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Abstract: The aim of this study was to fabricate edible gelatin enzymic digest (GED) based gel particles
that can stabilize oil-in-water (O/W) microemulsions. The gel particles were generated by covalent
crosslinking, with genipin, the individual protein molecules within tannic acid-induced gelatin
hydrolysate (GED-TA) particles. The ability of the genipin-treated GED-TA (GP-GED-TA) to stabilize
emulsions was evaluated by Turbiscan analysis and droplet-size changes. For comparison, gelatin
hydrolysate (GE) and tannic acid-induced gelatin hydrolysate particles (GED-TA) were used as controls.
The mean diameters of GED, GED-TA, and GP-GED-TA particles were 0.68 ± 0.1 nm, 66.2 ± 8.4 nm,
and 66.9 ± 7.2 nm, respectively. Nanomechanic analysis using atomic force microscopy(AFM) indicated
the average Young’s modulu of the GP-GED-TA particles was 760.8 ± 112.0 Mpa, indicating the
GP-GED-TA were soft particles. The Turbiscan stability indexes (lower values indicate a more stable
emulsion) of the emulsions stabilized with GED, GED-TA, and GP-GED-TA, after storage for three days,
were 28.6±1.5, 19.3±4.8, and 4.4±1.3, respectively. After one, or 60 days of storage, the volume-weighted
mean diameters (D[4,3]) of oil droplets stabilized by GP-GED-TA were 1.19 ± 0.11 µm and 1.18 ± 0.1 µm,
respectively. The D[4,3] of oil droplets stabilized by GED-TA, however, increased from 108.3 ± 5.1 µm to
164.3 ± 19.1 µm during the storage. Overall, the GP-GED-TA gel particles have considerable potential
for stabilization of O/W emulsions in food products.
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1. Introduction

Oil-in-water (O/W) emulsions are systems consisting of oil phase dispersed in aqueous phase [1].
They are used in many food products, such as salad dressings and mayonnaise [2,3]. Conventionally, O/W
emulsions are prepared and stabilized by surfactants, but recent reports have focused on O/W Pickering
emulsions, which are stabilized by nanoparticles [4–6]. Particles effectively inhibit the flocculation or
coalescence of oil droplets in emulsions, by surrounding the oil droplets and keeping them apart [7,8].
In addition, the adsorption energy of a particle at the oil–water interface is much higher than its thermal
energy. Therefore, particles are irreversibly adsorbed at the oil–water interface [9,10].

Particles for stabilizing Pickering emulsions can be classified as inorganic solid particles and
organic particles [11–14]. Inorganic solid particles are usually not applicable in the food industry.
Currently, many edible organic particles for stabilizing O/W emulsions have been developed, including
starch particles [15], cellulose particles [16], chitin particles [17], and protein colloidal particles [18].
Soft protein particles have gained the most attention [19,20] because they have dangling protein chains
on their surfaces that give them an enhanced ability to accumulate at the interface, similar to protein
molecules. Once adsorbed onto the interface, they form a viscoelastic layer with higher mechanical
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strength than that of rigid particles (such as cellulose or chitin particles). Therefore, soft protein
particles have better emulsifying activity and emulsion stabilization [21].

To date, different protein-based particle stabilizers have been reported, including zein [22], whey
protein [18], peanut protein [23], and soybean protein [24]. However, they are usually rigid particles,
because they are generally prepared by heat treatment, or antisolvent precipitation, resulting in highly
crosslinked polymer-based particles [25]. Therefore, the development of edible soft particles could
have wide application in food emulsion-based products.

Gelatin is an inexpensive food additive which is produced by collagen hydrolysis. Several instances
of the preparation of soft gelatin Pickering particles have been reported. Tan et al. developed gelatin
Pickering particles, using glutaraldehyde as a crosslinker [26]. However, glutaraldehyde is toxic
which restricts its application in food emulsions. Feng et al. prepared gelatin particles by a two-step
desolvation procedure, using genipin as a crosslinking agent [27]. Genipin is a natural crosslinking
agent extracted from Gardenia jasminoides E. which has low toxicity to the human body. However,
the particle diameter produced by this method was larger than 350 nm. This means that these particles
could only stabilize oil droplets larger than 3.5 µm, since the diameter of particle should be at least one
order of magnitude smaller than the targeted oil droplets [28].

