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Abstract: We studied the effect of the exposure of human A549 and SH-SY5Y cell lines to aqueous
solutions of organic/inorganic halide perovskites CH;NH;3;Pbl; (MAPbI3) and CH3NH35nl3 (MASnI3)
at the molecular level by using Fourier transform infrared microspectroscopy. We monitored the
infrared spectra of some cells over a few days following exposure to the metals and observed the
spectroscopic changes dominated by the appearance of a strong band at 1627 cm™!. We used Infrared
(IR) mapping to show that this change was associated with the cell itself or the cellular membrane.
It is unclear whether the appearance of the 1627 cm~! band and heavy metal exposure are related
by a direct causal relationship. The spectroscopic response of exposure to MAPbI; and MASnI;
was similar, indicating that it may arise from a general cellular response to stressful environmental
conditions. We used 2D correlation spectroscopy (2DCOS) analysis to interpret spectroscopic changes.
In a novel application of the method, we demonstrated the viability of 2DCOS for band assignment
in spatially resolved spectra. We assigned the 1627 cm™! band to the accumulation of an abundant
amide or amine containing compound, while ruling out other hypotheses. We propose a few tentative
assignments to specific biomolecules or classes of biomolecules, although additional biochemical
characterization will be necessary to confirm such assignments.
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1. Introduction

The perovskite methylammonium lead iodide CH3NH3Pbl; (MAPbI;3) has been the subject of
interest for photovoltaic (PV) applications due to its elevated light conversion efficiency [1]. However,
its use is associated with the potential toxicity arising from lead [2-5], particularly because of the
potential human exposure during the production process. This concern has driven the search for a
replacement for Pb with reduced toxicity and lower environmental impact, without compromising
the efficiency of MAPbI;. The structurally similar perovskite CH3NH3SnI3 (MASnI3), containing tin
instead of lead, has been proposed as a viable candidate. Despite its appeal, based on its efficiency
in light conversion, the compound also bears potential hazards due to the toxicity of tin [6]. For this
reason, we decided to perform a systematic comparison of the effects of cellular exposure to Pb
and Sn containing perovskites. Previous work by some of the authors has described the in vitro
cytotoxic effects on eukaryotic cells exposed to MAPbI; [2]. In this follow-up work, we use infrared
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(IR) absorption spectroscopy as a method for the comparison of the molecular changes that accompany
exposure to both MAPbl; and MASnI;.

IR spectroscopy has been used for decades to characterize the molecular properties of biological
samples. Molecular species absorb infrared light, giving rise to absorption patterns that reflect the
composition of the sample. Spectral recordings can be obtained from samples of any composition
without the need of chemical modification such as molecular labeling or staining. Analysis of complex
biological samples can be performed using standard preparations such as fixed cells and tissue
sections [7]. With some challenges, the measurements can be extended to living cells [7]. In some
cases, the compositional information from IR spectra can be complemented by molecular information.
IR absorption patterns are sensitive to structural parameters such as molecular conformation, bond
length, and bond strength. One application of this capability is the study of protein secondary structure
and, in some cases, of tertiary structure [8,9]. In more recent years, applications of IR spectroscopy were
boosted by the coupling of interferometric technology for spectral analysis and optical microscopy
configurations, leading to the introduction of Fourier transform infrared microspectroscopy (FTIRMS).
FTIRMS allows for the IR spectra of single cells to be recorded with sufficient sensitivity to provide
detailed analysis of molecular properties [10,11]. The applications extend beyond fundamental
research in cell biology and include biomedical research and molecular diagnostics [12]. The coupling
of IR microscopes to synchrotron light sources has provided improved performance, enabling high
signal-to-noise measurements with diffraction-limited spatial resolution [13]. These developments
have extended FTIRMS to the study of weaker spectroscopic features in cellular samples. Despite these
advances, one remaining challenge is the assignment of absorption bands in complex cellular spectra
to specific molecular absorbers. Assignments based on functional group identification have often been
used in the recent literature. However, it has been stressed that such an approach is often unreliable
for the purpose of compound identification, given the extensive number of cellular absorbers that
provide overlapping bands in the same spectral region. It was proposed by one of these authors that
the complexity of the problem could be reduced by using 2D correlation spectroscopy (2DCOS) to
analyze the correlations between multiple bands in cellular spectra that evolve over time and thus
identify bands arising from the same absorber. In the present work, we demonstrate for the first
time the application of 2DCOS to the assignment of bands in static samples by using the spatial
position of the measurement as the physical variable along which the spectra are aligned. We use
this approach to interpret the molecular origin of the spectroscopic changes observed in the sample
following metal exposure.

