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Abstract: Ullmann-type copper-mediated arylC-O bond formation has attracted the attention of
the catalysis and organometallic communities, although the mechanism of these copper-catalyzed
coupling reactions remains a subject of debate. We have designed well-defined triazamacrocyclic-based
aryl-CuIII complexes as an ideal platform to study the C-heteroatom reductive elimination step with
all kinds of nucleophiles, and in this work we focus our efforts on the straightforward synthesis of
phenols by using H2O as nucleophile. Seven well-defined aryl-CuIII complexes featuring different
ring size and different electronic properties have been reacted with water in basic conditions to
produce final bis-phenoxo-CuII

2 complexes, all of which are characterized by XRD. Mechanistic
investigations indicate that the reaction takes place by an initial deprotonation of the NH group
coordinated to CuIII center, subsequent reductive elimination with H2O as nucleophile to form
phenoxo products, and finally air oxidation of the CuI produced to form the final bis-phenoxo-CuII

2

complexes, whose enhanced stability acts as a thermodynamic sink and pushes the reaction forward.
Furthermore, the corresponding triazamacrocyclic-CuI complexes react with O2 to undergo 1e−

oxidation to CuII and subsequent C-H activation to form aryl-CuIII species, which follow the
same fate towards bis-phenoxo-CuII

2 complexes. This work further highlights the ability of the
triazamacrocyclic-CuIII platform to undergo aryl-OH formation by reductive elimination with basic
water, and also shows the facile formation of rare bis-phenoxo-CuII

2 complexes.

Keywords: organometallic CuIII; C-O cross coupling; phenol synthesis; phenoxo-bridged CuII

complexes; aromatic hydroxylation; copper

1. Introduction

Fundamental mechanistic understanding of Ullmann-type aryl-heteroatom cross-coupling
chemistry is still scarce and difficult to obtain in actual catalytic systems, due to the elusive formation of
very reactive intermediate species [1–7]. Methodological approaches consist of extensive optimization
protocols to finally reach an effective method to obtain the desired reaction and performance [8–10],
at the expense of intrinsic mechanistic understanding. Indeed, spectroscopic monitoring of the reactions
is precluded by the use of high concentrated solutions and heterogeneous bases. It is proposed that
complex mixtures of copper-complexes are involved, and that several mechanisms can be active in
parallel. Nevertheless, one of the most accepted mechanisms involves a 2e−CuI/CuIII catalytic cycle
via the classical oxidative addition/reductive elimination steps [7,11].

A successful strategy to overcome the problem of mechanistic understanding is the design of
macrocyclic substrate scaffolds to tame the reactivity of the intermediate copper species [7,10,12].
In this manner, well-defined aryl-CuIII key intermediate species have been isolated and crystallized,
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and their reactivity in reductive elimination processes with heteroatom nucleophiles (O, N, S, Se, P)
has been widely studied [11–23]. In addition, upgrading to catalytic C-Heteroatom cross couplings
has been proved in some of them [7,11,21]. A particularly interesting type of nucleophiles are those
bearing O-heteroatoms, which streamline the synthesis of biaryl ethers and aryl-alkyl ethers [24–26],
and this copper-catalyzed reactivity has proved to be very effective [8,27]. In this regard, we reported
a detailed mechanistic investigation on the reactivity of well-defined triazamacrocyclic aryl-CuIII

species with HO-nucleophiles (HONuc = carboxylic acids, phenols and aliphatic alcohols) [26].
These reactions afforded the corresponding aryl-O-Nuc products under mild conditions, via a reductive
elimination path.

A remarkable case of C-O coupling is the synthesis of phenol (aryl-OH), since this would imply the
use of water as a nucleophile. Actually, the current synthetic methods of phenol include the classical
non-metal-catalyzed transformations, such as (a) the oxidation of aryl aldehydes or aryl ketones with
H2O2 (Dakin reaction) [28] and (b) the reaction of water with diazo-aryl compounds (Sandmeyer
reaction) [29], and the transition metal-catalyzed transformations, such as (c) Pd-catalyzed cross
coupling reactions using H2O [30,31] and (d) Cu-catalyzed cross coupling reactions using H2O [32,33],
among many others [34–36].