In this study, we aimed to develop edible soft particles that could stabilize oil droplets smaller
than 1.5 µm. The particles were composed of gelatin enzymatic digests (GED) and tannic acid (TA)
(Figure 1), which are commercially readily available. The high binding affinity between GED and TA
favors the formation of colloidal particles [29]. The formation of GED-TA particles is associated with
hydrogen bonding between the hydroxyl groups in TA and the hydroxyproline residues in GED [29].
However, the GED-TA particles are noncovalent crosslinking, which could be easily dissociated at the
oil–water interfaces. In this case, the introduction of covalent crosslinking agent could fabricate to form
particles that cannot dissociate at the interfaces. Therefore, we used an edible covalent crosslinking
agent, genipin, to further crosslink the GED-TA particles. Partly crosslinking the amino groups within
the particles with genipin has generated stable Pickering stabilizers [30]. Therefore, in this study, we
aimed to create edible gel particles, smaller than 150 nm, from GED and TA, and to test their ability to
stabilize oil droplets in O/W emulsions.
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(GP-GED-TA) gel particles.

2. Results

2.1. Characterization of Gel Particles

The formation of crosslinks in the genipin-treated tannic acid-induced gelatin hydrolysate
(GP-GED-TA) particles was verified using a dissociation agent. In the presence of 8 mol L−1 urea
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solution, particles stabilized only by noncovalent bonds dissociate into individual molecules [31,32].
However, covalently crosslinked samples do not dissociate into individual molecules [33]. The mean
diameter of GED-TA particles dispersed in water was 66.2 ± 8.4 nm (n = 3), but decreased to
0.69 ± 0.1 nm in the presence of 8 mol L−1 urea (Figure 2). The GED-TA particles clearly dissociated
into individual GED molecules in urea solution, as their particle size (0.69 ± 0.1 nm vs. 0.68 ± 0.1 nm)
was identical to GED in water. However, for GP-GED-TA, the particle size in urea solution was not
significantly different from that in pure water (70.9 ± 12.1 nm VS. 66.9 ± 7.2 nm). This confirmed that
GP-GED-TA particles could maintain their integrity and were resistant to dissociation into individual
GED molecules at oil–water interfaces.
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The morphologies of the particles were observed by transmission electron microscopy (TEM)
in Figure 3. It was confirmed that the particles are gspherical, with a diameter lower than the light
scattering data. This is because the GP-GED-TA particles dehydrated during TEM sample preparation
in in atmosphere environment.
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Nanomechanic analysis using peak-force quantitative nanomechanical atomic force microscopy
(AFM) indicated the average Young’s modulus of the GP-GED-TA particles was 311.5 ± 80.2 MPa
(n = 35, calculated from arithmetic mean value in Figure 4). This value was similar to the results of
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protein-based particles [34,35], but larger than the inorganic particles [36,37]. This indicated the GP-GED-
TA particles were soft. From the AFM results, the GP-GED-TA was proven to be soft particles, which have
advantages over rigid solid particles in stabilizing the oil droplets. First, it has dangling polymer chains
on the surfaces which have the ability of anchoring at the interfaces. This endowed the GP-GED-TA
particles higher emulsifying capacity than solid hard particles. Secondly, the particles could deform and
flatten at the oil–water interface, which could, thus, form a network at the interface [12]. This favors
the formation of interfacial film with higher elasticity and strength as compared with hard particles.
Therefore, the covalently crosslinked GP-GED-TA particles could have better emulsifying stability than
hard particles.
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2.2. Stability of Pickering Emulsions