2. Results and Discussion

We studied the response of the SH-SY5Y neuroblastoma cell line and the A549 pulmonary
carcinoma cell line following exposure to MAPbI; and MASnI;. Both MAPbI; and MASnI; are
water-soluble compounds, and their dissolution in the culture medium provides a variety of aqueous
forms of Pb%* and Sn%* ions, in addition to insoluble species such as lead carbonates, hydroxides,
and phosphates. Experimental details of the preparation are provided in Section 4. In this study,
we removed the precipitates before incubating the cells with the conditioned medium. Therefore,
we ascribe the biological effects to soluble species such as aqueous Pb>* and Sn?*, and possibly to
methylammonium cations and iodine derivatives. Mortality and overall response in cell lines exposed
to either MAPbI; or MASnI; suspensions showed an increase in cellular mortality, thus underlining the
toxicity of both compounds [6]. An example of the toxicity response of the two cell lines is provided in
Appendix A (Figure Al). Despite the comparable increase in cell mortality, toxicity of MAPbI; seems
to be mediated by different mechanisms in the SH-SY5Y and A549 cell lines [2].

We tried to gain insight into the molecular events that accompany cellular response to metal
exposure by performing FTIRMS measurements on fixed adherent cells following treatment with the
perovskites. The cells were cultured on CaF, optical slides and inspected using an FTIR microscope
to collect transmission IR absorption spectra and maps of single cells with diffraction-limited spatial



Molecules 2020, 25, 336 30f13

resolution. The FTIR absorption spectrum from a SH-SY5Y cell in the energy range 1000-4000 cm™"! is
shown in Figure 1A. Figure 1B shows the details of the spectrum of a single cell exposed to 100 ug/mL
of MAPDI; (blue) or 100 pg/mL of MASnI; (red) and compares it to the spectrum of a non-treated cell
(black).
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Figure 1. Infrared (IR) spectra of the SH-SY5Y neuroblastoma cells. (A) IR spectrum from a SH-SY5Y
cell. (B) Zoom-in on the absorbance in the 1350-1750 cm™! range of non-treated (black), MAPbI; (blue),
and MASnI; (red) treated cells. Figure reproduced and modified from [6] (I.B. doctoral thesis).

The main contribution to the spectral region detailed in Figure 1B arises from the absorption bands
of carbonyl and imide containing compounds, although contributions from other organic molecules
such as amines are also present. In cellular spectra, the dominant contribution in this region is usually
assigned to polypeptide bands, termed Amide I and Amide II, around 1650 cm™! and 1550 cm™!,
respectively, with the assumption that protein absorption is dominant. In purified proteins, the fine
structure of these bands is often used to quantify the relative abundance of specific secondary structure
components [14]. The use of amide bands for the study of protein conformation has also been extended
to cells and tissue. Application to such samples is challenging and limited by the compositional
complexity of the samples themselves. Cells and tissues, particularly live ones, are characterized
by a mixture of polypeptides and other organic molecules absorbing in the same spectral region.
In many cases, performing a detailed analysis of protein secondary structure is unreliable in such
samples because of overlapping contributions from multiple absorbing molecules [15]. Despite these
difficulties, some cases have been reported where the Amide I band has been used to track protein
conformational changes within cells or tissues. One such case is the study of neurodegenerative diseases
involving the formation of amyloid deposits, consisting of misfolded polypeptides that aggregate into
an intermolecular (3-sheet conformation. Since the deposits are compositionally nearly pure, they have
been identified from the characteristic Amide I absorption at ca. 1625-1628 cm™! [10,16,17]. In early
examples, these assignments were confirmed using staining protocols for amyloids. In the case of fixed
cells and tissue, the contribution of many small molecules to this spectral region is removed by the
washing steps of fixation, thus simplifying the problem of interference from small molecule absorption.
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To facilitate the resolution of different overlapping spectral contributions and reduce baseline
effects, we analyzed the second derivative of the absorbance spectra. The 2nd derivative traces in the
1200 cm~1-1800 cm™! spectral region for cells unexposed and exposed to perovskite suspensions are
shown in Figure 2. The traces show the 2nd derivative of the average spectra collected by mapping
single cells at a diffraction-limited spatial resolution. Figure 2A shows the effect of exposure to MAPbI;3
and MASnI; on the spectra of A549 cells. Figure 2B shows the corresponding measurements performed
on metal treated and untreated SH-SYS5 cells. Spectra in both A and B were recorded on cells fixed
after five days of exposure to the metals. Figure 2C shows the difference between the average spectrum
of A549 cells exposed to MAPbI; and unexposed cells to highlight dominant spectral changes.