In this work, we study the reactivity of well-defined triazamacrocyclic aryl-CuIII species with
water to evaluate the possibility to synthesize phenol products and to understand the mechanistic
details of this coupling. The triazamacrocyclic aryl-CuIII species can be obtained via two synthetic
strategies: (1) quantitative formation via CuI oxidative addition with triazamacrocyclic aryl-X substrates
(Figure 1a) [11,16,23], or (2) via C-H activation and metalation with CuII using triazamacrocyclic aryl-H
substrates and further disproportionation to afford equimolar amounts of the desired aryl-CuIII, CuI salt
and protonated substrate (Figure 1b) [16,37]. The unreported reactivity of the well-defined aryl-CuIII

complexes with water in basic conditions is presented in this work, leading to aryl-OH coupling
species, a formal aromatic hydroxylation of arenes. The crystal structures of the final bis-phenoxo-CuII

2

complexes nicely show the effectivity of the C-O reductive elimination at CuIII and the easy oxidation
of the resulting CuI to bis-phenoxo-CuII

2 complexes as thermodynamic sink.
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Figure 1. Fundamental organometallic reaction features by triazamacrocyclic ligands (L3-X and L3-H
shown). (a) Quantitative formation of aryl-CuIII complex through oxidative addition at CuI with L3-X
(X = Cl, Br, I). (b) Equimolar formation of aryl-CuIII complex and CuI through CuII disproportionation
upon aromatic C-H activation of L3-H at CuII. (c) C-Heteroatom bond formation through reductive
elimination of HY-Nuc (Y N, O, S, Se, P) with the aryl-CuIII complex.
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2. Results and Discussion

2.1. Aryl-CuIII Complexes and Their Reactivity with Basic Water

The well-defined macrocyclic aryl-CuIII complexes (1L1–1L3) used in this work were prepared
following our reported protocols [11,16,23,24,37].

Complexes [(Lx)CuIII](X)2 (x = 1–3; X = ClO4
−, OTf−, PF6

−) dissolved in CH3CN react with
one equivalent of aqueous KOH 1M at room temperature to give colored intermediates (Figure 2,
route a). Solution acquires a red-brown (when L1 is used) or deep-violet (when L2–L3 is used) color,
which fade to obtain final green solutions. Colored intermediates take 2–3 h to totally fade to green
products. Slow diethyl ether diffusion leads to the final bis-phenoxo complexes as green crystals:
[(L1-O)2CuII

2](OTf)2 (3L1-(OTf)2) in 30% isolated yield, [(L2-O)2CuII
2](X)2 (3L2-(X)2, X = OTf, ClO4) in

65% yield and [(L3-O)2CuII
2](PF6)2 (3L3-(PF6)2) in 60% yield.
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Figure 2. Reactivity of aryl-CuIII complexes with basic water (route a) through initial deprotonation,
axial coordination of H2O, internal deprotonation of water to hydroxide and reductive elimination to
form the aryl-OH products and CuI. Subsequent air oxidation of CuI to CuII causes the formation of
the very stable bis-phenoxo-CuII

2 final complexes. On the upper part of the figure (route b), the same
colored deprotonated aryl-CuIII species can be obtained through CuI/air reaction via concomitant
C-H activation and disproportionation at CuII. These reactions are featured with triaazamacrocyclic
systems L1–L3.
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The structures are all analogous and consist of a dimetallic CuII complex showing a N3O2 distorted
trigonal bipyramidal geometry for each metal, where the two phenoxo groups are bridging and the
three amine moieties belong to the two ligands featured in the structure.

2.2. X-ray Diffraction Analysis of the Bis-Phenoxo-CuII
2 Complexes (3L1–3L3)

Crystal structure for complex [(L1-O)2CuII
2](OTf)2 (3L1-(OTf)2) was obtained, and its ORTEP

diagram is shown in Figure 3a. The molecule sits on a symmetrical center that transforms one
macrocyclic ligand into the other. Each copper metal atom has a strongly distorted trigonal bipyramidal
towards a square-planar pyramidal geometry (with a τ factor [38] of 0.56), and can be considered
a mixture of both. Copper centers share coordinative sites with both ligands. Each copper atom is
coordinated to a phenoxo O atom and an N atom from one of the macrocyclic ligands, and to the
phenoxo O atom and two N atoms from the second macrocyclic ligand. The copper metal centers
become doubly bridged by each macrocyclic ligand. The oxygen atoms of the phenoxo groups are
bridging the copper metal centers so that the axial oxygen atom from one pyramid also occupies a
position in the trigonal base of the other pyramid. The Cu2O2 core atoms lie in a plane forming a
rhomboidal arrangement (Cu-O 1.930(2) Å, 2.174(2) Å), Cu···Cu 3.085 Å and O···O 2.718 Å).

