Supplementary Information

Nile-red-based Fluorescence Probe for Selective Detection of Biothiols, Computational Study and Application in Cell Imaging

Xiang Rong¹, Zhong-Yong Xu¹, Jin-Wu Yan¹, Zhi-Zhong Meng¹, Bin Zhu^{2,*} and Lei Zhang^{1,*}

* Correspondence: lzhangce@scut.edu.cn (L.Z.); esbzhu@scut.edu.cn (B.Z.); Tel.: +86 (20) 3938-0678 (L.Z.)

¹ MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; shirleyrongx@163.com (X.R.); xuzhongyong--728@163.com (Z.-Y.X.); yjw@scut.edu.cn (J.-W.Y.); zzmeng@ scut.edu.cn (Z.-Z.M.)

² Analytical and Testing Center, South China University of Technology, Guangzhou 510640, PR China.

Characterization of NRSH

HRMS (ESI): Calcd. for $C_{26}H_{21}N_4O_9S^+$ [M+H]⁺ m/z 565.1029, found 565.1015; ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.15 (d, J = 2.3 Hz, 1H), 8.61 – 8.57 (m, 2H), 8.29 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 2.7 Hz, 1H), 7.62 (d, J = 9.1 Hz, 1H), 7.59 (dd, J = 8.8, 2.6 Hz, 1H), 6.88 (dd, J = 9.2, 2.7 Hz, 1H), 6.70 (d, J = 2.7 Hz, 1H), 6.33 (s, 1H), 5.76 (s, 1H), 3.52 (q, J = 7.0 Hz, 4H), 1.17 (t, J = 7.1 Hz, 6H); ¹³C NMR (151 MHz, DMSO-*d*₆) δ 180.63, 152.76, 152.10, 151.90, 149.76, 148.64, 147.21, 146.70, 137.02, 134.22, 133.14, 131.75, 131.56, 128.02, 126.84, 125.49, 125.20, 121.59, 118.31, 111.38, 104.86, 96.50, 45.06, 12.93.

Figure S1. ¹H NMR spectrum of NRSH in *d*₆-DMSO.

Figure S2. ¹³C NMR spectrum of NRSH in d_6 -DMSO.

Figure S3. HR-MS spectrum of NRSH in methanol.

Figure S4. a) Fluorescent emission of probe toward GSH; b) plot of the fluorescent intensity of 645 nm with the concentration of GSH.

Figure S5. a) Fluorescent emission of probe toward Hcy; b) plot of the fluorescent intensity of 645 nm with the concentration of Hcy.

 $\label{eq:hom} \begin{array}{ll} \mbox{Wavelength/nm} & \mbox{[HS^-]}/\mu M \\ \mbox{Figure S6. a)} \mbox{ Fluorescent emission of probe toward HS^-; b) plot of the fluorescent intensity of 645 nm \\ \mbox{with the concentration of HS^-.} \end{array}$

Figure S7. Linear relationship of fluorescence intensity at 645 nm as a function of the concentration of biothiols in DMSO-Tris/HCl buffer (10 mM, pH=7.4 2:1, v/v): a) Cys (2-10 μ M), b) GSH, c) Hcy (4-28 μ M), d) HS⁻ (2-8 μ M).

Figure S8. The fluorescence intensity changes at 645 nm of NRSH (10 μ M) along with time in the presence of a) Hcy and b) GSH.

Figure S9. The UV-vis absorption spectra (a) and the fluorescence spectra (b) of **NRSH** (10 μ M), **NR** (10 μ M) and the mixture of **NRSH** and Cys (30 μ M) in DMSO-Tris/HCl buffer (10 mM, pH=7.4 2:1, v/v). c) The MS spectra of reaction mixture of **NRSH** (10 μ M) with Cys (30 μ M) in methanol.

Figure S10. Hela cells were incubated without probe NRSH.