For unexposed cells, the Amide I region of unexposed cells is characterized by a strong contribution
at 1655 cm™~! and a shoulder at 1638 cm~!. This pattern is common to many eukaryotic cell types
and is due to the abundance of a-helical proteins absorbing around 1655 cm™!. The contribution
from B-sheet protein structures, at approximately 1635 cm™, is responsible for the shoulder on the
lower wavenumber side. Other secondary structure components absorb in this region, together
with contributions from biomolecules other than proteins, and induce small variations on this basic
pattern. A weaker contribution is also observed at 1680-1690 cm~!, which can arise from other
secondary structure motifs such as 3-sheet, 3-turns, and other molecules including nucleic acids and
sphingolipids. Due to the preparation protocol of the samples involving repeated washings following
fixation, it is likely that contributions from small water soluble and alcohol soluble molecules such as
metabolites have been removed, except for acyl lipids, which are at least partially retained by fixation.
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Figure 2. Average 2nd derivative of IR absorbance spectra of single cells in the 1200 cm~'-1800 cm~!
range. (A) A549 cells, unexposed and after five days exposure to MAPbI;, MASnI;. (B) SH-SYS5
cells, unexposed and after five days exposure to MAPbI; and MASnI3. (C) Subtraction between the
average spectrum of A549 cells, exposed and unexposed to MAPbI3. (D) Time course of the ratio of
2nd derivative absorption at 1652 cm~! and 1627 cm™! following exposure of A549 cells to MAPbI;3,
expressed as average + 0. Figure reproduced and modified from [6] (I.B. doctoral thesis).
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Figure 2 shows that exposure to both metal salts causes the appearance of a new strong band in
the Amide I region with an apparent maximum at 1627 cm~!. The subtraction spectrum of Figure 2C
highlights the spectral changes and confirms that the main change is the appearance of a band with
a maximum at 1624 cm~!, accompanied by other minor components. The difference between the
apparent band maxima in the total spectra and subtraction spectra may be due to the presence of
overlapping bands that shift the apparent band maximum. Changes are also seen in the Amide
II region, with some components disappearing and new components appearing after exposure to
metals. The Amide II band is also sensitive to the secondary structure of polypeptides. Therefore,
the observation of parallel changes in the Amide I and Amide II region favors the assignment of
these changes to amide containing compounds. However, the Amide II band of Figure 2D is also
unusually small compared to the Amide I in the same figure, which does not rule out a contribution
from molecules other than polypeptides.

Alkyl ammonium ions can give absorption bands in the same region as the Amide I and Amide II
bands. We can rule out a contribution from residual perovskite crystals because all their absorptions
were below 1600 cm™! [18]. However, we cannot exclude that the main difference bands in Figure 2C
arise from the methylammonium ions themselves, which may have been adsorbed by the cell, although
they should have been removed by the extensive washing steps following fixation.

The diagram in Figure 2D shows the increase of the 1627 cm~! band over time relative to the
1652 cm™! band, measured on samples collected at different days. The band starts appearing within
two days after exposure and rapidly increases over time. The slow time course of the increase disfavors
the accumulation of methylammonium iodide as the origin of the 1627 cm~! absorption and suggests a
mechanism that relies on biochemical changes in response to exposure. One important factor is the role
of fixation chemistry on the final composition of the sample. While fixation preserves the morphology
and part of the subcellular architecture of the cells, it also alters their chemical composition and the
conformation of biological macromolecules. Molecular products of fixation should also be considered
for the interpretation of spectroscopic data.

To clarify the assignments and exclude at least some possibilities, we analyzed the spectra using
2D correlation spectroscopy (2DCOS). The analysis allows us to identify groups of bands that can arise
from the same compound or to exclude the ones that cannot by looking at their correlation properties.
In standard applications, 2DCOS is applied to the spectra of samples that evolve as a function of time
or as a function of some physical variable such as temperature or pressure [19]. We have previously
applied this method to the assignment of bands in complex cellular spectra evolving in time [15,20].
In the present application, we used a recently introduced variation of the technique by reporting
correlations as a function of position in the space of the measured spectrum [21]. We used such
correlations to identify bands that arise from the same species as a way to confirm or disprove their
assignment to specific molecules. For such purposes, we applied the 2DCOS algorithm to the set of
spectra collected by mapping a single cell. The resulting synchronous and asynchronous spectra for
a cell exposed to MAPbI; are shown in Figure 3. Bands that arise from the same molecular species
or from species with the same spatial distribution must show synchronous changes (i.e., display
cross correlation peaks (outside of the diagonal) with the same sign in the Synchronous plot). They
must also display weak or absent correlation peaks in the Asynchronous plot, although the latter are
often difficult to confirm because of band overlap. This is true for bands that arise from the same
compound, but also for bands from different compounds that have the same spatial distribution.
The synchronous plot in Figure 3A shows the presence of a peak multiplet at 1655, 1627, 1548, and
1515 cm™!, marked with crosses along the diagonal, together with the corresponding correlation peaks
outside of the diagonal. The positive value of the correlation peaks (red color) indicates that the peaks
display an in-phase correlation. The same peak multiplet shows a lack of or minor correlation in
the asynchronous plot of Figure 3B, indicating that these peaks arise from the same compound or
from multiple compounds with the same spatial distribution. The correlation is consistent with, but
not exclusive to, the assignment of bands in this multiplet to the Amide I and Amide II pairs [19].
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In contrast, the opposite correlation was observed in the Synchronous plot of Figure 3A between
the 1627 cm™! band and the carbonyl band at 1715 cm™!, indicating that they arise from different
molecular species. The observation excluded an assignment to molecules such as glycosaminoglycans
or other polysaccharides that contain both amide and ester functions (although an assignment to their
hydrolysis products is possible, as discussed later). It would be useful to assess the correlation between
the 1627 cm~! band and the 2855 cm /2920 cm™~! bands in the CH; stretching region (not shown)
that are typically assigned to long alkyl chains in lipids. However, the large difference in wavelength
between the two regions means that the diffraction-limited focal spots differ in size by a factor of two
and effectively probe different regions of the sample, thus altering the significance of the correlations.
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Figure 3. 2D correlation spectroscopy analysis of the spectral changes in a single SH-SY5Y cell exposed
to 100 pg/mL of MAPbI; for five days. (A) Synchronous plot. The crosses identify the main peaks under
discussion, at 1655, 1627, 1548, and 1515 cm™?, along the diagonal, and the corresponding cross-peaks.
The dashed green lines are used to guide the eye to the wavenumber scale. The Z scale (correlation)
is in arbitrary units. Positive values of the correlation peaks (red color) indicate in-phase correlation;
negative values (blue color) indicate opposite-phase correlation. (B) Asynchronous plot. The crosses
identify the same locations marked in the synchronous plot.