Structures of complexes [(L2-O)2CuII
2](ClO4)2·CH3CN (3L2-(ClO4)2·CH3CN) and

[(L3-O)2CuII
2](PF6)2 (3L3-(PF6)2) were also determined by X-ray diffraction (Figure 3b,c, respectively).

Both dinuclear structures 3L2 and 3L3 bear the same ligand-donor set N3O2 per Cu atom and copper
metal centers become doubly bridged by each macrocyclic ligand, as the previously described complex
3L1. Each copper metal atom in complexes 3L2 and 3L3 has a strongly distorted trigonal bipyramidal
towards a square-planar pyramidal geometry (with a τ factor of 0.61 for 3L2 and 0.62 for 3L3), featuring
the same macrocyclic ligand size (14-membered). The oxygen atoms of the phenoxo groups in
complex 3L2 are bridging the copper metal centers so that the axial oxygen atom from one pyramid
also occupies a position in the trigonal base of the other pyramid. The Cu2O2 core atoms lie in a
plane forming a rhomboidal arrangement (Cu-O 1.925(1) Å, 2.128(2) Å, Cu···Cu 3.132 Å and O···O
2.581 Å). A rhomboidal arrangement of the Cu2O2 core is also found for complex 3L3 (Cu-O 1.930(3) Å,
2.122(3) Å, Cu···Cu 3.103 Å and O···O 2.613 Å).

These structures are very rare, and to our knowledge there is only one precedent in the literature,
reported in 2002 [39], where a small (12-membered) triazamacrocycle (L4-H, m = 2, n = 2, R1 = H)
already showed the ability to form a bis-phenoxo-CuII

2 compound through route b (Figure 2), but no
aryl-CuIII was detected, probably due to its small size and its inability to accommodate aryl-CuIII

intermediate species. Contrary to the structures reported in this work, the smaller macrocycle favored
a more square-planar geometry for each copper center (with a τ factor of 0.21).

The comparison of crystal structures of these complexes shows the same type of N3O2 coordination
sphere for each Cu atom, although geometry environment for copper is directly related to conformational
constraints imposed by ligand backbone. Thus, the trend found shows that the smaller size
of the macrocycle favors square-pyramidal geometry (12-membered L4, τ factor of 0.21) [39],
whereas 13-membered L1 afforded a τ factor of 0.56, and 14-membered macrocyclic rings (L2–L3)
showed τ values in the range of 0.60–0.67.
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2.3. Mechanistic Investigation on the Aromatic Hydroxylation Reaction

In order to gain more mechanistic insight of the C-O coupling by reaction of aryl-CuIII with
water under basic conditions, the synthetic conditions have been optimized for the synthesis
[(L2-O)2CuII

2](ClO4)2 (3L2-(ClO4)2. In principle, any aqueous base reagent instead of KOH 1 M
can be used to achieve the final product, as shown in Table 1. Interestingly, other O-containing reagents
such as H2O2 are also able to perform the hydroxylation reaction. However, the addition of H2O2 3%
in water did not cause any change to copper(III) until the base Et3N was injected into the solution
(see entries 6–7 in Table 1). From these series of reactions, it may be concluded that the addition of
water or H2O2 does not affect the stability of the aryl-CuIII, and only the presence of a base triggers the
reaction to bis-phenoxo complex formation through a colored intermediate. The presence of O2 in
the solution in entry 5 was tested to check if it had any influence in reaction time-scale or final yield.
No quenching of violet intermediate was found but differences in final yield were noticeable: 20%
yield for reaction (entry 5) and 53% for entry 3. When using the hydrogen peroxide activated with
DABCO (entries 8–9), we noticed that product 3L2 was obtained in substantially better yield (40%,
entry 9) when 0.5 equivalents of the DABCO.2H2O2 adduct were used.