0 min	5 min	10 min	15 min	20 min	30 min
<u> 2010</u>	ta Santa	<u>\$0 mp</u>	50 HT	<u>50 mil</u>	<u> 1914</u> 7
0 min	5 min	10 min	15 min	20 min	30 min
20.	2) 20 H		20.00	20 <u>ш</u> л	

Figure S11. The first row: Hela cells were pretreated with NEM (10 mM) for 30 min and further incubated in the presence of **NRSH** (10 μ M), the second row: Hela cells were further incubated with Cys (100 μ M) after pretreatment with NEM (10 mM) and **NRSH** (10 μ M).

Table S1. Excitation energies and oscillator strengths for NR.

Excited State 88 -> 89	1:	Singlet-A 0.70703	1.9920 eV	622.42 nm	f=1.2064	<s**2>=0.000</s**2>
This state for o	ptimizatio	on and/or secon	nd-order corr	ection.		
Total Energy, E	E(TD-HF/	(TD-DFT) = -	-1108.37253	734		
Copying the ex	cited stat	e density for th	is state as the	e 1-particle R	hoCI densit	y.
		~				~
Excited State	2:	Singlet-A	2.8814 eV	430.30 nm	f=0.0155	<s**2>=0.000</s**2>
87 -> 89		0.69651				
Excited State	3.	Singlet-A	2 9540 eV	419 72 nm	f=0.0000	<s**2>=0 000</s**2>
85 -> 89	0.	0.69503			1 010000	2 2 0.000
85 -> 90		-0.10886				
Excited State	4:	Singlet-A	3.2707 eV	379.07 nm	f=0.0060	<s**2>=0.000</s**2>
83 -> 89		0.12562				
86 -> 89		0.67679				
E: 4- 1 C4-4-	5 .	Ci	2 5705 -11	246 47	6-0.0451	< <u></u>
Excited State $94 > 90$	5:	Singlet-A	3.5/85 eV	346.4 / nm	1=0.0451	<5***2>=0.000
84 -> 89		0.28318				
88 90		0.03104				
Excited State	6:	Singlet-A	3.8046 eV	325.88 nm	f=0.0597	<s**2>=0.000</s**2>
83 -> 89	-	-0.31113				
84 -> 89		0.57314				
88 -> 90		-0.21226				
88 -> 91		0.12342				
Excited State	7.	Sim alat A	2 9494	222.17	f_0.0026	~8**2>-0.000
Excited State $22 > 20$	/:	Singlet-A	3.8484 eV	322.1 / nm	1=0.0030	<5***2>=0.000
82 -> 89		0.69982				
Excited State	8:	Singlet-A	4.0177 eV	308.59 nm	f=0.0838	<s**2>=0.000</s**2>
83 -> 89	-	0.51897				
84 -> 89		0.27211				
86 -> 89		-0.11983				
88 -> 90		-0.19050				
88 -> 91		-0.29703				
Evolted State	0.	Simplet A	4 1110	201 52	£_0.1600	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	7.	0 21122	4 .1119 CV	501.52 mm	1-0.1090	~5**2/-0.000
05 -~ 89		0.51155				

0.59753				
-0.16297				
Singlet-A	4.2871 eV	289.20 nm	f=0.1121	<s**2>=0.000</s**2>
-0.17271				
0.13336				
0.65229				
	0.59753 -0.16297 Singlet-A -0.17271 0.13336 0.65229	0.59753 -0.16297 Singlet-A 4.2871 eV -0.17271 0.13336 0.65229	0.59753 -0.16297 Singlet-A 4.2871 eV 289.20 nm -0.17271 0.13336 0.65229	0.59753 -0.16297 Singlet-A 4.2871 eV 289.20 nm f=0.1121 -0.17271 0.13336 0.65229

 Table S2. Excitation energies and oscillator strengths for NRSH:

