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Abstract: Proliposomes were used to improve the solubility and oral bioavailability of nifedipine.
Nifedipine proliposomes were prepared by methanol injection-spray drying method. The response
surface method was used to optimize formulation to enhance the encapsulation efficiency (EE%) of
nifedipine. The particle size of nifedipine proliposomes after rehydration was 114 nm. Surface
morphology of nifedipine proliposomes was observed by a scanning electron microscope (SEM)
and interaction of formulation ingredients was assessed by differential scanning calorimetry (DSC).
The solubility of nifedipine is improved 24.8 times after forming proliposomes. In vitro release
experiment, nifedipine proliposomes had a control release effect, especially in simulated gastric
fluid. In vivo, nifedipine proliposomes significantly improved the bioavailability of nifedipine. The
area under the concentration-time curve (AUCo-) of nifedipine proliposomes was about 10 times
than nifedipine after oral administration. The elimination half-life (T1.p) of nifedipine was increased
from 1.6 h to 6.6 h. In conclusion, proliposomes was a promising system to deliver nifedipine
through oral route and warranted further investigation.
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1. Introduction

4-(2-Nitrophenyl)-2,6-dimethyl-3,5-dicarbomethoxy-1,4-dihydropyridine  (Nifedipine) is a
calcium channel blocker drug used for the treatment of angiocardiopathy. Although oral
administration is the best convenient route and has better patient compliance, bioavailability of
nifedipine has been limited by poor solubility, photo-instability, or short plasma half-life [1].
Nifedipine is a BCS class II agent with a solubility of 5-6 pg/mL in the pH range from 4 to 13 [2],
resulting in low bioavailability [3]. Improving solubility and membrane permeability could lead to
enhance of oral bioavailability [4]. Drug solubility could be increased by a dry or wet process, for
example, indissolvable nifedipine co-grinding with a carrier such as polyvinyl pyrrolidone or
microcrystalline cellulose by dry method could enhance the solubility [5-7]. However, this method
could not be used to produce Nano-level preparation. On the other hand, the wet method usually
uses high-pressure homogenization to form uniform nanoparticles in the presence of an organic
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solvent [8]. However, it is a challenge to remove residual organic solvent. Therefore, novel
formulations were also developed to improve therapeutic effects of nifedipine, including
microparticles [9], inclusion complexes [10], freeze-dried lipid nanoparticles [7], and gelatin
microcapsules [11,12].

In this study, proliposomes were evaluated as a carrier for nifedipine oral administration [13].
Proliposomes have the advantage of continuously releasing drug and stabilizing its blood
concentration, and they may improve bioavailability and drug stability [14]. The purpose of
preparing proliposomes is improving bioavailability and elimination half-life of nifedipine, which
could avoid the blood pressure fluctuations caused by repeated administration and improve
therapeutic effects.

2. Results and Discussion

2.1. Preparation of Nifedipine Proliposomes

Proliposomes were prepared to improve solubility and pharmacokinetic characteristics of
nifedipine. Nifedipine embedded in lipid bilayers achieved high encapsulation efficiency (EE%).
Chol was added into the formulation to enhance the liposome stability through altering its phase
transition behavior. Spray-drying was used to prepare proliposomes because nifedipine was not very
sensitive to brief exposure to high temperature [15]. We were concerned that the high temperature in
the process of spray-drying might destroy the liposomal membrane, so we investigated the addition
of carriers (mannitol, sorbitol, and lactose) and selected mannitol as a carrier to protect liposomes
from agglomerating in the process of spray drying [15,16].

Mannitol is a highly water-soluble material (=180 mg/mL), it has two functions in forming
proliposomes by spray drying. (1) Protecting the structural integrity of liposomes upon exposure to
high temperature. Mannitol could form “interstitial bridges” between liposomes for preventing
irreversible interparticle fusion. (2) In the gastrointestinal tract, the “interstitial bridges” would
dissolve to release liposomes [17].