An Amide I band in the proximity of 1620~1630 cm™! is often assigned to proteins in the amyloid
fold, with a 3-sheet structure supported by extended intermolecular hydrogen bonding. This fold is
characterized by a two-component Amide I band, with a stronger component around 1620-1630 cm ™"
and a weaker one around 1660-1690 cm™! [22]. In the 2DCOS Synchronous plot of Figure 3A, we could
not see correlation peaks involving a band in this position, suggesting that this is not a protein in the
amyloid fold. A weak band is seen at 1678 cm™! in the difference spectra of Figure 2, but the lack of a
synchronous correlation and appreciable asynchronous correlation suggests that the band is unrelated
to the species that absorb at 1627 cm™! and 1655 cm™!.

The correlation between bands at 1627, 1515, and 1548 cm™! suggests that the band may arise
from a polypeptide. However, the intensity of the band at 1627 cm~!, relative to the one at 1655 cm™~!,
is surprising. After five days of exposure, the two bands became comparable, indicating that the
number of amide bonds absorbing at 1627 cm™! is of the same order of magnitude as that of all other
cellular polypeptides. This would represent a large change in the conformation of cellular proteins
associated to the cell or the extensive expression of new proteins. It would be surprising for any known
individual intracellular protein to account for such intensity.

An alternative assignment that is consistent with the 2DCOS spectra of Figure 3 is that the band at
1627 cm~! may arise from the hydrolysis of amide containing molecules. Such a reaction would lead to
the formation of amine groups, with absorption in the proximity of 1620 cm™!, and of a carboxylic acid
group, which would absorb approximately in the 1550 cm™~! region when deprotonated and in the
1700 cm™! region when protonated.
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IR mapping of the 1627 cm™! band throughout an SH-SY5Y cell is shown in Figure 4. Mapping
confirms that the band arises from molecules located within the cell itself or on the cell surface, and
not from a deposit in its surroundings. The band is clearly absent in cells that were not exposed to
metal salts. When present, it appears to track the distribution of the 1652 cm~! band. Unfortunately,
the diffraction-limited resolution of the IR maps, approximately 7 um at these wavenumbers, does not
allow us to associate the band to any specific subcellular structure. Nonetheless, IR maps exclude the
possibility that the band arises from an extracellular deposit.
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Figure 4. Transmission IR absorption maps of SH-SYS5 cells. (A) Map at 1652 cm™! of an untreated
SH-SY5Y cell following fixation. (B) Map at 1652 cm™! of an SH-SY5Y cell following treatment with
100 pg/mL MAPbI; and fixation. (C) Map at 1627 cm™! of the same SH-SY5Y cell as in A. (D) Map
at 1627 cm™! of the same treated SH-SY5Y cell as in (B). All maps show the distribution of minus the
intensity of the second derivative of absorbance at the given wavenumber value. The cells treated with
MAPbI; show an intense absorption band at 1627 cm~! with approximately the same distribution as
the 1652 cm™! component of the Amide I band. The 1627 cm™! band is absent in the untreated cell.
Scale bar: 20 um. Figure reproduced and modified from [6] (I.B. doctoral thesis).

Identifying proteins that could give rise to the observed conformational changes is of interest
in understanding the biochemical origin of Pb** and Sn?* toxicity. Pb?* is known to bind tightly
to Ca?" and Zn?* binding proteins under physiologically relevant conditions, thereby disrupting
their function [23]. Several Zn?* and Ca?* proteins such as zinc finger proteins and calmodulin are
regulatory proteins [24]. However, due to their relatively low abundance, regulatory proteins cannot
account for the intensity of the observed spectroscopic changes.

Shelton et al. [25,26] and Gonick [27,28] reported the induced expression of a protein that associates
with lead in forming intranuclear inclusion bodies in neuroblastoma cells exposed to lead. They also
reported the constitutive expression in neural cells of a protein leading to inclusion body formation,
following chronic lead exposure. The identity of the protein has not been definitively established and
may also correspond to more than one polypeptide. It has been proposed that the protein or proteins
accomplish a protective function by immobilizing lead in an insoluble form and prevent its interaction
with other cellular components. Such a mechanism would be consistent with the de novo synthesis
of large amounts of protein and explain the presence and intensity of the band at 1627 cm~!. The
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inclusion bodies formed by protein overexpression in engineered bacterial cells also display the IR
spectrum of amyloids [29], in agreement with the hypothesis that inclusion bodies could be the origin
of the spectral changes observed in our experiments. Despite this possibility, we failed to observe
inclusion body formation in our samples using transmission electron microscopy (data not shown).