This state for optimization and/or second-order correction. Total Energy, $E(TD-HF/TD-DFT) = -2297.23341243$ Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 1.6982 eV 730.09 nm f=0.0000 $<$ S**2>=0.000 146 ->148 -0.70593 Excited State 3: Singlet-A 2.1382 eV 579.85 nm f=0.1073 $<$ S**2>=0.000 145 ->147 -0.68138 146 ->149 -0.17696 Excited State 4: Singlet-A 2.1446 eV 578.13 nm f=1.2459 $<$ S**2>=0.000 145 ->147 -0.17700 146 ->149 0.68383 Excited State 5: Singlet-A 2.2957 eV 540.06 nm f=0.0001 $<$ S**2>=0.000 143 ->147 -0.69226 Excited State 6: Singlet-A 2.6647 eV 465.29 nm f=0.0012 $<$ S**2>=0.000 143 ->147 -0.69226 Excited State 7: Singlet-A 2.8476 eV 435.39 nm f=0.0114 $<$ S**2>=0.000 142 ->147 -0.70250 Excited State 8: Singlet-A 2.9384 eV 421.94 nm f=0.0001 $<$ S**2>=0.000
This state for optimization and/or second-otder contection. Total Energy, $E(TD-HF/TD-DFT) = -2297.23341243$ Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 1.6982 eV 730.09 nm f=0.0000 <s**2>=0.000 146 ->148 -0.70593 Excited State 3: Singlet-A 2.1382 eV 579.85 nm f=0.1073 <s**2>=0.000 145 ->147 -0.68138 146 ->149 -0.17696 Excited State 4: Singlet-A 2.1446 eV 578.13 nm f=1.2459 <s**2>=0.000 145 ->147 -0.17700 146 ->149 0.68383 Excited State 5: Singlet-A 2.2957 eV 540.06 nm f=0.0001 <s**2>=0.000 144 ->147 -0.69226 Excited State 6: Singlet-A 2.6647 eV 465.29 nm f=0.0012 <s**2>=0.000 143 ->147 -0.69226 Excited State 7: Singlet-A 2.8476 eV 435.39 nm f=0.0114 <s**2>=0.000 142 ->147 -0.70250 Excited State 8: Singlet-A 2.9384 eV 421.94 nm f=0.0001 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2>
Total Energy, E(1D-III/1D-D11) = -2297.23341243Copying the excited state density for this state as the 1-particle RhoCI density.Excited State2:Singlet-A 1.6982 eV 730.09 nm f= 0.0000 $<$ S**2>= 0.001 146 ->148-0.705932.1382 eV 579.85 nm f= 0.1073 $<$ S**2>= 0.001 145 ->147-0.68138-0.17696Excited State4:Singlet-A 2.1382 eV 579.85 nm f= 0.1073 $<$ S**2>= 0.001 145 ->147-0.68138-0.17696Excited State4:Singlet-A 2.1446 eV 578.13 nm f= 1.2459 $<$ S**2>= 0.001 145 ->147-0.17700146 ->1490.683832.2957 eV 540.06 nm f= 0.0001 $<$ S**2>= 0.001 144 ->1470.706242.6647 eV 465.29 nm f= 0.0012 $<$ S**2>= 0.001 143 ->147-0.692262.8476 eV 435.39 nm f= 0.0114 $<$ S**2>= 0.001 Excited State7:Singlet-A 2.9384 eV 421.94 nm f= 0.0001 $<$ S**2>= 0.001 145 > 1480.702302.9384 eV 421.94 nm f= 0.0001 $<$ S**2>= 0.001
Excited State2:Singlet-A 1.6982 eV 730.09 nm $f=0.0000$ $=0.001$ Excited State3:Singlet-A 2.1382 eV 579.85 nm $f=0.1073$ $=0.001$ $145 \rightarrow 147$ -0.68138 -0.7696 2.1382 eV 579.85 nm $f=0.1073$ $=0.001$ Excited State4:Singlet-A 2.1446 eV 578.13 nm $f=1.2459$ $=0.001$ Excited State4:Singlet-A 2.1446 eV 578.13 nm $f=1.2459$ $=0.001$ Excited State5:Singlet-A 2.2957 eV 540.06 nm $f=0.0001$ $=0.001$ Excited State5:Singlet-A 2.2957 eV 540.06 nm $f=0.0012$ $=0.001$ Excited State6:Singlet-A 2.6647 eV 465.29 nm $f=0.0012$ $=0.001$ Excited State7:Singlet-A 2.8476 eV 435.39 nm $f=0.0114$ $=0.001$ Excited State8:Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.001$ Excited State8:Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.001$