The migration (sedimentation or creaming) and size variation (coalescence or flocculation) of
particles in O/W emulsions can be easily detected by the Turbiscan (Figure 5). The backscatterings
of the emulsion phase formed by GE, GE-TA, and GP-GE-TA were 3.4 ± 1.0%, 76.5 ± 4.1%, and 98.4
± 1.3% (n = 3), respectively (20 min after the preparation of emulsions). This indicated that the oil
droplets coalesced rapidly after the preparation of emulsions and that GED was the poorest emulsion
stabilizer. This also suggested the oil droplets generated cannot be fully covered by GED-TA, while oil
droplets formed by GP-GED-TA showed the highest stability against coalescence. The backscattering
changes in the bottom parts (5 mm above the bottom, for instance) of the O/W emulsions stabilized by
GP-GED-TA and GED-TA were 2.5 ± 0.5% and 27.3 ± 3.5%, respectively. This indicated the physical
stability against coalescence, or aggregation of the oil droplets stabilized by GP-GED-TA, was much
higher than those stabilized by GED-TA. Drastic changes in BS profiles were observed between about
33 to 43 mm and 27 to 42 mm, respectively (Figure 5A,B). This is because the oil droplets creamed
at these positions, whereas such changes were not observed in Figure 5C. This suggested that the
emulsions prepared with GP-GED-TA exhibited higher stability against creaming than those prepared
with GED-TA or GED.

The global TSI values can be used to assess the global stability of O/W emulsions. The higher the TSI
value, the less stable the emulsion. The TSI values of the three emulsions increased over time (Figure 6),
which indicated the O/W emulsions destabilized during storage. However, the order of global TSI is
GED (28.6 ± 1.5) > GED-TA (19.3 ± 4.8) > GP-GED-TA (4.4 ± 1.3). Therefore, the GP-GED-TA stabilized
emulsion exhibited the highest stability during storage.
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2.3. Viscosity and Size Distribution of the Emulsions

The migration (sedimentation or creaming) of the oil droplets is largely determined by the
viscosities of the emulsions and the oil droplet sizes. No significant difference was found between
the viscosities of the freshly-prepared emulsions stabilized by GED-TA and GP-GED-TA, respectively
(Figure 7A). When the shear rate was 100 (1/s), the viscosities of emulsion stabilized by GED-TA or
GP-GED-TA were 3.4 ± 0.1 and 3.4 ± 0.1(Pa1), respectively. This demonstrated that the higher stability
of the emulsions generated by GP-GED-TA as compared with GED-TA was not caused by the viscosity
difference of the emulsions. The emulsions formed by GED-TA or GP-GED-TA exhibited the shear
thinning behavior at shear rates of 1 to 1000 (1/s), suggesting formation of a weak network structure in
emulsion stabilized by the GED-TA or GP-GED-TA [8].
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Figure 7. Shear-rate dependence of viscosity (A) and shear stress (B) for emulsions prepared with
GED-TA or GP-GED-TA.

The shear stress versus shear rate data are present in Figure 7B. The data were fitted to the
Herschel–Bulkley model σ = σ0 + K·γn, as shown in Table 1. The σ is the shear stress (Pa), σ0 is the
apparent yield stress (Pa), K is the consistency index (Pa·sn), γ is the shear rate (s−1), and n is the
flow behavior index. The parameters suggested the emulsion prepared with GED-TA or GP-GED-TA
exhibited shear-thinning behavior. This is due to the breaking of polymer networks during shearing,
leading to the less intermolecular resistance to flow.

Table 1. Shear-rate dependence of viscosity for O/W emulsion data fitting by the Herschel–Bulkley model.