2.2. Optimization of Proliposomes Formulation

On the basis of single factor experiments, we designed 15 groups of three-factor, three-coded
level experiments to optimize proliposomes EE% with a Box-Behnken design [18]. The experimental
conditions and the corresponding results were shown in Table 1. EE% of nifedipine in different
prescriptions ranged from 71.93% to 94.12%. Then, we established a mathematical model for
optimizing experimental factors of affecting EE% to obtain the optimal formulation. The fitting
equation between EE% and three factors was

EE% =93.86 —4.12375 X1 - 0.35125 X2 - 2.6125 X3 +0.2525 X1X2 - 5.6 X1X3 -

1
1.865 X2X3 - 4.92625 X1? - 11.52125 X22 - 4.47375 X3? @

Statistical analysis of variance for the experimental results was shown in Table 2. The R? of
mathematical model was 99.76%, the p-value was less than 0.0001, and “lack of fit” was not significant
(p = 0.2007), which meant the fit of the model was favorable and experiment error was acceptable. It
indicates that the model could be used to analyze and predict EE% of nifedipine proliposomes. The
linear term (X1, X3), an interaction term (X1*X3, X2*X3), and quadric entries (X12, X22, X32) had
significant contributions, which suggested there were not a simple linear relationship between
independent variables and dependent variable but that there was a certain interaction. In Figure 1,
response surface plots were used to present the interaction of factors to predict the best formulation.
The three response surface plots all had convex surfaces with opening downward. Therefore, the
response value of EE% has a maximum value in the range of optimization parameters.

In Figure 1B, the contour line was elliptical. There was an obvious angle between the axis of the
oval and coordinate, showing that the two factors (X1, X3) had the most significant interaction. The
optimal formulation was 13.92 mg/mL of SPC, 3.52 mg/mL of Chol, and 11.14 mg/mL of nifedipine
dissolved in methanol. The optimal ratio of lipid phrase and water phrase was 1:8, the mass ratio of
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SPC to mannitol was 1:3.38. The predicted EE% of nifedipine was 94.73%, which was verified thrice,
the actual EE% of nifedipine was 92.53%, RSD% = 0.71%.

Table 1. The experimental conditions and the corresponding results.

Levels of Independent Factors

Run X1 X2 X3 Response EE%
1 -1 -1 0 82.06
2 1 -1 0 72.95
3 -1 1 0 81.37
4 1 1 0 73.27
5 -1 0 -1 85.79
6 1 0 -1 89.12
7 -1 0 1 91.02
8 1 0 1 71.93
9 0 -1 -1 78.85
10 0 1 -1 81.36
11 0 -1 1 78.15
12 0 1 1 73.15
13 0 0 0 94.12
14 0 0 0 93.41
15 0 0 0 94.05

Table 2. Statistical analysis for mathematical model and variance.

Source df  Sum of Squares = Mean Square  F Value  p-Value Prob >F
Model 922,61 102.51 232.19 <0.0001 Significant
X1 1 136.04 136.04 308.14 <0.0001
X2 1 0.99 0.99 224 0.1951
X3 1 54.6 54.6 123.67 0.0001
X1X2 1 0.26 0.26 0.58 0.4815
X1X3 1 125.44 125.44 284.13 <0.0001
X2X3 1 13.91 13.91 31.51 0.0025
X1? 1 89.6 89.6 202.96 <0.0001
X2 1 490.11 490.11 1110.12 <0.0001
X3 1 73.90 73.90 167.38 <0.0001
Residual 5 221 0.44
Lackof fit 3 1.90 0.63 4.14 0.2007 . N(.)
Significant
Pure error 2 0.31 0.15
Coe. total 14 924 .81

R2=10.9976, Rad? = 0.9933, Rered? = 0.9664.
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Figure 1. Response surface plots showing the interaction of factors. (A): EE% = f (X1, X2). (B): EE% =
f (X1, X3). (C): EE% = f (X2, X3).