Excited State $146 \rightarrow 148$ 2:Singlet-A -0.70593 1.6982 eV730.09 nmf=0.0000 $<$ S**2>=0.000Excited State $145 \rightarrow 147$ $146 \rightarrow 149$ 3:Singlet-A -0.68138 -0.17696 2.1382 eV579.85 nmf=0.1073 $<$ S**2>=0.000Excited State $145 \rightarrow 147$ $146 \rightarrow 149$ 4:Singlet-A -0.17700 0.68383 2.1446 eV578.13 nmf=1.2459 $<$ S**2>=0.000Excited State $144 \rightarrow 147$ 4:Singlet-A 0.70624 2.1446 eV578.13 nmf=1.2459 $<$ S**2>=0.000Excited State $143 \rightarrow 147$ 5:Singlet-A -0.69226 2.2957 eV540.06 nmf=0.0001 $<$ S**2>=0.000Excited State $142 \rightarrow 147$ 6:Singlet-A -0.69226 2.6647 eV465.29 nmf=0.0012 $<$ S**2>=0.000Excited State $142 \rightarrow 147$ 7:Singlet-A -0.70250 2.8476 eV435.39 nmf=0.0114 $<$ S**2>=0.000Excited State $142 \rightarrow 148$ 8:Singlet-A -0.70230 2.9384 eV421.94 nmf=0.0001 $<$ S**2>=0.000
Excited State3:Singlet-A -0.68138 146 ->1492.1382 eV579.85 nmf=0.1073 $<$ S**2>=0.004 (S**2>=0.004Excited State4:Singlet-A -0.176962.1446 eV578.13 nmf=1.2459 $<$ S**2>=0.004 (S**2>=0.004Excited State4:Singlet-A -0.17700 146 ->1492.1446 eV578.13 nmf=1.2459 $<$ S**2>=0.004Excited State5:Singlet-A -0.17700 146 ->1492.2957 eV540.06 nmf=0.0001 $<$ S**2>=0.004Excited State5:Singlet-A -0.706242.2957 eV540.06 nmf=0.0012 $<$ S**2>=0.004Excited State 143 ->1476:Singlet-A -0.692262.6647 eV465.29 nmf=0.0012 $<$ S**2>=0.004Excited State 142 ->1477:Singlet-A -0.702502.8476 eV435.39 nmf=0.0114 $<$ S**2>=0.004Excited State 145 ->1488:Singlet-A -0.702302.9384 eV421.94 nmf=0.0001 $<$ S**2>=0.004
Excited State $145 \rightarrow 147$ $146 \rightarrow 149$ Singlet-A -0.17696 2.1382 eV 579.85 nm $f=0.1073$ $<8**2>=0.004$ Excited State $145 \rightarrow 147$ $146 \rightarrow 149$ 4:Singlet-A -0.17700 $146 \rightarrow 149$ 2.1446 eV 578.13 nm $f=1.2459$ $<8**2>=0.004$ Excited State $144 \rightarrow 147$ 4:Singlet-A 0.70624 2.1446 eV 578.13 nm $f=1.2459$ $<8**2>=0.004$ Excited State $144 \rightarrow 147$ 5:Singlet-A 0.70624 2.2957 eV 540.06 nm $f=0.0001$ $<8**2>=0.004$ Excited State $143 \rightarrow 147$ 6:Singlet-A -0.69226 2.6647 eV 465.29 nm $f=0.0012$ $<8**2>=0.004$ Excited State $142 \rightarrow 147$ 7:Singlet-A -0.70250 2.8476 eV 435.39 nm $f=0.0114$ $<8**2>=0.004$ Excited State $145 \rightarrow 148$ 8:Singlet-A 0.70330 2.9384 eV 421.94 nm $f=0.0001$ $<8**2>=0.004$
$146 ->149$ -0.17696Excited State4:Singlet-A 2.1446 eV 578.13 nm $f=1.2459$ $(S^{**2})=0.000$ $145 ->147$ -0.17700 0.68383 2.1446 eV 578.13 nm $f=1.2459$ $(S^{**2})=0.000$ Excited State5:Singlet-A 2.2957 eV 540.06 nm $f=0.0001$ $(S^{**2})=0.000$ Excited State6:Singlet-A 2.6647 eV 465.29 nm $f=0.0012$ $(S^{**2})=0.000$ Excited State7:Singlet-A 2.8476 eV 435.39 nm $f=0.0114$ $(S^{**2})=0.000$ Excited State8:Singlet-A -0.70250 2.9384 eV 421.94 nm $f=0.0001$ $(S^{**2})=0.000$
Excited State $145 \rightarrow 147$ $146 \rightarrow 149$ 4:Singlet-A -0.17700 0.68383 2.1446 eV578.13 nmf=1.2459 $<8*2>=0.004$ Excited State $144 \rightarrow 147$ 5:Singlet-A 0.70624 2.2957 eV540.06 nmf=0.0001 $<8*2>=0.004$ Excited State $143 \rightarrow 147$ 6:Singlet-A -0.69226 2.6647 eV465.29 nmf=0.0012 $<8*2>=0.004$ Excited State $142 \rightarrow 147$ 7:Singlet-A -0.70250 2.8476 eV435.39 nmf=0.0114 $<8*2>=0.004$ Excited State $142 \rightarrow 147$ 8:Singlet-A -0.70250 2.9384 eV421.94 nmf=0.0001 $<8*2>=0.004$
Excited State4:Singlet-A 2.1446 eV 578.13 nm $f=1.2459$ $=0.000$ $145 \rightarrow 147$ -0.17700 0.68383 0.68383 2.2957 eV 540.06 nm $f=0.0001$ $=0.000$ $144 \rightarrow 147$ 0.70624 2.2957 eV 540.06 nm $f=0.0001$ $=0.000$ $144 \rightarrow 147$ 0.70624 2.6647 eV 465.29 nm $f=0.0012$ $=0.000$ $143 \rightarrow 147$ -0.69226 2.6647 eV 465.29 nm $f=0.0012$ $=0.000$ Excited State $7:$ Singlet-A 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ Excited State $7:$ Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$ Excited State $8:$ Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