The appearance of a strong band around 1625 cm™! has been reported for eukaryotic cells
undergoing apoptosis [30] and attributed to the induction of a (3-sheet structure in cellular proteins.
The band was formed without the exogenous addition of heavy metal ions. If the same molecular
species were responsible for the appearance of this band in our samples, then the causal relationship
with heavy metal ions may only be indirect. Heavy metal ions would be responsible for triggering
apoptosis by inducing generally stressful conditions. The subsequent formation of the 1627 cm™! band
would be associated with the apoptotic process itself via ex novo protein overexpression or via the
refolding of existing proteins.

An interesting possibility is that proteins of the pentraxin structural family may be involved in
the formation of the observed aggregated 3-sheets. Some of them have been detected as a component
of amyloid plaques [31] and have been reported to form intramolecular 3-sheet structures absorbing
at 1627 cm™!. Pentraxin expression has not been studied in the cell lines used in our study, however,
their known biological and biophysical properties make them candidates as components of the
intermolecular 3-sheet aggregates reported in our study.

One additional possibility is that the band may arise from albumin, which is known to refold into
a [3-sheet structure under the effect of temperature and metal ions [32]. Albumin is a component of the
culture medium, making it one of the most abundant single proteins in a cell culture. It is possible
that the refolded protein associates to the cell or the membrane via an unknown mechanism, giving
rise to the observed changes. However, albumin is also present in the media used for untreated cells,
although heavy metals in untreated samples are limited to the nutrients present in the medium and are
present only in low concentration. A hitherto undefined mechanism that involves the heavy metals
must mediate its association to or its uptake by the cell to fully explain our results. The appeal of this
hypothesis is that, because of its abundance in the medium used for sample preparation, albumin
can fully explain the intensity of the 1627 cm~! absorption. 2DCOS analysis excludes the presence
of amyloids, implying that a different secondary structure must be at the origin of this band if the
aggregation of albumin is involved.

Poly-L-lysine displays a strong band at 1627 cm™ from the absorption of the amine group
in the lysine residue. The band overlaps with the absorption from the Amide I band of the
polypeptide backbone when the latter is folded into a 3-sheet structure at neutral or alkaline pH [33].
The superposition of these two contributions creates the appearance that the Amide I to Amide II
ratio is unusually high. Poly-L-lysine was used as an adhesion layer for cells in the preparation of
our samples. It is conceivable that the chelation of metal ions may be involved in its aggregation and
association to the cell surface or internalization. This explanation would rationalize both the intensity
of the band at 1627 cm™! relative to the overall cellular absorption and to the 1540 cm~! Amide Il band,
where a contribution from lysine absorption is absent.

In addition to the proteins just discussed above, additional species that satisfy the constraints
resulting from the 2DCOS analysis include abundant amine and amide-containing molecules that
can survive the washing steps involved in cellular preparation, mostly polysaccharides, but also
any smaller molecules that may be tightly associated with cellular macromolecules or be involved
in crosslinking during fixation. One final possibility is that part of the multiplets in the 2DCOS
spectra results from the amines (approx.1600-1630 cm™!) and carboxylates (approx.1500-1580 cm™!)
produced by the hydrolysis of amide containing molecules including polypeptides, sphingolipids,
or polysaccharides. Systematic biochemical tests and analysis are required to restrict the pool of
candidates and reach a final identification.
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3. Materials and Methods

3.1. Culture of Mammalian Cell Lines

A549 Type II human alveolar basal adenocarcinoma epithelial cells (ECACC catalogue no.
86012804) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) medium (Life Technologies,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin
(P/S). Human neuroblastoma SH-SY5Y cells (ECACC catalogue no. 94030304) were cultured in a
DMEM/F-12 medium (Life Technologies) supplemented with 10% FBS and 1% P/S. Both cell lines were
cultured at 37 °C in a humidified, 5% CO; atmosphere.

Cells were plated on calcium fluoride (CaF;) optical windows transparent for IR light (Crystran,
Poole, UK) at a density of 20,000 cells using poly-L-lysine as an adhesion layer. Before administration to
cells, MAPbI; and MASnI; powders were suspended in culture medium (concentration of 100 pug/mL).
Solutions were vortexed, left for five days at Room Temperature (RT), filtered with a 0.22 pm pore
size syringe filter (Merck Millipore, Burlington, MA, USA) and stored at 4 °C until used. Cells were
incubated for five days with the halide perovskite medium solutions, rinsed with warm PBS (1x), and
fixed using increasing concentrations of ethanol (20%, 40%, 60%, and 80%). Fixed cells were rinsed
three times with MilliQ H,O, left to dry overnight in a laminar flow hood, then stored in a desiccator
for a maximum of five days before the IR measurements.

3.2. Toxicity Studies

In vitro toxicity studies were performed by exposing plated cells to filtered solutions of MAPbI3
(100 pg/mL) or MASNI3 (100 pg/mL), prepared as described in the previous section. Toxicity was
assessed by counting viable cells in a Neubauer chamber at given time intervals. Only attached cells
displaying a clear cytoplasm were counted as viable.