2.3. Characterization of Liposomes

The characteristics of nifedipine liposomes were shown in Figure 2. In Figure 2A, the particle
size of reconstituted nifedipine proliposomes was 114.3 + 7.2 nm and the zeta potential value was
-4.1 + 0.3 mV. We measured the solubility of nifedipine and nifedipine proliposomes in artificial
gastric fluid, artificial intestinal fluid and water. The solubility of nifedipine was 7.1, 7.2, and 7.5
pg/mL in pH 1.2, 6.8, and 7 solutions, respectively. However, the solubility of nifedipine in
proliposomes was 176.4, 91.8, and 97.9 ug/mL in artificial gastric fluid, artificial intestinal fluid, and
water, respectively. The solubility of nifedipine was improved after entrapment into liposomes. In
Figure 2B, the concentration of nifedipine liposomes was 1.4 mg/mL (yellow) and 140 ug/mL
(canary), respectively. They all showed relatively high clarity. Spherical morphology of nifedipine
liposomes was confirmed by SEM (Figure 2C). SEM image of nifedipine liposomes showed spherical
with uniform size and smooth surface. If the various components in proliposomes did not form a
homogenous and stable complex, the mannitol and nifedipine should show a typical crystal form.
We alsoevaluated the chemical-physical characteristics of the product after spry drying. The content
of nifedipine fell by 8.44% after spray-drying. The EE% of nifedipine liposomes solution before spry
drying was 94.47% comparing with proliposomes of 92.53%. It means that the nifedipine
proliposomes is relatively stable for spray-drying.
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Figure 2. Characterization of nifedipine liposomes. (A) The particle size of nifedipine proliposomes
after redissolving. (B) The appearance of nifedipine liposomes at 1.4 mg/mL (yellow) and at 140
pg/mL (canary). (C) SEM of nifedipine proliposomes (x33,000) at 3.0 kV.

DSC analysis was used to determine molecular states of SPC, Chol, mannitol, and nifedipine in
proliposomes. The endothermic peak of SPC, Chol, mannitol, nifedipine proliposomes, and physical
mixture of raw materials were shown in Figure 3. In Figure 3A, the DSC spectrum of SPC had a wide,
atypical absorption peak (179.9 °C) due to it was a mixture without obvious phase transition
temperature. In contrast, the DSC of Chol (Figure 3B), nifedipine (Figure 3C), and mannitol (Figure
3D) had typical single absorption peaks at 150.0 °C, 175.7 °C, and 173.6 °C, respectively. It might be
caused by crystal morphology change when the temperature was at the melting point. The physical
mixture samples (Figure 3E) showed endothermal peaks at 173.4 °C and 152.0 °C, the endothermal
peaks were the Chol peak, mannitol peak, and nifedipine peak with no obvious change, which
indicated no interaction between the various substances. But the endothermic peak of nifedipine
proliposomes (Figure 3F) exhibited displacement against physical mixture. This suggested that
nifedipine proliposomes changed the physical state of raw materials to form liposomes. The
molecular state of proliposomes was different from simple physical mixture.
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Figure 3. The DSC analysis of nifedipine formulations. (A) phospholipid, (B) cholesterol, (C)
nifedipine, (D) mannitol, (E) physical mixture, and (F) nifedipine proliposomes.
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2.4. Drug Release Profiles

The oral preparations need to undergo different environments in the digestive tract after
administration. Release behavior of nifedipine proliposomes in different parts of the digestive tract
should be investigated. Two different release mediums were used to simulate the environment of the
digestive tract. Release profiles of proliposomes in artificial gastric fluid (pH 1.2) and artificial
intestinal fluid (pH 6.8) were shown in Figure 4. Nifedipine proliposomes had a lower release rate
than nifedipine due to controlled release effect in liposomes. Free nifedipine cumulatively released
approximately 81.1% and 74.3% at pH 6.8 and pH 1.2 within 4 h, respectively. On the other hand, the
accumulative release of nifedipine from proliposomes was 88.7% in the artificial intestinal fluid
within 10 h and 85.1% in the artificial gastric fluid within 24 h. Overall, free nifedipine released faster
than proliposomes. In addition, nifedipine proliposomes had a relatively faster release rate in the
artificial intestinal fluid than in artificial gastric fluid; the proliposomes seemed to be further unstable
in the artificial intestinal fluid than artificial gastric fluid.