$145 ->147$ $146 ->149$ -0.17700 0.68383 Excited State $144 ->147$ 5:Singlet-A 0.70624 2.2957 eV 540.06 nm $f=0.0001$ $=0.000$ Excited State $143 ->147$ 6:Singlet-A -0.69226 2.6647 eV 465.29 nm $f=0.0012$ $=0.000$ Excited State $142 ->147$ 7:Singlet-A -0.70250 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ Excited State $142 ->147$ 8:Singlet-A -0.70250 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
$146 ->149$ 0.68383 Excited State5:Singlet-A 2.2957 eV 540.06 nm $f=0.0001$ $=0.000$ $144 ->147$ 0.70624 2.2957 eV 540.06 nm $f=0.0012$ $=0.000$ Excited State6:Singlet-A 2.6647 eV 465.29 nm $f=0.0012$ $=0.000$ $143 ->147$ -0.69226 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ Excited State7:Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$ Excited State8:Singlet-A 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
Excited State $144 \rightarrow 147$ 5:Singlet-A 0.70624 2.2957 eV540.06 nmf=0.0001 $<$ S**2>=0.000Excited State $143 \rightarrow 147$ 6:Singlet-A -0.69226 2.6647 eV465.29 nmf=0.0012 $<$ S**2>=0.000Excited State $142 \rightarrow 147$ 7:Singlet-A -0.70250 2.8476 eV435.39 nmf=0.0114 $<$ S**2>=0.000Excited State $145 \rightarrow 148$ 8:Singlet-A -0.70230 2.9384 eV421.94 nmf=0.0001 $<$ S**2>=0.000
Excited State 5: Singlet-A 2.2937 eV 340.06 nm $1=0.0001$ $=0.001$ $144 ->147$ 0.70624 2.6647 eV 465.29 nm $f=0.0012$ $=0.001$ $143 ->147$ -0.69226 2.6647 eV 465.29 nm $f=0.0012$ $=0.001$ Excited State 7: Singlet-A 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ $142 ->147$ -0.70250 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$ $145 > 148$ 0.70230 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
$144 ->147$ 0.70624 Excited State $143 ->147$ 6:Singlet-A -0.69226 2.6647 eV 465.29 nm $f=0.0012$ $=0.000$ Excited State $142 ->147$ 7:Singlet-A -0.70250 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ Excited State $145 ->148$ 8:Singlet-A 0.70230 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
Excited State $143 ->147$ 6: -0.69226 Singlet-A -0.69226 2.6647 eV465.29 nmf=0.0012 $<$ S**2>=0.000Excited State $142 ->147$ 7: -0.70250 Singlet-A -0.70250 2.8476 eV435.39 nmf=0.0114 $<$ S**2>=0.000Excited State $145 ->148$ 8: 0.70230 Singlet-A $2.9384 eV$ 2.9384 eV421.94 nmf=0.0001 $<$ S**2>=0.000
Like StateSinglet ALike N + (10012) 10012 100012 <th< td=""></th<>
Excited State 7: Singlet-A 2.8476 eV 435.39 nm $f=0.0114$ $=0.000$ 142 ->147 -0.70250 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$ 145 >148 0.70230 2.9384 eV 421.94 nm $f=0.0001$ $=0.000$
Excited State $142 \rightarrow 147$ 7: -0.70250 Singlet-A -0.70250 2.8476 eV 435.39 nm f=0.0114 $< S^{**2} >= 0.000$ Excited State $145 \rightarrow 148$ 8: 0.70230 Singlet-A $2.9384 eV$ 2.9384 eV 421.94 nm f=0.0001 $< S^{**2} >= 0.000$
$142 \rightarrow 147$ -0.70250 Excited State8:Singlet-A2.9384 eV421.94 nmf=0.0001 $<$ S**2>=0.000 $145 \rightarrow 148$ 0.702300.70230
Excited State 8: Singlet-A 2.9384 eV 421.94 nm f= $0.0001 < S^{**2} >= 0.000$
Excited State 8: Singlet-A 2.9384 eV 421.94 nm f= $0.0001 < S^{**2} >= 0.000$
145 > 148 = 0.70220
143 -< 140 -0. / 0339
Excited State 9: Singlet-A $3.0640 \text{ eV} 404.65 \text{ nm} = 0.0000 < S^{**2} = 0.000$
144 ->148 -0.70611
Excited State 10: Singlet Λ 2 1306 eV 306 04 nm f=0.0001 <s**2>=0.000</s**2>
137 ->147 0 54177
137 -> 148 = 0.20379
138 -> 147 0 35907
138 ->148 -0.13342