Table 1. Different reactivity behavior of [(L2)CuIII](OTf)2 (1L2) in front of different bases and water
content to finally obtain 3L2. Typical experiment conditions: CH3CN, [CuIII] = 5–20 mM, N2 atmosphere
(unless change specified), R.T. Traces of water are always present.

Entry Reagents Reaction Time (min) Isolated Yield of 3L2 (%)

1 KOH (1 eq.), H2O (54 eq.) 60 min 65%
2 KOH (2 eq.), H2O (108 eq.) 25 min 8%
3 Proton Sponge (1 eq.), H2O (7 eq.) 180 min 53%
4 Proton Sponge (1 eq.) 60 min 0%
5 Proton Sponge (1 eq.), O2 (excess) 240 min 20%
6 H2O2 (3% in H2O) (1 eq.), H2O (52 eq.), Et3N (1 eq.) 10 min 31%
7 H2O2 (3% in H2O) (1 eq.), H2O (52 eq.) 60 min 0%
8 DABCO.2H2O2 (2 eq.) 45 min 15%
9 DABCO.2H2O2 (0.5 eq.) 40 min 40%

The colored intermediate was characterized by UV-vis and corresponded to the deprotonated
aryl-CuIII species for L1–L3 systems (Figure 4), analogously to the reported case of deprotonated-1L2

complex (depro-1L2) [40]. In addition, weak axial coordination of a water molecule to the CuIII

center is proposed as a necessary species towards C-O reductive elimination. The same reactivity
behavior is found for complex [(L3)CuIII]2+, whereas significant differences are shown by complex
[(L1)CuIII]2+. For the latter, stability of red-brown intermediate depro-1L1 is much higher than for
depro-1L2, depro-1L3, and reaction is not finished in less than 24 h upon KOH addition. In line with
the enhanced stability, a significantly lower yield (30%) for the corresponding bis-phenoxo complex
[(L1-O)2CuII

2]2+ (3L1) was found.

2.4. Aromatic Hydroxylation via Arene C-H Activation with CuI/O2

The study of dioxygen activation by the CuI complexes synthesized with ligands L1–L3

demonstrated another mechanistic twist regarding formal aromatic C-H hydroxylations. Bubbling O2

to [(L1-H)CuI](OTf) (2L1-H), [(L2-H)CuI](OTf) (2L2-H), and [(L3-H)CuI](OTf) (2L3-H) at room temperature
in CH3CN caused the formation of intense colored intermediates resembling intermediates depro-1L1,
depro-1L2, and depro-1L3, respectively (Figure 2, route b). Besides, decomposition of colored
intermediates gives the same bis-phenoxo copper(II) complexes [(L1-O)2CuII

2]2+ (3L1), [(L2-O)2CuII
2]2+

(3L2) and [(L3-O)2CuII
2]2+ (3L3) as final products, although in significantly lower yields (25% isolated

yield for 3L2). The UV-vis monitoring of these reactions confirmed that hydroxylation was occurring
through the same aryl-CuIII intermediates, featuring the same LMCT bands in each case, albeit with
lower intensities. In addition, 1H NMR monitoring of the O2 bubbling to [(L1-H)CuI](OTf) (2L1-H) in
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CD3CN clearly shows the formation of peaks corresponding to depro-1L1 after 30 min (see Figure S1 in
the Supplementary Materials), reaching full formation above 10 h [11,40]. The ESI-MS spectrum for
violet intermediate obtained by reacting [(L3-H)CuI]+ with O2 shows a characteristic peak at m/z = 294
corresponding to the fragment depro-1L3 (see Figure S2). Under these conditions, decomposition of
the intermediate towards 3L2 formation was slow and was detected after 40 h.
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Figure 4. Electronic spectra of deprotonated aryl-CuIII intermediates (depro-1L1, depro-1L2, depro-1L3)
UV-Vis plots for aryl-CuIII complexes ([(Lx)CuIII]2+, x = 1–3) (1L1–1L3) are also shown in the plot.

The lower yield obtained is related to the fact that the reaction of [(L2-H)CuI](OTf) (2L2-H) with
O2 first undergoes an oxidation to CuII, which enables it to then undergo a C-H activation through a
disproportionation reaction (50% aryl-CuIII and 50% CuI). Therefore, route b converges with route
a (Figure 2) and the obtaining of the low 25% yield for 3L2 through route b, compared to the 65%
obtained through route a (Figure 2), mainly stems from the disproportionation pathway.