Mathematical models were used to analyze the release profiles of proliposomes in artificial
gastric fluid and artificial intestinal fluid (Table 3). The regression coefficient (R?) was used to
evaluate the degree of model fitting. First-order model could well predict the release profile of
nifedipine or proliposomes releasing in artificial intestinal fluid and artificial gastric fluid (R?> 0.96).

80

60

—a— Nifedipine proliposomes ( artificial intestinal Nuid )
—a— Nifedipine proliposomes ( artificial gastric fluid )
—A— Nifedipine ( artificial inestinal Nuid )
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Figure 4. Accumulative release of nifedipine. Artificial intestinal fluid and gastric fluid were used as
medium to compare the release of nifedipine and nifedipine proliposomes.

Table 3. The regression coefficient of different release model of nifedipine in artificial gastric fluid
and artificial intestinal fluid.

Regression Coefficient (R?)

Time Medium Zero- First- Hieuchi Korsmeyer-
Order Order guc Peppas
o 048 h artificial intestinal fluid -1.165 0.985 0.340 0.790
Nifedipine o . .
0-48h artificial gastric fluid -1.116 0.966 0.378 0.806
Proliposomes 0-48h artificial intestinal fluid 0.149 0.980 0.799 0.827
P 0-48 h artificial gastric fluid 0.774 0.988 0.924 0.943

2.5. Nifedipine Analysis Method In Vivo

The nifedipine analysis method in plasma was assessed by calibration curve, accuracy, and
precision, recovery and matrix effect. Plasma samples after administration nifedipine were analyzed
by HPLC at a detection wavelength of 235 nm and nimodipine was used as an internal standard. The
retention time of nifedipine and nimodipine were 7.75 min and 17.97 min, respectively. The
endogenous substance in plasma did not interfere with the determination of the samples. The linear
range of this method measuring nimodipine was from 25 to 3000 ng/mL; least-squares linear
regression constants (R?) was higher than 0.99. Methodology examination of accuracy (intra-day and
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inter-day), precision, recovery, and matrix effect were listed in Table 4. Data of methodology showed
that this method could accurately measure the plasma drug concentration of nifedipine.

Table 4. Validation of the nimodipine determination method in plasma.

LQC (75 MQC (500 HQC (2000 IS (2000
ng/mlL) ng/mlL) ng/mlL) ng/mL)
Intra-day precision (RSD%) (n = 6) 8.55 5.81 10.87
Inter-day precision (RSD%) (n = 6) 8.70 5.81 7.12
Accuracy (RE%) (n=6) 9.26 9.44 5.41
Recovery/RSD% (n = 6) 83.37/2.67 83.90/2.86 83.11/2.73 88.59/4.11
Matrix effect/RSD% (n = 5) 87.40/4.50 87.85/3.99 88.76/2.38 91.05/2.98

2.6. Pharmacokinetics Study

Pharmacokinetics profiles of nifedipine and nifedipine proliposomes were evaluated after oral
administration by measuring the plasma drug concentration. Mean plasma concentration-time
profiles were shown in Figure 5. Main pharmacokinetic parameters of nifedipine and nifedipine
proliposomes were shown in Table 5. The Cmax of nifedipine proliposomes after oral administration
was 3074 ng/mL, which was 3.76-fold greater than oral nifedipine (818 ng/mL). Nifedipine
proliposomes had a durable and smooth plasma drug concentration, and the changing trend of
plasma drug concentration after oral nifedipine proliposomes was slower comparing to oral
nifedipine, which could reduce side effect due to variations in drug concentration. Elimination half-
life (Ti2p) of proliposomes had prolonged 4.21 times than oral nifedipine. Other parameters (MRT,
CL) also showed that oral nifedipine was cleared faster than proliposomes. Area under the
concentration-time curve (AUCo—) values of nifedipine proliposomes and oral nifedipine were
26,970.80 and 2673.97 ng x h/mL, proliposomes improved 10.09 times of AUCo- than oral
administration free nifedipine, which meant that the relative bioavailability of oral nifedipine was
9.91% comparing with nifedipine proliposomes. The above data showed that control release
preparation of proliposomes could reduce plasma drug concentration fluctuations and enhance
bioavailability.

