)W(CO)3I, but in fact the product isolated was (η5-C7Me7)W(CO)3I, 45, in which the
uncoordinated double bond is folded away from the complexed 5-atom plane through 60◦, as shown
in Scheme 17, once again emphasising the severe steric hindrance engendered by the seven methyl
substituents [57].
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4.1. Attempted Preparation of Fluorenyl-Pentaphenylbenzene 

In earlier work, we reported that in [C6Ph6]Cr(CO)3, 31, in which the metal carbonyl tripod is 
attached to a peripheral ring (Scheme 12), there is a substantial barrier (50 kJ mol−1) to rotation of the 
complexed phenyl substituent relative to the central ring [48]. In light of this observation, we 

Scheme 17. [C7Me7
+] reacts to form the complex (η5-C7Me7)W(CO)3I, but not (η7-C7Me7)W(CO)2I.

3.8.3. Heptacarbomethoxycycloheptatriene, C7(CO2Me)7H

In more recent work, Tomilov and coworkers reported that the cascade reaction of methyl
diazoacetate and dimethyl dibromosuccinnate in the presence of pyridine furnished the hexa- and
hepta-esters, C6(CO2Me)6 and C7(CO2Me)7H (Scheme 18). The cycloheptatriene and its potassium salt
were both characterised by X-ray diffraction. The boat conformation in C7(CO2Me)7H, 46, parallels that
seen previously seen with fold angles of 54◦ for [plane 1/plane 2] and 33◦ for [plane 2/plane 3],
compared to 55◦ and 35◦ in C7Ph7H, 52◦ and 32◦ in C7Cl8. However, in the potassium salt,
the seven-membered anionic ring flattens such that these angles change dramatically to become
29◦ and 43◦. This is indicative of partial conjugation involving five ring carbons with delocalisation of
the negative charge onto the ester oxygens [53].
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Although the hepta-ester was not preparable directly via a Diels-Alder route, reaction of
2,5-dicarbomethoxy-3,4-diphenylcyclopentadienone with 1,2-dimethyl-3-carbomethoxycyclopropene
did yield the corresponding cycloheptatriene, 47, containing two methyls, two phenyls and three
ester groups. Analogously, a number of cycloheptatrienes bearing multiple electron-withdrawing
substituents–esters, nitriles and trifluoromethyl groups, as in 48, were readily obtainable [58].
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4. Diels-Alder Cycloadditions en Route to Organometallic Molecular Brakes

4.1. Attempted Preparation of Fluorenyl-Pentaphenylbenzene

In earlier work, we reported that in [C6Ph6]Cr(CO)3, 31, in which the metal carbonyl tripod is
attached to a peripheral ring (Scheme 12), there is a substantial barrier (50 kJ mol−1) to rotation of
the complexed phenyl substituent relative to the central ring [48]. In light of this observation,
we speculated that incorporation of an organometallic moiety onto an external benzo ring of
fluorenyl-pentaphenylbenzene could then undergo a base-promoted η6 to η5 haptotropic shift, as in
49 to 50, such that the bulky metal carbonyl group would then be sited proximate to the C6Ph5 core,
thereby restricting its rotation and functioning as an organometallic molecular brake (Scheme 19).
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had isomerised to the allene, 54, which dimerised and progressed via a series of highly coloured 
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Nevertheless, we note that the blue tetracene, 52, which is electroluminescent with potential use 
in display screens, is susceptible to aerial oxidation and forms the peroxide, 55 [59,60]. Fortunately, 
the tetracene can be conveniently stored, in a thermally reversible process, as 56, its Diels-Alder 
adduct with N-methylmaleimide, whose X-ray crystal structure is shown in Figure 17 [62]. 
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Scheme 19. Proposed Diels-Alder synthesis of fluorenyl-pentaphenylbenzene with subsequent
incorporation of an organometallic moiety capable of undergoing a haptotropic shift.