3. Materials and Methods

All reagents and solvents were purchased from Sigma Aldrich (Saint Louis, MO, USA) and used
without further purification. CuIII complexes [(Lx)CuIII](X)2 (x = 1–3; X = ClO4

−, OTf−, PF6
−) [16,23],

and CuI complexes [(L1-H)CuI](OTf) (2L1-H), [(L2-H)CuI](OTf) (2L2-H) and [(L3-H)CuI](OTf) (2L3-H)
were synthesized following reported procedures [41]. NMR data concerning product identity were
collected with a Bruker 400 AVANCE (Billerica, MA, USA). Preparation and handling of air-sensitive
CuI complexes were carried out in a N2 drybox. High resolution mass spectra (HRMS) were recorded on
a Bruker MicrOTOF-Q IITM instrument (Billerica, MA, US) using ESI-MS at Serveis Tècnics University
of Girona.

Warning: Although we have experienced no problems with the compounds reported herein,
perchlorate salts are potentially explosive, and should only be handled in small quantities and never
heated in a solid state.

[(L1-O)2CuII
2](OTf)2 (3L1-(OTf)2): the synthesis was carried out under N2. Into a solution of

complex 1L1-(OTf)2 (0.05 g, 8.7 × 10−5 mol) in CH3CN (1 mL) was injected a KOH(aq) 1M (87 µL,
8.7 × 10−5 mol). Reaction was stirred until the red-brown intermediate formed faded to green (48 h).
Diffusion of diethyl ether and overnight storing at −25 ◦C allowed formation of green crystals in 30%
isolated yield (0.012 g). ESI-MS (CH3CN): 3L1743 [-(OTf)]+, 297 [(L1-O)CuII]+; UV/Vis (CH3CN): λmax

(ε)= 394 (760), 699 (615); IR (KBr pellet, cm−1): 3258 (m), 3121 (m), 2924 (w), 1591 (w), 1456 (m), 1285 (s),
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1252 (s), 1165 (m), 1031 (m), 640 (m); elemental analysis calcd for C26H40N6O2Cu2(C2F6S2O6)·0.5CH3CN
(%): C 38.1, H 4.60, N 10.00, S 7.00; found: C 37.95, H 4.82, N 10.22, S 6.75.

Complex 3L1-(OTf)2 can also be obtained by O2 bubbling of the CuI complex [(L1-H)CuI](OTf)
(2L1-H) (see synthesis of complex 3L2).

[(L2-O)2CuII
2](OTf)2 (3L2-(OTf)2): Synthesis was carried out under N2. Into a solution of complex

1L2-(OTf)2 (0.03 g, 4.9 × 10−5 mol) in CH3CN (2 mL) was injected a KOH(aq) 1M (50 µL, 5.0 × 10−5 mol).
Reaction was stirred until the violet intermediate formed faded to green (2–3 h). Slow diffusion of
diethyl ether allowed the formation of green crystals in 65% isolated yield (0.011 g). ESI-MS (CH3CN):
799 [3L2-(OTf)]+, 325 [(L2-O)CuII]+; UV/Vis (CH3CN): λmax (ε) = 411 nm (1000), 765 nm (610); IR (KBr
pellet, cm−1): 3258 (m), 3210 (m), 2931 (m), 2869 (m), 1592 (m), 1463 (s), 1282 (s), 1236 (s), 1162 (s),
1022 (s), 636 (s); elemental analysis calcd for C30H48N6O2Cu2(C2F6S2O6) (%): C 40.50, H 5.10, N 8.80,
S 6.70; found: C 40.10, H 5.40, N 8.40, S 6.40.

Perchlorate complex 3L2-(ClO4)2 is synthesized in a similar manner, and X-ray quality crystals of
3L2-(ClO4)2·CH3CN were obtained by recrystallization in CH3CN/ether.