Table 5. Pharmacokinetic parameters of nifedipine in rats following an oral of nifedipine or nifedipine
proliposomes, respectively (mean + SD, n = 5).

Parameters Nifedipine Nifedipine Proliposomes
Cmax (ng/mL) 818.20 + 83.19 3074.20 +196.77 **
Tmax (h) 1.00 2.00
Tip 1.57+0.18 6.61£0.49 **
AUCo--(ng x h/mL) 2673.97 +175.06 26970.80 + 4650.71 **
MRT 3.0£0.12 8.95+0.90 **
V (mL) 1522.41 +223.56 646.32 +93.63 **
CL (mL/h) 671.89 + 38.24 68.12 + 10.96 **

** < 0.01.
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Figure 5. The mean plasma concentration-time profiles of nifedipine proliposomes and nifedipine (n
=5). Nifedipine proliposomes and nifedipine following oral administration in rats at a dose level of 6
mg/kg to evaluate the pharmacokinetics and bioavailability of nifedipine proliposomes.

Membrane permeability and dissolution behavior are two key parameters for influencing drug
oral bioavailability. Bioavailability of oral drugs within the gastrointestinal tract is not only related
to absorption rate, but also water solubility. Yuka Funakoshi measured the absolute bioavailability
using nifedipine solution for intravenous (containing 1.0% polysorbate 80) and nifedipine
suspensions for oral: ~8.5% at dose of 1 mg/kg. However, the AUC of oral nifedipine solution was
5.43 times than oral nifedipine suspensions [19]. Slow dissolution of nifedipine crystal type in enteric
canal is an important factor of low bioavailability. In addition, proliposomes could extend the
elimination half-life of nifedipine from 1.57 h to 6.61 h, which could reduce drug concentration
depended unwanted side effects (e.g. intraocular pressure decrease, headache, and bradycardia).

Why did proliposomes improve the pharmacokinetics of nifedipine? When proliposomes were
given by oral administration, proliposomes were hydrated into liposomes in the stomach and
liposomes were then absorbed by the small intestine and lymphatic system through active transport
and passive absorption [20]. The prerequisite of drug absorption in the intestine was that drug should
be in dissolved state, only dissolved drugs could penetrate intestinal epithelial cells. Absorption of
lipophilic drugs in intestinal was limited by their restricted dissolution rate. Absorption increasing
of proliposomes could be attributed to enhance contact level of drug and the intestinal membrane
[14]. Proliposomes could improve the solubility of nifedipine and increase the contact area between
the drug and intestinal epithelial cells to improve absorption efficiency.

On the other hand, liposomes were principally absorbed within the intestinal. Liposomes
formed colloidal structures to delay in gastric emptying for improving residence time. This
phenomenon was beneficial for enhancing bioavailability and stabilizing plasma drug concentration.

Improved bioavailability of nifedipine proliposomes might be caused by intestinal lymphatic
transport pathway. It was a one-way channel from the lymphatic system to the blood [14]. Elgart et
al. found that nanoparticles were taken up in the proximal small intestine by phagocytosis of
chylomicron pathway to enter the lymphatic system, which could avoid first-pass metabolism by
liver to improve bioavailability [20]. Nifedipine proliposomes exhibited a longer elimination half-life,
which phenomenon might be due to the transfer speed of lymph was lower than blood. In conclusion,
proliposomes made a great contribution to improving the bioavailability of nifedipine after oral
administration through control release, improving solubility, enhancing adhesion in gastrointestinal
mucosa, stimulating lymphatic absorption, and avoiding liver metabolism.