To this end, we attempted to carry out the Diels-Alder addition of phenethynylfluorene, 51,
to tetracyclone. However, analysis of the products showed complete recovery of the unreacted
tetracyclone and formation of two tetracenes, 52 and 53 [59]. Further study revealed that the alkyne had
isomerised to the allene, 54, which dimerised and progressed via a series of highly coloured (yellow, red,
orange) bis(fluorenyliden)cyclobutanes before finally forming the tetracenes. Each successive product
was characterised spectroscopically and by X-ray crystallography, and the entire sequence depicted in
Scheme 20 has been described in detail [60,61].
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Nevertheless, we note that the blue tetracene, 52, which is electroluminescent with potential
use in display screens, is susceptible to aerial oxidation and forms the peroxide, 55 [59,60].
Fortunately, the tetracene can be conveniently stored, in a thermally reversible process, as 56,
its Diels-Alder adduct with N-methylmaleimide, whose X-ray crystal structure is shown in Figure 17 [62].
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4.2. Successful Route to a Molecular Brake via Addition of Benzyne to 9-(2-Indenyl)anthracene

More recently, the Diels-Alder cycloaddition of benzyne to 9-(2-indenyl)anthracene to form
9-(2-indenyl)triptycene was crucial in the successful generation of an organometallic molecular brake
(Scheme 21). In this case, the η6 to η5 haptotropic shift (57→58) of an M(CO)3 fragment (M = Cr, Mn or
Re) positioned the metal carbonyl tripod so as to block rotation of the triptycene paddlewheel [63].
X-ray data were obtained for 57 and for a neutral version of 58. This project, including many related
Diels-Alder reactions, has been fully discussed elsewhere in this journal [64].
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5. Diels-Alder Cycloadditions with Subsequent Molecular Rearrangement

As part of a study of [4 + 2] cycloadditions to 5-trimethylsilylethynyl-1,2,3,4-tetraphenyl-
cyclopentadien-5-ol, 59, this molecule was allowed to react with benzyne, tetracyanoethylene
(TCNE) and dimethyl acetylenedicarboxylate (DMAD) [65]. While benzyne yielded the anticipated
alkynyl-benzonorbornadienol, 60, the 13C NMR spectrum of the TCNE adduct exhibited resonances
at 113.0, 112.1 and 110.5 ppm, indicating the presence of more than the two nitrile environments
expected for the mirror symmetric structure, 61. Moreover, the identity of a peak at 159.4 ppm was not
immediately apparent. Fortunately, X-ray crystallography resolved these issues when the product was
revealed as the imino lactone, 62, whereby the hydroxyl moiety was added across an exo-nitrile linkage,
thus breaking the mirror symmetry and rendering the other three nitriles nonequivalent (Scheme 22).
Evidently, the reaction of TCNE with 59 proceeded via cycloaddition syn to the hydroxyl substituent,
in accord with theoretical calculations [66].

In contrast, the analogous reaction of 59 with DMAD was considerably more complicated,
and it is not clear that the identity of the resulting product, 63, would have been unequivocally
determined without recourse to X-ray crystallography. As shown in Scheme 23, one can envisage
that base-promoted bridge cleavage in the initial cycloadduct, 64, followed by intramolecular anionic
attack on the newly-formed ketonic functionality in 65, leads to the cyclopropyl intermediate, 66.
Subsequent regeneration of the ketone with concomitant ring opening completes the migration of the
alkynyl ketone moiety to give 67 which, upon protonation, yields the observed product 63 [65].
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6. Concluding Remarks

In this review, we have attempted to illustrate how the Diels-Alder reaction underpins several
projects carried out over a number of years, but not previously gathered together. These include
the complete elucidation of the mechanisms of molecular rearrangements whereby the existence of
proposed short-lived intermediates, such as isoindenes, can be verified by their interception as [4 + 2]
cycloadducts. While the reaction of alkynes with cyclopentadienones has been widely invoked for
preparation of arenes, the use of cyclopropenes for the synthesis of sterically crowded seven-membered
rings had been far less studied, and the characterisation of such molecules bearing ferrocenyl and/or
multiple naphthyl substituents is described herein.

It is also instructive to note cases where attempted Diels-Alder cycloadditions yielded unexpected
products, either through subsequent rearrangement of the initial adducts or, instead, revealed novel
chemistry involving a coreactant. This latter situation is exemplified by the serendipitous formation of
electroluminescent tetracenes when seeking a route to a molecular machine. Gratifyingly, however,
in the first demonstration of an organometallic molecular brake, a benzyne cycloaddition was crucial
to its success. Over the past 90 years, the remarkable versatility and applicability of this reaction has
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attracted the attention of generations of chemists, and we all owe a considerable debt to Otto Diels and
Kurt Alder [67].
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