Figure S12. Drawing of **NR** with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue and O-red) using the GaussView program.

Row	Symbol	Х	Y	Z
1	С	3.04012	-1.64421	-0.20742
2	С	3.51066	-0.30089	-0.04794
3	С	2.53497	0.72272	0.07397
4	С	1.19581	0.40113	0.03986
5	С	0.72274	-0.91997	-0.11333
6	С	1.69714	-1.93199	-0.23758
7	0	0.29007	1.42245	0.1503
8	С	-1.0464	1.15578	0.115
9	С	-1.47178	-0.22694	-0.02365
10	Ν	-0.61012	-1.20744	-0.13618
11	С	-1.91315	2.19923	0.21099
12	С	-3.34532	1.99612	0.18762
13	С	-3.82061	0.5849	0.0643
14	С	-2.90838	-0.48567	-0.0379
15	С	-5.19679	0.33943	0.05083
16	С	-5.67695	-0.96	-0.06189
17	С	-4.775	-2.0327	-0.16202
18	С	-3.4148	-1.7938	-0.14996
19	0	-4.14396	2.93502	0.26778
20	0	-7.00299	-1.25768	-0.08025
21	Ν	4.84252	-0.01734	-0.01191
22	С	5.34346	1.33196	0.2781
23	С	5.50301	2.20739	-0.96633
24	С	5.86871	-1.03976	-0.25467
25	Н	3.74539	-2.45796	-0.28865
26	Н	2.80685	1.76319	0.17425