Group σ0 (Pa) K (Pa·sn, 10−4) n

GED-TA 0.09 ± 0.06 8.55 ± 2.24 1.17 ± 0.02
GP-GED-TA 0.11 ± 0.00 6.26 ± 1.69 1.19 ± 0.04

n = 3 and no significant difference was observed within the same column (p > 0.05).
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Oil droplets stabilized by GP-GED-TA were around two orders of magnitude smaller than those
stabilized by GED-TA (Figure 8). Three hours after the preparation of emulsions, the volume-weighted
mean diameters (D[4,3]) of oil droplets stabilized by GP-GED-TA and GED-TA were 1.19 ± 0.11 µm
and 108.3 ± 5.1 µm (n = 3), respectively, while the corresponding polydispersity indexes (PDIs) were
1.05 ± 0.01 and 1.17 ± 0.26, respectively. After 60 days of storage, the difference was even larger,
the D[4,3] values were 1.18 ± 0.1 µm and 164.3 ± 19.1 µm, respectively, while the corresponding PDIs
were 1.04 ± 0.02 and 1.15 ± 0.14, respectively. Therefore, the GP-GED-TA particles exhibited much
higher emulsion stabilization than GED-TA.
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3. Materials and Methods

3.1. Materials

GED and TA were from Sigma-Aldrich (St. Louis, MO, USA). Genipin was from Chengdu Jin
Taihe Medicinal Chemistry Tech Co., Ltd. (Chengdu, Sichuan, China). Medium-chain triglycerides
were bought from Beijing Keao Co., Ltd. (Beijing, China), which contained 65% caprylic acid and 35%
capric acids. The melting point of MCT is −13.6 ◦C. All other chemical reagents used were of analytical
grade and from local suppliers.

3.2. Preparation and Characterization of Gel Particles

GED was dispersed in deionized water (with 0.02% (w/v) sodium azide as antibacterial agent) to
2% w/v, on a magnetic stirrer at 300 rpm for 2 h at 43 ◦C. To prepare the GED-TA complex particles,
0.3 g/mL TA solution was added dropwise into the GED dispersions while stirring. The pH of the
dispersions was kept constant (pH 7.0) with 0.1 mol L−1 NaOH during the addition of TA solution.
The final mass ratios of TA to GED were 0 and 1:25, respectively. To crosslink the molecules in the
particles, an ethanolic solution of genipin was added to the stirred GED-TA dispersions. The final
mass ratio of genipin to GED in each sample was 1:10. The dispersions were stirred for 24 h at 43 ◦C,
while the pH was maintained at 7.0 with 0.1 mol L−1 NaOH. The dispersions were ultrafiltered with
10 kDa membranes (UFC803096, Millipore, Burlington, USA) to remove the un-crosslinked molecules.
The GP-GED-TA samples were freeze-dried to constant weight.

The GP-GED-TA dispersions were prepared by dispersing the freeze-dried GP-GED-TA samples to
the concentration of 2% (w/v), on a magnetic stirrer at 500 rpm for 1 h at 25 ◦C. The GED dispersions were
prepared by dispersing GED to the concentration of 2% (w/v). The GED-TA dispersions were prepared
by adding 0.3 g/mL TA solution dropwise into the 2% GED dispersions while stirring. The final mass
ratio of TA to GED was 1:25 in GED-TA dispersions. The GP-GED-TA, GED-TA, and GED dispersions
contained 0.02% sodium azide. The particle size was determined with a particle analyzer (Nano ZS,
Malvern, UK) at 25 ◦C. The samples were diluted 600 times with deionized water or 8 mol L−1 urea
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solution. The viscosity values of water and 8 mol L−1 urea urea solutions were 0.8872 and 1.5956 mpa s,
respectively. The refractive index values of water and urea solution were 1.330 and 1.399, respectively.
The refractive index values and viscosity values for both water and urea solution at given temperatures
were choosed directly from the soft package of the particle analyzer. The morphologies of the particles
in samples were observed by transmission electron microscopy (TEM, Tecnai-20, Philips, Eindhoven,
The Netherlands) at 200 kV. Five microliters of GP-GED-TA particle dispersions (0.01%, w/v) were
deposited onto a carbon-coated grid and dried in air after negative stained with 2% uranyl acetate.
The elastic modulus and force maps were measured by atomic force microscopy (AFM, Dimension,
Bruker, Germany) [34]. Samples were diluted 2000-fold with purified water before AFM measurement.
Five microliters of the samples were spread onto a mica sheet (one centimeter in diameter) for 10 min
before AFM measurement. During AFM measurement, the scanning rate and peak fore amplitude
were 1.98 Hz and 150 nm, respectively. The following equation was applied to calculate a local reduced
elastic modulus [34]. The Derjaguin-Müller-Toporov (DMT) model was applied to fit the data.

