Biodegradation of dental care antimicrobial agents chlorhexidine and octenidine by ligninolytic fungi

Lucie Linhartová ^{1,2}, Klára Michalíková ^{1,2}, Kamila Šrédlová ^{1,2} and Tomáš Cajthaml ^{1,2,*}

- ¹ Laboratory of environmental biotechnology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; lucie.linhartova@biomed.cas.cz (L.L.); klara.michalikova@biomed.cas.cz (K.M.); kamila.sredlova@biomed.cas.cz (K.Š.)
- ² Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, CZ-12801 Prague 2, Czech Republic
- * Correspondence: cajthaml@biomed.cas.cz

The list of supporting information:

Table S1: Activity of manganese-dependent peroxidase (MnP) from *I. lacteus* and laccase (Lac) from *P. ostreatus* during *in vivo* degradation of octenidine (OCT) and chlorhexidine (CHX).

Table S2: Activity of manganese-dependent peroxidase (MnP) from *I. lacteus* and laccase (Lac) from *P. ostreatus* during *in vitro* degradation of octenidine (OCT) and chlorhexidine (CHX).

Figure S1: Product ion spectra and suggested fragments of (a) m/z 515.2 [M+H]⁺ and (b) m/z 258.2 [M+2H]²⁺.

Figure S2: (a) mass spectrum of the peak with $R_t = 5.9 \text{ min}$, m/z 439.4 [M+H]⁺ (b) product ion spectra and suggested fragments of m/z 439.4 [M+H]⁺.

Figure S3: Product ion spectra and suggested fragments of (a) m/z 567.5 [M+H]⁺ and (b) m/z 284.3 [M+2H]²⁺.

Figure S4: (a) mass spectrum of the peak with $R_t = 7.1 \text{ min}$, $m/z 283.2 [M+H]^+$ (b) product ion spectra and suggested fragments of $m/z 565.5 [M+H]^+$.

Figure S5: Product ion spectra and suggested fragments of (a) m/z 565.5 [M+H]⁺ and (b) m/z 283.3 [M+2H]²⁺.

Degradation	ОСТ		CHX	
Time	MnP (U/l)	Lac (U/l)	MnP (U/l)	Lac (U/l)
0 d	3.6 ± 0.4	31.5 ± 0.5	4.6 ± 0.5	33 ± 4
3 d	3.0 ± 0.4	17.2 ± 0.5	6.2 ± 0.5	15 ± 3
7 d	1.5 ± 0.5	14.1 ± 0.1	5.7 ± 0.3	14.1 ± 0.7
14 d	2.5 ± 0.9	10.8 ± 0.1	6.3 ± 0.5	9.1 ± 0.4
21 d	2.5 ± 0.5	1.8 ± 0	4 ± 1	5.1 ± 0.1

Table S1. Activity of manganese-dependent peroxidase (MnP) from *I. lacteus* and laccase (Lac) from

 P. ostreatus during *in vivo* degradation of octenidine (OCT) and chlorhexidine (CHX).

Data are means \pm SD (n=3).

Table S2. Activity of manganese-dependent peroxidase (MnP) from *I. lacteus* and laccase (Lac) from

 P. ostreatus during *in vitro* degradation of octenidine (OCT) and chlorhexidine (CHX).

Degradation	ОСТ		СНХ	
Time	MnP (U/l)	Lac (U/l)	MnP (U/l)	Lac (U/l)
0 h	60 ± 1	120 ± 2	60 ± 2	120 ± 7
2 h	58 ± 2	119 ± 3	59 ± 4	118 ± 5
4 h	57 ± 2	118 ± 8	57 ± 5	116 ± 5
8 h	58 ± 2	105 ± 12	57 ± 3	110 ± 8
24 h	58 ± 8	79 ± 1	56 ± 5	86 ± 7
48 h	52 ± 4	55 ± 2	54 ± 3	62 ± 3
96 h	30 ± 5	47 ± 1	32 ± 7	42 ± 5
192 h	17 ± 2	33 ± 0	21 ± 4	31 ± 4

Data are means ± SD (n=3).

Figure S1: Product ion spectra and suggested fragments of (a) m/z 515.2 [M+H]⁺ and (b) m/z 258.2 [M+2H]²⁺.

Figure S2: (a) mass spectrum of the peak with $R_t = 5.9 \text{ min}$, $m/z 439.4 [M+H]^+$ (b) product ion spectra and suggested fragments of $m/z 439.4 [M+H]^+$.

Figure S3: Product ion spectra and suggested fragments of (a) m/z 567.5 [M+H]⁺ and (b) m/z 284.3 [M+2H]²⁺.

Figure S4: (a) mass spectrum of the peak with $R_t = 7.1 \text{ min}$, $m/z 283.2 [M+H]^+$ (b) product ion spectra and suggested fragments of $m/z 565.5 [M+H]^+$.

Figure S5: Product ion spectra and suggested fragments of (a) m/z 565.5 [M+H]⁺ and (b) m/z 283.3 [M+2H]²⁺.