Table S3. Atomic coordinates for NR.

27	Н	1.35699	-2.95536	-0.34955
28	Н	-1.54186	3.21228	0.30783
29	Н	-5.87626	1.18148	0.13041
30	Н	-5.16206	-3.04142	-0.24755
31	Н	-2.72058	-2.62107	-0.22611
32	Н	5.90288	3.18562	-0.68325
33	Н	6.1965	1.75208	-1.67877
34	Н	4.54701	2.36429	-1.47212
35	Н	5.50628	-1.74611	-1.00264
36	Н	-7.51505	-0.44015	-0.00511
37	Н	4.68606	1.81179	1.00501
38	Н	6.31057	1.21283	0.77091
39	С	6.31314	-1.77421	1.01159
40	Н	6.72347	-0.5303	-0.70462
41	Н	6.71624	-1.07499	1.74944
42	Н	7.09863	-2.49496	0.76545
43	Н	5.48366	-2.31721	1.47157
44	Н	5.48366	-2.31721	1.47157

Figure S13. Drawing of **NRSH** with atoms represented as spheres of arbitrary size (H-white, C-grey, N-blue, S-yellow and O-red) using the GaussView program.

Row	Symbol	X	Y	Ζ
1	С	6.589887	-1.119865	-0.952768
2	С	6.943041	0.091241	-0.27028
3	С	5.904111	0.794072	0.397195
4	С	4.619922	0.301998	0.372991
5	С	4.262684	-0.892132	-0.295433
6	С	5.299193	-1.584499	-0.958984
7	0	3.649043	1.015002	1.022868
8	С	2.360319	0.56917	1.024952

Table S4. Atomic coordinates for probe NRSH.