3.3. IR Microscopy Measurements

We performed Fourier transform infrared microspectroscopy (FTIRMS) measurements on beamline
U2B at the National Synchrotron Light Source (NSLS, Brookhaven National Lab, Upton, NY, USA), and
on beamline SMIS at the SOLEIL synchrotron (Paris, France). We used a Thermo Nicolet Continuum
IR microscope set-up coupled to a Thermo Nicolet Magna 860 FTIR (Thermo Nicolet Instrument,
Madison, WI, USA). We used a clean area of the CaF, optical window for background collection, then
selected cells for IR measurements using the visible optical path of the microscope. Spectra were
collected in transmission mode by closing the confocal apertures to obtain a diffraction-limited spot in
the mid-IR spectral region, and raster scanning individual cells. Spectra were then used individually
or assembled into 2D maps representing IR absorption throughout the cell. For detailed analysis,
spectra were converted to the 2nd derivative of absorbance. The averaged spectrum of a single cell
was obtained by discarding spectra for which the 2nd derivative of absorbance fell outside of the
range |0.00002|—]0.0002| and averaging the remaining spectra. From one to three cells were mapped
for each condition under study. To obtain the plots in Figure 4D, the spectra of 100-150 single cells
were averaged for each time point. The ratio of the 2nd derivative absorption at 1652 cm~! and
1627 cm™! + ¢ (variance) is shown in Figure 4D. IR data processing and analysis were performed using
the software packages Omnic version 7.2 (Thermo Fischer, Waltham, MA, USA) and OPUS version 7.5
(Bruker Optics, Ettlingen, Germany). Spectral diagrams were created using OriginPro 2018 (Origin Lab
Corporation, Northampton, MA, USA). 2DCOS analysis was performed using the software package
MATLAB (MathWorks, Natick, MA, USA), as described previously. [20]

4. Conclusions

We used FTIRMS to study the effect of exposure to MAPbl; and MASnI; on SH-SYS5 and A549
cells at the molecular level. Our observations show that the cellular response to Sn?* ions and Pb?*
ions leads to similar changes in the cellular IR absorption spectra. Exposure to both compounds leads
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to the appearance of a strong band at 1627 cm ™! accompanied by weaker absorption bands. Our results
suggest that the band at 1627 cm~! is associated with a general response to metal cation exposure, since
it is displayed by unrelated cell lines and different metal ions. The present experiments do not allow us
to clarify whether this is related to a specific protective mechanism or if it arises from a non-specific
response, with only an indirect causal link to the presence of heavy metals. Cellular fixation chemistry
may also be contributing to the observed spectroscopic response. It is also unclear whether the changes
thus detected have a direct or inverse causal relationship to the underlying molecular events that lead
to cellular toxicity.

As a novel methodological tool, we used 2DCOS analysis on spatially resolved spectra to
corroborate or disprove possible assignments of this band. The analysis allowed us to rule out
the accumulation of polypeptides in the amyloid (3-sheet fold as a possible assignment, despite the
similarity of peak position with the one characteristic for the Amide I band of these structures. The same
analysis also ruled out that the band may arise from acyl lipids or from polysaccharides containing
both amide and ester groups.

Remaining hypotheses include the cellular accumulation of amine or amide containing molecules
including some polysaccharides and smaller molecules resistant to fixation, and the metal-driven
refolding and uptake of poly-L-lysine and/or albumin used in sample preparation. The aggregation and
refolding of cellular proteins is not completely ruled out, although it looks unlikely in light of the extent
of the changes and the need to involve a major fraction of cellular proteins. Future research involving
a much larger dataset and biochemical tests will be directed to confirm or disprove these hypotheses.

While the identity of the major product of exposure, absorbing at 1627 cm~!, has not yet been
defined, excluding its assignment to an amyloid deposit is an important conclusion. The current
literature on the IR microscopy of cells and tissue conventionally uses an absorption band in this position
to identify the presence of amyloid deposits. We now show that such an assignment is unreliable
when based only on such band and in the absence of additional biochemical characterization. Multiple
alternative assignments are possible, corresponding to very different biochemical interpretations.

From the methodological point of view, these results are of interest beyond the specific biochemical
issue. They provide preliminary corroboration of the usefulness of 2DCOS in simplifying the
interpretation of complex biological spectra when applied to stationary samples such as fixed cells and
tissue. This application of 2DCOS has to date been restricted to samples undergoing dynamic changes
such as living cells. However, fixed or dried biological systems comprise most of the samples that are
currently analyzed by FTIRMS, thus greatly expanding the scope of the method.
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Appendix A

To assess overall cellular toxicity of MAPbI3 or MASnI3, we exposed human SH-SY5Y and A549
cell lines to the filtered solutions of the perovskites and we counted the surviving cells at successive
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time intervals. The results are summarized in Figure Al. These show a generally decreasing survival
rate for both cell lines when exposed to either perovskite. Toxicity effects appear more marked for
the SH-SY5Y cell line, which appear to shrink and detach following exposure. In contrast, A549 cells,
while showing reduced mortality, also display morphological changes such as enlarged dimensions
and multiple nuclei, and alterations of the cell cycle following exposure to both MAPbI; and MASnI;.
The different response of the two cell lines has already been reported when investigating the toxicity of
MAPDI; [2] and is now confirmed for MASnI;.