3. Materials and Methods

3.1. Materials and Animals

Soybean lecithin (SPC) was purchased from Shanghai Jinban Pharmaceutic Co., Ltd. (Shanghai,
China). Cholesterol (Chol) was obtained from Beijing Dingguo Changsheng Biotechnology Co., Ltd.
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(Beijing, China). Nifedipine and nimodipine were purchased from Shanghai Yuanye Bio-Technology
Co., Ltd. (Shanghai, China). Other commonly used organic reagents are analytically pure. Wistar rats
were purchased from Liaoning Changsheng Biotechnology Co., Ltd. (Shenyang, China).

3.2. Preparation Proliposomes

Methanol injection combined with spray-drying was used to prepare nifedipine proliposomes.
Briefly, SPC, Chol, and nifedipine were dissolved in methanol. This solution was then injected into
water at a volume ratio of 1:8 to prepare liposomes. Then, the liposomes were subjected to spray
drying to obtain proliposomes at an inlet temperature of 130 °C. Mannitol was selected as a protective
carrier. The nifedipine proliposomes was stored at 4 °C in darkness.

3.3. Optimization of Proliposomes Formulation

Entrapment efficiency is an important parameter to evaluate Nano-drug. Based on single-factor
experiments, three related factors—X1 (the mass ratio of drug-to-SPC), X2 (the mass ratio of SPC-to-
Chol), and X3 (the amount of SPC)—were used to optimize the formulation of proliposomes with
EE% as the evaluation index. Factor-coded levels were listed in Table 6. Fifteen groups of experiments
were identified through Box-Behnken design (BBD) with three-factor and three-coded level. The
interaction between two factors was described through response surface plot. Finally, curve-fitting
was used to generate equation to calculate the optimal formulation of nifedipine proliposomes.

Table 6. Levels of factors used in Box-Behnken design (BBD).

Range and Level

Factors 1 0 1
X1 (the mass ratio of drug-to-SPC) 0.5:1 11 1.5:1
X2 (the mass ratio of SPC-to-Chol) 2:1 4:1 6:1
X3 (the concentration of SPC) 12 mg/mL 14 mg/mL 16 mg/mL

The EE% of nifedipine liposomes was determined by ultracentrifugation method. Briefly,
nifedipine proliposomes was reconstituted into liposome suspension with water. The total nifedipine
in proliposomes (Wt) was measured by high-performance liquid chromatography (HPLC) after
methanol demulsification to release nifedipine. Then, the nifedipine liposomes, after resuspending,
were used to separate free nifedipine (Wr) on an Optima MAX-XP ultracentrifuge (Beckman Coulter,
Inc. Brea, CA, USA). Finally, nifedipine concentration was determined on an Agilent SB-C18 HPLC
column (4.6 mm x 250 mm, 5 pm) running with acetonitrile/water (50:50, v/v) of 1 mL/min at a
detection wavelength of 235 nm [21].

EE (%) was calculated using the equation:

EE% = (1 - W¢/W:) x 100%

The solubility of nifedipine and nifedipine proliposomes in different solutions were measured,
including artificial gastric fluid, artificial intestinal fluid, and water at 37 °C. The content changing of
nifedipine after spray drying was evaluated.

3.4. Characterization of Proliposomes

Nifedipine proliposomes was reconstituted to form liposomes by water. Size and zeta potential
of liposomes were measured by Zetasizer Nano ZS 90 from Malvern Instruments, Ltd. (Malvern, UK).
The size distribution was surveyed for 120 s in intensity-weighted Gaussian distribution mode with
the dynamic light scattering method.

