Supporting Information

Thiosemicarbazone appended calix[4]arene in 1, 3distal configuration: synthesis, crystal structure, transition metal complexes with insights into antimicrobial and anticancer activity

Ehsan Bahojb Noruzi,^a Behrouz Shaabani,^{*a} Silvano Geremia,^b Neal Hickey,^b Patrizia Nitti,^b Hossein Samadi Kafil^c

^b Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy

^c Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

^a Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran

FT-IR Spectra of L and L-Co, L-Ni, L-Cu, L-Zn derivatives

Figure S1: FT-IR spectrum of L (KBr pellet).

Figure S2: FT-IR spectrum of L-Co derivative (KBr pellet).

Figure S3: FT-IR spectrum of L-Ni derivative (KBr pellet).

Figure S4: FT-IR spectrum of L-Cu derivative (KBr pellet).

Figure S5: FT-IR spectrum of L-Zn derivative (KBr pellet).

Figure S6: a) Positive-ion ESI High Resolution Mass Spectra (HRMS) of L. Observed (b) and calculated (c) isotopic distributions for LNa^+ , $[C_{64}H_{78}N_6O_6S_2Na]^+$.

Figure S7: Positive-ion ESI High Resolution Mass Spectra (HRMS) of Co^{2+} derivative of L. Observed (middle) and calculated (bottom) isotopic distributions for $LCo(II)Co(III)^{2+}$, $[C_{64}H_{75}N_6O_6S_2Co_2]^{2+}$.

Figure S8: a) Positive-ion ESI High Resolution Mass Spectra (HRMS) of Ni²⁺ derivative of L. Observed (middle) and calculated (bottom) isotopic distributions for $LNi(II)_2^{2+}$, $[C_{64}H_{76}N_6O_6S_2Ni_2]^{2+}$.

Figure S9: Observed (top) and calculated (bottom) isotopic distributions for a mixture containing 0.75 LNi(II)^+ , $[C_{64}H_{77}N_6O_6S_2Ni]^+$ and 0.25 $L_2Ni(II)_2^{2+}$, $[C_{128}H_{154}N_{12}O_{12}S_4Ni_2]^{2+}$. Masses were calculated by enviPat Web 2.2 (http://www.envipat.eawag.ch/index.php).

Figure S10: Positive-ion ESI High Resolution Mass Spectra (HRMS) of Cu^{2+} derivative of L. Observed (middle) and calculated (bottom) isotopic distributions for $LCu(II)_2^{2+}$, $[C_{64}H_{76}N_6O_6S_2Cu_2]^{2+}$.

Figure S11: Positive-ion ESI High Resolution Mass Spectra (HRMS) of Zn^{2+} derivative of L. Observed (middle) and calculated (bottom) isotopic distributions for $LZn(II)_2^{2+}$, $[C_{64}H_{76}N_6O_6S_2Zn_2]^{2+}$.

Vibrational mode	Frequency in (cm ⁻¹)				
	L	LCo ²⁺	LNi ²⁺	LCu ²⁺	LZn ²⁺
C=N	1633	1618	1619	1617	1612
N-C=S	1539	shoulder	1572	1568	shoulder
C=S	898	892	885	889	887

Table S1. IR spectral data (cm⁻¹) of the ligand and its corresponding metal derivatives in KBr pellets.

	Ligand L		
Empirical formula	$(C_{64}H_{78}N_6O_6S_2), H_2O$		
Formula weight	1109.46		
Temperature (K)	100(2)		
Wavelength (Å)	0.7		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions (Å, °)	$a = 12.690(6), \alpha = 104.44(4)$		
	$b = 15.344(18), \beta = 98.01(4)$		
	$c = 19.15(3), \gamma = 104.016(10)$		
Volume (Å ³)	3423(6)		
Z	2		
$ ho_{ m calcd}$ (g/cm ³)	1.076		
$\mu (\mathrm{mm}^{-1})$	0.122		
F(000)	1188		
Reflections collected	23853		
Independent reflections	6918 [R(int) = 0.1328]		
Data / restraints / parameters	6918 / 3 / 734		
GooF	0.972		
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0683, wR_2 = 0.1677$		
R indices (all data)	$R_1 = 0.1359, wR_2 = 0.2108$		
CCDC code	1944727		

Table S2. Crystal data and structure refinement for compound L.

Table S3: Elemental analysis of the metal derivatives of L

