

Supporting Information

Magnetic Driven Nanocarriers for pH-Responsive Doxorubicin Release in Cancer Therapy

João Nogueira ¹, Sofia F. Soares ¹, Carlos O. Amorim ², João S. Amaral ², Cláudia Silva ^{3,4}, Fátima Martel ^{3,4}, Tito Trindade ¹ and Ana L. Daniel-da-Silva ^{1,*}

- ¹ CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; jh.nogueira@ua.pt (J.N.); sofiafsoares@ua.pt (S.S.); tito@ua.pt (T.T.)
- ² CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal; amorim5@ua.pt (C.A); jamaral@ua.pt (J. A.)
- ³ Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal ; rakelclaudia@hotmail.com (C.S.); fmartel@med.up.pt (F.M.)
- ⁴ i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal
- * Correspondence: ana.luisa@ua.pt; Tel.: +351-234-370-368

Received: 11 December 2019; Accepted: 10 January 2020; Published: 14 January 2020

Figure S1. Calibration curve to determine the DOX concentration using UV-Vis spectroscopy at 480 nm.

Table S1. Doxorubicin loading efficiency and nanoparticle capacity at variable DOX concentration $(pH = 6, C_{NP} = 1.25 \text{ mg/mL}).$

[DOX] _{initial} (µg/mL)	Efficiency (%)	Capacity (µg DOX/mg NP)
110	37.25 ± 2.23	32.92 ± 1.97
120	50.37 ± 1.75	48.61 ± 1.69
190	55.04 ± 2.89	82.40 ± 4.33
350	43.77 ± 4.30	122.54 ± 12.03

Figure S2. Field Dependent Magnetization Curves (without normalization) of Fe₃O₄ nanoparticles (left) and Fe₃O₄@SiκCRG nanoparticles (right).

Figure S3. Speciation of DOX.

Release Kinetics Modeling

To analyse the release kinetics, the Weibull model [S1, S2] was fitted to the experimental data. The Weitbull model is described by equation (S1)

$$m = 1 - e^{\left(-\frac{(t-T_i)^{\beta}}{\alpha}\right)}$$
 (equation S1)

where *m* is the cummulative fraction of released drug (0 to 1), t is the release time, α is the time process,Ti is the lag time, in most cases zero, and β , the shape parameter, characterizes the curve as exponential (b = 1), S-shaped with upward curve followed by turning point (b > 1), or parabolic with higher initial slope, after that consistent with the exponential (b < 1).

Figure S4. Doxorubicin release profiles over 48 hours, with corresponding fitting using the Weibull model.

Table S2. Parameters α and β , as estimated from the application of the Weibull model to the DOX release data, and coefficient of determination (R²).

Parameter	pH 4.2	pH 5.0	pH 7.4
α	1.473	1.127	4.296
β	0.324	0.272	0.058
R ²	0.9576	0.9262	0.9468

References

- ^{1.} Langenbucher, F. Linearization of dissolution curves by the Weibull distribution. *J. Pharm. Pharmacol.* **1972**, *24*, 979–981.
- ^{2.} Costa, P.; Sousa Lobo, M.J. Modeling and comparison of dissolution profile. *Eur. J. Pharm. Sci.* 2001, *13*, 123–133.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).