Morphology of nifedipine proliposomes was analyzed on a JEOL field emission JSM-6700F
scanning electron microscope (SEM) (Tokyo, Japan) at 3 kV accelerating voltage. Proliposomes used
in SEM study were redissolved and directly applied onto a clean silicon slice. The sample was
allowed to dry at room temperature overnight. SEM image was obtained in the secondary electron
mode.
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A Mettler differential scanning calorimetry (DSC) STARe system (Mettler-Toledo, Columbus,
OH, USA) was used to analyze the proliposomes. Nifedipine, SPC, mannitol, Chol, nifedipine
proliposomes, and physical mixture of raw material were sealed into aluminum pans and analyzed.
Samples were heated from 25 °C to 250 °C the a 10 °C/min rate of temperature rise to obtain
thermograms.

3.5. Drug Release Profiles

We used two different release mediums to simulate the release behavior of nifedipine from
proliposomes under different conditions. In brief, nifedipine proliposomes reconstituted suspension
was sealed into dialysis bags (molecular weight cut-off: 8000-12,000 Dalton), which were placed in
the release medium containing 0.5% Tween 80 to increase the solubility of nifedipine. We used two
different mediums to simulate gastric fluid (pH = 1.5, containing 10 pg/mL of pepsin) and simulated
intestinal fluid (pH = 6.8, containing 10 ug/mL of trypsin and 0.05 M of KH2POs) to evaluate the
cumulative release rate of nifedipine [22]. At predetermined time points, 1 mL of external dialysis
medium was collected and replaced by an equal volume of fresh medium. The samples were
analyzed by HPLC method. Four basic release models (zero-order: Mt/Meo = kt, first-order: In (1 -
Mt/Mee) = —kt, Higuchi: Mt/Me = kt12, Korsmeyer — Peppas: Mt/Me = kt") were used to analyze the
obtained data. Mt was the release amount of nifedipine at the time point of t. M= was the maximum
value of release nifedipine.

3.6. Pharmacokinetic Study

Animal experiments were approved by Institutional Animal Care and Use Committee of Jilin
University (No. 201703052). A total of 10 Wistar rats weighing 275 + 10 g were randomly assigned to
two groups. The rats were maintained on a normal diet and were placed on fasting with free access
to drinking water before study. One group was given oral a single dose nifedipine of 6 mg/kg, the
other group received oral proliposomes containing 6 mg/kg nifedipine. Blood samples were drawn
into heparin sodium treated EP tube from retro-orbital sinus at 5, 15, 30 min, 1, 2, 4, 6, 8, 12, 24, and
36 h. The blood was immediately centrifugated at 10,000 rpm for 5 min to obtain plasma. The
pharmacokinetic parameters were calculated using WinNonlin version 5.2 (Pharsight Co., Mountain
View, CA, USA) by non-compartment model. The pharmacokinetic parameters obtained by fitting
non-compartment model and plasma drug concentration of nifedipine.

The concentration of nifedipine in plasma was measured by HPLC method. Briefly, 100 uL
plasma samples and 10 uL of 20 pg/mL internal standard nimodipine were stirred for 30 s, 10 pL of
1 mol/L NaOH was then added into the sample with stirring for 1 min [23]. The analytes were
extracted from the samples with 1 mL of diethyl ether/chloroform (5:1 v/v) by vortex mixing for 5
min. The organic phase was separated by centrifugation at 10,000 rpm for 10 min. The extract was
dried by nitrogen at 37 °C, and the residue was reconstituted with 200 uL mobile phase and injected
into HPLC system to analyze.

3.7. Statistical Analysis

The data were analyzed for statistical significance using Student’s ¢-test and p-values < 0.05 were
regarded as significant. All data were expressed as mean * SD.

4. Conclusions

In this study, we designed nifedipine proliposomes through a spray-drying method and
optimized the formulation to obtain a good EE%. We found that nifedipine proliposomes could
significantly improve the bioavailability based on the pharmacokinetic study. But the mechanism of
enhanced absorption was not clear.

In future work, we plan to study the pharmacokinetic-pharmacodynamic relationship of
nifedipine proliposomes and clearly delineate the mechanism of enhanced oral absorption.
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