Complex 3L2-(OTf)2 can also be obtained by O2 bubbling of the CuI complex [(L2-H)CuI](OTf)
(2L2-H). Colorless complex [(L2-H)CuI](OTf) (0.025 g, 5.4 × 10−5 mol) in 2 mL CH3CN/CH2Cl2 1/3
under N2 is treated with 1.75 mL of dioxygen O2 (8.4 × 10−5 mol). Solution changes to violet slowly
and after 3 h stirring fades to green. Slow diffusion of diethyl ether allowed isolation of bis-phenoxo
complex 3L2-(OTf)2 in 25% isolated yield.

[(L3-O)2CuII
2](OTf)2 (3L3-(OTf)2): synthesis was carried out under N2. Into a solution of complex

1L3-(OTf)2 (0.03 g, 5.05 × 10−5 mol) in CH3CN (2 mL) was injected a KOH(aq) 1M (50µL, 5.0 × 10−5 mol).
Reaction was stirred until the violet intermediate formed faded to green (1–2 h). Slow diffusion of
diethyl ether allowed the formation of green crystals in 60% isolated yield (0.014 g). ESI-MS (CH3CN):
771 [3L3-(OTf)]+, 311 [(L3-O)CuII]+; UV/Vis (CH3CN): λmax (ε) = 436 nm (830), 756 nm (485); IR (KBr
pellet, cm−1): 3336 (m), 3294 (m), 1591 (m), 1465 (m), 1280 (s), 636 (s).

Complex 3L3 can also be obtained from oxygenation of the corresponding CuI complex: colorless
solution of complex [(L3-H)CuI](PF6) (2L1-H) (0.025 g, 5.57 × 10−5 mol) in 2 mL CH3CN/CH2Cl2 1/3
under Ar is treated with excess O2 at room temperature. Solution changes to violet and slowly and after
3 h stirring fades to green. Slow diffusion of diethyl ether allowed isolation of bis-phenoxo complex
3L3-(PF6)2 in 20% isolated yield. ESI-MS (CH3CN): 767 [3L3-(PF6)]+, 311 [(L3-O)CuII]+. Elemental
analysis calcd for C28H44N6O2Cu2P2F6 (%): C 36.80, H 4.90, N 9.20; found: C 37.09, H 5.11, N 9.10.

X-ray diffraction analysis. The measurement was carried out on a BRUKER SMART APEX
CCD diffractometer (Billerica, MA, US) using graphite-monochromated Mo Kα radiation (λ =

0.71073 Å). CCDC 2027155 (3L1-(OTf)2), 2027156 (3L2-(ClO4)2·CH3CN), 2027157 (3L3-(PF6)2) contain
the supplementary crystallographic data for this paper.

4. Conclusions

In summary, seven well-defined aryl-CuIII complexes featuring different ring sizes and different
electronic properties have been reacted with water in basic conditions to produce intriguing
bis-phenoxo-CuII

2 complexes (3L1–3L6), all of which are characterized by XRD. A structural trend
correlating the size of the macrocycle and the geometry of each metal center is found, where the smaller
12-membered macrocycle ring (L4) favors square-pyramidal geometry, whereas 13-membered (L1) and
14-membered macrocyclic rings (L2–L3) favored trigonal bipyramidal geometries [39]. Mechanistic
investigations indicate that the reaction takes place by an initial deprotonation of the NH group
coordinated to CuIII center, subsequent reductive elimination with H2O as nucleophile to form phenoxo
products, and finally air oxidation of the CuI produced to form the final bis-phenoxo-CuII

2 complexes,
whose enhanced stability acts as a thermodynamic sink and pushes the reaction forward. Furthermore,
the corresponding [(Lx-H)CuI](OTf) (2Lx-H) complexes react with O2 to undergo 1e− oxidation to CuII

and subsequent C-H activation via disproportionation to form aryl-CuIII species, which then undergo
the same reaction path towards bis-phenoxo-CuII

2 complexes. Facile formation of bis-phenoxo-CuII
2
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complexes through aryl-CuIII reductive elimination with basic water is shown, and also the formal
aromatic hydroxylation of arene substrates (Lx-H) via aryl-CuIII is mechanistically unraveled.

Supplementary Materials: The following are available online, Figures S1 and S2. Figure S1: 1H NMR changes in
[(L1-H)CuI](OTf) (2L1-H) complex spectrum after O2 bubbling, Figure S2: ESI-MS of complex depro-1L1.
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