Finteraction = (4/3)E∗(d− d0)
3/2 + Fadh (1)

where Finteraction represented the tip-sample force, E* was the reduced elastic modulus of the tip and
the sample, R was the tip radius, d0 was the surface rest position, d − d0 was the depth of indentation,
and Fadh was the constant adhesion force during the contact.

3.3. Preparation and Characterization of O/W Emulsions

Medium-chain triglycerides and particle dispersions were mixed at the volume ratio of 2:3.
The mixed liquids were sonicated (Scientz-IID, Ningbo, China) at 25% amplitude for 2 min (working
time, 5 s and rest time, 5 s).

The stability of the emulsions was determined with a Turbiscan (Tower, Formulaction, France).
Thirty minutes after preparation, the O/W emulsions were added into the Turbiscan test specific
transparent tubes. The samples were scanned from bottom to top of the tubes over time with a laser (λair

= 880 nm) for 72 h at 40 ◦C. The creaming, coalescence/flocculation of O/W emulsions, and Turbiscan
stability index (TSI) were calculated from the changes in the backscattered light intensity [38]. The TSI
was calculated using the following formula:

TSI =

√√√√ n∑
i=1

(xi − xBS)
2

n− 1
(2)

where xi is the backscattering for each measurement, xBS is the mean of xi, and n is the scan number.
The oil-droplet size of oil-in-water emulsions was measured using a Mastersizer 3000 (Malvern

Instruments, Malvern, UK) after 1 and 60 days of storage at ambient temperature (~25 ◦C). Distilled water
(25 ◦C) was used as the dispersion medium; the refractive index values input was 1.333. The emulsion
was added into the water dropwise. When the laser intensity reached 10% to 20%, the measurement
was started. The mixing speed for the dispersion medium was 2300 rpm. The average droplet size was
expressed in terms of volume mean diameter D[4,3] [39]. The polydispersity index (PDI) of oil droplets
in emulsions was calculated using the following formula [40]:

PDI =
d90 − d10

d50
(3)

where d10, d50, and d90 represent the diameter of oil droplets at 10%, 50%, and 90% of cumulative volume.
The viscosity of the O/W emulsions (1 h after preparation) was determined using a rheometer

(AR1500ex, TA Instruments, New Castle, DE, USA) with a 60 mm diameter probe [21]. The emulsions
were subjected to steady shearing at 25 ◦C. The points per decade were 10. Three milliliters of the
emulsions were placed onto the plate. The shear rate was set from 1 to 1000 s−1.
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3.4. Statistical Analysis

The experiments were performed dependently at least three times. The means and standard
deviations (means ± SD) were applied to express the results. Statistical differences were measured by
one-way analysis of variance (ANOVA) and p < 0.05 was defined as significant.

4. Conclusions

In this study, edible gelatin enzymatic digest-based hybrid gel particles were fabricated and their
ability to stabilize O/W emulsions was evaluated. The GP-GED-TA particles were stable against urea
dissociation, due to the covalently crosslinking of the protein network within the TA-induced GED
particles. The GP-GED-TA particle was 66.9 nm in an average hydrated diameter. The GP-GEN-TA
particles displayed excellent emulsifying stability against coalescence, aggregation, and creaming
(emulsions were stable for at least 60 days) as compared with O/W emulsions generated solely with
GED-TA particles. It should also be noted that the softness and size of the gel particles and the pH and
ionic concentration of the aqueous phase could also influence the stability of emulsions. We plan to
evaluate the effects of these factors in our future work.
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