9	С	2.06057	-0.667009	0.329418
10	Ν	2.984418	-1.353363	-0.299368
11	С	1.426088	1.310752	1.680177
12	С	0.041114	0.902428	1.729816
13	С	-0.304905	-0.367714	1.023113
14	С	0.673936	-1.127543	0.348194
15	С	-1.63422	-0.803424	1.040388
16	С	-1.96999	-1.974346	0.391235
17	С	-1.018112	-2.749922	-0.274478
18	С	0.296801	-2.320659	-0.294181
19	0	-0.823948	1.556834	2.320215
20	0	-3.298177	-2.439105	0.487584
21	Ν	8.223049	0.546902	-0.260239
22	С	8.626302	1.72549	0.519753
23	С	8.469108	3.042244	-0.242192
24	С	9.295971	-0.104206	-1.026195
25	Н	7.35008	-1.695318	-1.459536
26	Н	6.084551	1.7235	0.916466
27	Н	5.047859	-2.5055	-1.472705
28	Н	1.709905	2.227522	2.182668
29	Н	-2.378044	-0.221115	1.568067
30	Н	-1.310437	-3.671868	-0.760343
31	Н	1.05022	-2.906759	-0.80384
32	Н	8.825526	3.872307	0.374775
33	Н	9.053829	3.03246	-1.1662
34	Н	7.424804	3.234983	-0.499937
35	Н	8.89682	-0.470609	-1.972755
36	Н	8.064523	1.750196	1.454731
37	Н	9.67287	1.580032	0.793843
38	С	9.995449	-1.228334	-0.260352
39	Н	10.017775	0.674572	-1.279046
40	Н	10.426074	-0.857678	0.673906
41	Н	10.807528	-1.639045	-0.867468
42	Н	9.30472	-2.040793	-0.021641
43	S	-4.353455	-2.171062	-0.741894
44	С	-4.687603	-0.391342	-0.682294
45	С	-4.085263	0.385765	-1.666545
46	С	-5.606606	0.202008	0.193366
47	С	-4.37258	1.744186	-1.76561
48	Н	-3.400926	-0.068568	-2.369231
49	С	-5.934497	1.541431	0.08596
50	С	-5.294372	2.2929	-0.890278
51	Н	-3.896153	2.353084	-2.520607
52	Н	-6.65528	1.990224	0.75429
53	0	-3.686798	-2.437067	-2.004653
54	0	-5.548799	-2.897225	-0.365178
55	Ν	-6.252654	-0.536523	1.300921
56	0	-5.529817	-1.203065	2.022659
57	0	-7.457175	-0.390131	1.435817
58	Ν	-5.621723	3.734577	-0.995611

59	0	-6.480564	4.17659	-0.245575
60	0	-5.012599	4.392926	-1.825844

probe	Analytes	Time	LOD (µM)	$\lambda_{em}(nm)$	Reference
	H_2S	< 1 min	0.022		
	Cys	> 5 min	0.034	(15	This see als
	Нсу	> 15 min	0.107	045	I his work
	GSH	> 15 min	0.114		
	GSH	10 min	0.043	650	[1]
	H_2S	10 min	0.023	656	[2]
	H ₂ S	20 min	0.27	655	[3]
	Cys	15 min	0.0198	631	[4]
	Cys	5 min	0.145	665	[4]
	H_2S	2 min	0.04	650	[5]

 $\textbf{Table S5} \ \textbf{A} \ \textbf{comparison} \ \textbf{about our probe with some reported work}$

NO ₂	Cys	< 30 min	0.09	550, 650	
	Нсу	< 30 min	0.30	550, 650	
	GSH	> 60 min	0.24	650	

References

1. Lu, J.; Song, Y.; Shi, W.; Li, X.; Ma, H. A long-wavelength fluorescent probe for imaging reduced glutathione in live cells. *Sens. Actuators, B* **2012**, *161* (1), 615-620.

2. Liu, X.D.; Fan, C.; Sun, R.; Xu, Y.J.; Ge, J.F. Nile-red and Nile-blue-based near-infrared fluorescent probes for in-cellulo imaging of hydrogen sulfide. *Anal. Bioanal. Chem.* **2014**, *406* (28), 7059-7070.

3. Tang, C.; Zheng, Q.; Zong, S.; Wang, Z.; Cui, Y. A long-wavelength-emitting fluorescent turn-on probe for imaging hydrogen sulfide in living cells. *Sens. Actuators, B* **2014**, *202*, 99-104.

4. Yang, X.Z.; Wei, X.R.; Sun, R.; Xu, Y.J.; Ge, J.F. Benzoxazine-based fluorescent probes with different auxochrome groups for cysteine detection. *Spectrochim. Acta, Part A* **2020**, *226*, 117582.

5. Lan, J.S.; Zeng, R.F.; Liu, Y.; Xiang, Y.-W.; Jiang, X.Y.; Liu, L.; Xie, S.S.; Ding, Y.; Zhang, T. A near-infrared Nile red fluorescent probe for the discrimination of biothiols by dual-channel response and its bioimaging applications in living cells and animals. *Analyst* **2019**, *144* (11), 3676-3684.