- 1 Article
- 2 Loseolamycins: a group of new bioactive
- 3 alkylresorcinols produced after heterologous
- 4 expression of a type III PKS from *Micromonospora*
- 5 endolithica
- Constanze Lasch¹, Nils Gummerlich¹, Maksym Myronovskyi¹, Anja Palusczak¹, Josef Zapp²
 and Andriy Luzhetskyy^{1,3,*}
- 8 ¹ Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany;
 9 constanze.lasch@uni-saarland.de (C.L.), nils.gummerlich@gmx.de (N.G.);
 10 maksym.myronovskyi@uni-saarland.de (M.M.); anja.palusczak@uni-saarland.de (A.P.);
- 11 a.luzhetskyy@mx.uni-saarland.de (A.L.)
- Pharmazeutische Biologie, Universität des Saarlandes, Saarbrücken, Germany; j.zapp@mx.uni-saarland.de
 (J.Z.)
- 14 ³ Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
- 15 * Correspondence: a.luzhetskyy@mx.uni-saarland.de; +49 681 302 70200 (A.L.)
- 16 Received: date; Accepted: date; Published: date
- 17

19 Figure S1. UV/Vis spectrum of loseolamycin A1.

Figure S2. Mass spectra of loseolamycins using positive ionization mode. A - compound 1, B - compound 2, C - compound
 3, D - compound 4, E - compound 5, F - compound 6.

Figure S3. Purity of the isolated loseolamycin derivatives A1 (compound 1), A2 (compound 2), B1 (compound 3), B2
(compound 4), C (compound 5) and D (compound 6) after two chromatographic steps. Base Peak Chromatograms (BPC)
are shown.

29 Figure S4. ¹H-NMR spectrum (500 MHz, DMSO-d6) of loseolamycin A1, complete spectrum.

38 *Figure S7. HMBC-spectrum (500 MHz; 125 MHz, DMSO-d6) of loseolamycin A1, complete spectrum.*

43 Figure S9. ¹H-NMR spectrum (500 MHz, DMSO-d6) of loseolamycin A2, complete spectrum.

46 Figure S10. ¹H-NMR spectrum (500 MHz, CDCl₃) of loseolamycin A2, zoomed from 1.0 – 4.5 ppm.

1.0

0.5

0.0

ppm

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 47 48 Figure S11. ${}^{1}H$ - ${}^{1}H$ -COSY (500 MHz, CDCl₃) of loseolamycin A2, zoomed from 1.0 - 4.5 ppm.

- 51 Figure S12. Proposed structures of loseolamycins B1 (compound 3), B2 (compound 4), C (compound 5) and D (compound
- 52 6) based on MS/MS experiments.

54
55 Figure S13. Antibacterial and herbicidal activity. (a) Loseolamycin A2 on a filter disc inhibits the growth of B. subtilis. The
56 sample's solvent methanol was used as negative control (- ctrl) and shows no inhibition zone. (b) A mixture of loseolamycin

57 derivatives inhibits germination of the weed Agrostis stolonifera. The phytotoxic effect was reproduced once and is

58 concentration dependent. Methanol in plant medium was used as negative control (- ctrl) and shows no inhibition of seed

- 59 germination.
- 60
- 61

62

63 Table S1. Organisms, BACs, plasmids and primer used in this work.

Material	Purpose					
A. Organisms						
Micromonospora endolithica LU17765	originating strain of type III PKS [BASF]					
Streptomyces albus Del14	optimized heterologous host [1]					
Escherichia coli GB05 RedCC	cloning host [Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS)]					
Escherichia coli ET12567 pUB307	alternate host intergeneric conjugation [2]					
Escherichia coli GB 2005	bioactivity test					
Pseudomonas putida KT2440	bioactivity test					
Bacillus subtilis ATCC 6633	bioactivity test					
Agrostis stolonifera	bioactivity test					
B. BACs						
I7 [IG652BAC1-2]	heterologous expression of type III PKS [GenBank: MT904273]					
I7act	heterologous expression of promoter activated type III PKS					
C. Plasmids						
pUC19	promoter TS61 / ampicillin resistance marker					
D. PCR primer						
20180710_02_fw [I7act]	TGAATCAGATTTGCGAGTCCCGCAGTCGCGAACGGACCGGACTCGTTGGTCGT					
	CAGGTGGCACTTTTCG					
20180710_02_rev [I7act]	CACCGGCACGCCCATGTCCCCCACCTCTCGTCCCCGATCCCCCACGCTTCGCGG					
	ATATCCTACTATGCCGAGGTATAATGTAGCCAGCGTGTTACCAATGCTTAATCA					
	GTG					

64

65

66 REFERENCES

67	[1]	M. Myrono	vsky	i, B. Rosenl	kränzer, S. N	Vadmid, P	. Pujic, I	P. Nori	mand	l, A. Lu	zhetskyy,
68		Generation	of a	cluster-free	Streptomyces	albus cha	ssis straiı	ns for i	mpro	oved het	erologous
69		expression	of	secondary	metabolite	clusters,	Metab.	Eng.	49	(2018)	316–324.
70		https://doi.o	rg/1().1016/j.ymbe	en.2018.09.004	4.					

- F. Flett, V. Mersinias, C.P. Smith, High efficiency intergeneric conjugal transfer of plasmid
 DNA from Escherichia coli to methyl DNA-restricting streptomycetes, FEMS Microbiol. Lett.
 155 (2006) 223–229. https://doi.org/10.1111/j.1574-6968.1997.tb13882.x.
- 74