SH-SYS5 cells A549 cells
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Figure Al. Quantification of living cells upon exposure to MAPbI3 and MASnI3. (a,c) SH-SY5Y
neuroblastoma cells; (b,d) A549 lung epithelial cells. Histograms show the average of triplicate
measurements. Bars are means + 0. The histograms show an average of at least three independent
repeats. Bars are means + 0. One-way ANOVA tests followed by Tukey-Kramer post-hoc tests were
performed (non-treated vs. MAPDbI3 or vs. MASnI3 treated conditions), * p < 0.01, ** p < 0.005,
** p < 0.0005. Panel b is reproduced from [2] with permission from the Royal Society of Chemistry.
Panels (a—d) are reproduced from [6] (I.B. doctoral thesis).

References

1. Kojima, A.; Teshima, K,; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers
for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051. [CrossRef]

2. Benmessaoud, L.R.; Mahul-Mellier, A.-L.; Horvath, E.; Maco, B.; Spina, M.; Lashuel, H.A; Forré, L. Health
hazards of methylammonium lead iodide based perovskites: Cytotoxicity studies. Toxicol. Res. 2016, 5,
407-419. [CrossRef]

3. Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5,
47-58. [CrossRef]


http://dx.doi.org/10.1021/ja809598r
http://dx.doi.org/10.1039/C5TX00303B
http://dx.doi.org/10.2478/v10102-012-0009-2

Molecules 2020, 25, 336 12 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Noel, N.K;; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.;
Eperon, G.E.; Pathak, SK.; Johnston, M.B.; et al. Lead-free organic-inorganic tin halide perovskites for
photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061-3068. [CrossRef]

Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R P.H.; Kanatzidis, M.G. Lead-free solid-state organic-inorganic
halide perovskite solar cells. Nat. Photonics 2014, 8, 489-494. [CrossRef]

Benmessaoud, LR. Human and Eco-Toxicological Impacts of Organometallic Halide Perovskites; EPFL: Lausanne,
Switzerland, 2017. [CrossRef]

Quaroni, L.; Zlateva, T. Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 2011,
136, 3219-3232. [CrossRef]

Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007,1767,1073-1101. [CrossRef]
Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74, 141-173.
[CrossRef]

Miklossy, J.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, E.; Miller, L.; Martins, R.N.; Waeber, G.;
Mooser, V.; et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes.
Neurobiol. Aging 2010, 31, 1503-1515. [CrossRef]

Lasch, P.,; Boese, M.; Pacifico, A.; Diem, M. FT-IR spectroscopic investigations of single cells on the subcellular
level. Vib. Spectrosc. 2002, 28, 147-157. [CrossRef]

Diem, M.; Mazur, A.; Lenau, K.; Schubert, J.; Bird, B.; Miljkovi¢, M.; Krafft, C.; Popp, ]. Molecular pathology
via IR and Raman spectral imaging. J. Biophotonics 2013, 6, 855-886. [CrossRef]

Quaroni, L. Infrared microscopy in the study of cellular biochemistry. Infrared Phys. Technol. 2018, 102779.
[CrossRef]

Arrondo, J.L.; Goni, EM. Structure and dynamics of membrane proteins as studied by infrared spectroscopy.
Prog. Biophys. Mol. Biol. 1999, 72, 367-405. [CrossRef]

Quaroni, L.; Zlateva, T. Real-time metabolic analysis of living cancer cells with correlated cellular
spectro-microscopy. Anal. Chem. 2014, 86, 6887-6895. [CrossRef]

Miller, L.M.; Dumas, P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim.
Biophys. Acta Biomembr. 2006, 1758, 846-857. [CrossRef]

Zandomeneghi, G.; Krebs, M.R.H.; McCammon, M.G.; Fandrich, M. FTIR reveals structural differences
between native beta-sheet proteins and amyloid fibrils. Protein Sci. 2004, 13, 3314-3321. [CrossRef]

Huck, C.; Neubrech, E; Vogt, J.; Toma, A.; Gerbert, D.; Katzmann, J.; Hartling, T.; Pucci, A. Surface-Enhanced
Infrared Spectroscopy Using Nanometer-Sized Gaps. ACS Nano 2014, 8, 4908-4914. [CrossRef]

Noda, I. Two-Dimensional Infrared Spectroscopy. J. Am. Chem. Soc. 1989, 111, 8116-8118. [CrossRef]
Quaroni, L.; Zlateva, T.; Normand, E. Detection of Weak Absorption Changes from Molecular Events in
Time-Resolved FI-IR Spectromicroscopy Measurements of Single Functional Cells. Anal. Chem. 2011, 83,
7371-7380. [CrossRef]

Lasch, P; Noda, I. Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved
Vibrational Spectra. Appl. Spectrosc. 2019, 73, 359-379. [CrossRef]

Baronio, C.M.; Baldassarre, M.; Barth, A. Insight into the internal structure of amyloid- oligomers by
isotope-edited Fourier transform infrared spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 8587-8597. [CrossRef]
[PubMed]

Magyar, ].S.; Weng, T.C.; Stern, C.M.; Dye, D.F; Rous, B.W.; Payne, ].C.; Bridgewater, B.M.; Mijovilovich, A.;
Parkin, G.; Zaleski, ].M.; et al. Reexamination of lead(Il) coordination preferences in sulfur-rich sites:
Implications for a critical mechanism of lead poisoning. J. Am. Chem. Soc. 2005, 127, 9495-9505. [CrossRef]
[PubMed]

Hanas, ].S.; Rodgers, ].S.; Bantle, J.A.; Cheng, Y.G. Lead inhibition of DNA-binding mechanism of Cys(2)His(2)
zinc finger proteins. Mol. Pharmacol. 1999, 56, 982-988. [CrossRef] [PubMed]

Klann, E.; Shelton, K.R. The effect of lead on the metabolism of a nuclear matrix protein which becomes
prominent in lead-induced intranuclear inclusion bodies. J. Biol. Chem. 1989, 264, 16969-16972.

Shelton, K.R.; Todd, ].M.; Egle, PM. The induction of stress-related proteins by lead. J. Biol. Chem. 1986, 261,
1935-1940.

Gonick, H.C. Lead-binding proteins: A review. |. Toxicol. 2011, 2011, 686050. [CrossRef]

Gonick, H.C. Renal disease and hypertension. Am. ]. Kidney Dis. 2002, 40, 202-204. [CrossRef]


http://dx.doi.org/10.1039/C4EE01076K
http://dx.doi.org/10.1038/nphoton.2014.82
http://dx.doi.org/10.5075/epfl-thesis-7595
http://dx.doi.org/10.1039/c1an15060j
http://dx.doi.org/10.1016/j.bbabio.2007.06.004
http://dx.doi.org/10.1016/S0079-6107(00)00021-3
http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.019
http://dx.doi.org/10.1016/S0924-2031(01)00153-9
http://dx.doi.org/10.1002/jbio.201300131
http://dx.doi.org/10.1016/j.infrared.2018.11.026
http://dx.doi.org/10.1016/S0079-6107(99)00007-3
http://dx.doi.org/10.1021/ac501561x
http://dx.doi.org/10.1016/j.bbamem.2006.04.010
http://dx.doi.org/10.1110/ps.041024904
http://dx.doi.org/10.1021/nn500903v
http://dx.doi.org/10.1021/ja00203a008
http://dx.doi.org/10.1021/ac201318z
http://dx.doi.org/10.1177/0003702818819880
http://dx.doi.org/10.1039/C9CP00717B
http://www.ncbi.nlm.nih.gov/pubmed/30964131
http://dx.doi.org/10.1021/ja0424530
http://www.ncbi.nlm.nih.gov/pubmed/15984876
http://dx.doi.org/10.1124/mol.56.5.982
http://www.ncbi.nlm.nih.gov/pubmed/10531404
http://dx.doi.org/10.1155/2011/686050
http://dx.doi.org/10.1053/ajkd.2002.34681

Molecules 2020, 25, 336 13 of 13

29.

30.

31.

32.

33.

Doglia, SM.; Ami, D.; Natalello, A.; Gatti-Lafranconi, P.; Lotti, M. Fourier transform infrared spectroscopy
analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol. |. 2008, 3,
193-201. [CrossRef]

Zelig, U.; Kapelushnik, J.; Moreh, R.; Mordechai, S.; Nathan, I. Diagnosis of cell death by means of infrared
spectroscopy. Biophys. J. 2009, 97, 2107-2114. [CrossRef]

Strang, F.; Scheichl, A.; Chen, Y.C.; Wang, X.; Htun, N.M.; Bassler, N.; Eisenhardt, S.U.; Habersberger, J.;
Peter, K. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism
driving cortical inflammation in Alzheimer’s disease? Brain Pathol. 2012, 22, 337-346. [CrossRef]

Navarra, G.; Giacomazza, D.; Leone, M.; Librizzi, F.,; Militello, V.; San Biagio, P.L. Thermal aggregation and
ion-induced cold-gelation of bovine serum albumin. Eur. Biophys. ]. 2009, 38, 437-446. [CrossRef] [PubMed]
Rozenberg, M.; Shoham, G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys.
Chem. 2007, 125, 166-171. [CrossRef] [PubMed]

Sample Availability: Samples of the perovskites CH3NH;3Pbl3 (MAPbI3) and CH3NH35nl3 (MASnI;3) are available
from the authors.

@ @ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY-NC-ND 4.0) license (https://creativecommons.org/choose/).


http://dx.doi.org/10.1002/biot.200700238
http://dx.doi.org/10.1016/j.bpj.2009.07.026
http://dx.doi.org/10.1111/j.1750-3639.2011.00539.x
http://dx.doi.org/10.1007/s00249-008-0389-6
http://www.ncbi.nlm.nih.gov/pubmed/19132367
http://dx.doi.org/10.1016/j.bpc.2006.07.008
http://www.ncbi.nlm.nih.gov/pubmed/16919385
http://creativecommons.org/
https://creativecommons.org/choose/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Culture of Mammalian Cell Lines 
	Toxicity Studies 
	IR Microscopy Measurements 

	Conclusions 
	
	References

