Supporting information

Article

Synthesis and Bioactivity of Thiosemicarbazones containing Adamantane Skeleton

Van Hien Pham¹, Thi Phuong Dung Phan², Dinh Chau Phan^{3,*} and Binh Duong Vu^{1,*}

- ¹ Drug R&D center, Vietnam Military Medical University. No.160, Phung Hung str., Phuc La ward, Ha Dong district, Hanoi 100000, Vietnam; phamvanhien181288@gmail.com
- ² Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy. No. 15, Le Thanh Tong Str., Hoan Kiem district, Hanoi 100000, Vietnam; pdungdhd@gmail.com
- ³ Hanoi University of Science and Technology. No.1, Dai Co Viet str., Bach Khoa ward, Hai Ba Trung district, Hanoi 100000, Vietnam.
- *Correspondence: chau.phandinh@hust.edu.vn (D.C.P); vbduong2978@gmail.com (B.D.V.); Tel.: +84 983 425 460 (B.D.V); Fax: +84 243 688 4077 (B.D.V.).

Table of content

Scheme 1. Synthesis of thiosemicarbazones 2a-k and 3a-j	1
Table 1. Melting point (m.p), yield (%), molecular formulae (Mol.For.), molecular weight (Mol. V	Vt.)
and Rf of thiosemicarbazones 2a-k and 3a-j	2
Table 2. Minimum inhibitory concentration (MIC) of synthesized thiosemicarbazones 2a-k and 3a-j	j3
Table 3. IC50 of synthesized thiosemicarbazones 2a-k and 3a-j.	4
Table 4. The effect of newly synthesized thiosemicarbazones 2a-k and 3a-j on the viability of HeP	3B,
Hela, A549, and MCF-7 cells after 48 h of incubation	5
¹ H-NMR spectrum of compound 2a	6
¹³ C-NMR spectrum of compound 2a	6
HMBC spectrum of compound 2a	7
HSOC spectrum of compound 2a	7
DEPT spectrum of compound 2a	8
HR-ESI-MS spectrum of compound 2a	8
¹ H-NMR spectrum of compound 2b	9
¹³ C-NMR spectrum of compound 2b	9
ESI-MS spectrum of compound 2b (negative)	.10
ESI-MS spectrum of compound 2b (positive)	10
¹ H-NMR spectrum of compound 2 c	11
¹³ C-NMR spectrum of compound 2 c	11
ESLMS spectrum of compound 2c (negative)	12
ESI-MS spectrum of compound 2c (negative)	12
1H-NMR spectrum of compound 2d	12
13C NMR spectrum of compound 2d	12
FSI MS spectrum of compound 2d (nogotive)	11
ESI-MS spectrum of compound 2d (negative).	. 14 1/
1H NMP spectrum of compound 2a	15
11-NMR spectrum of compound 2e	.15
ESI MS another of compound 2c (nogetive)	. 15
ESI-MS spectrum of compound 2e (negative)	. 10
ESI-MS spectrum of compound 2e (positive)	.10
¹ H-NMR spectrum of compound 21	.17
ESC MC an a function of compound 21	.1/
ESI-MS spectrum of compound 2f (negative)	.18
ESI-MS spectrum of compound 2f (positive)	.18
¹ H-NMR spectrum of compound 2g	. 19
¹³ C-NMR spectrum of compound 2g	. 19
ESI-MS spectrum of compound 2g (negative)	.20
ESI-MS spectrum of compound 2g (positive)	.20
¹ H-NMR spectrum of compound 2 h	.21
¹³ C-NMR spectrum of compound 2h	.21
ESI-MS spectrum of compound 2h (negative)	.22
ESI-MS spectrum of compound 2h (positive)	.22
¹ H-NMK spectrum of compound 21	.23
¹³ C-NMK spectrum of compound 21	.23
ESI-MS spectrum of compound 2i (negative)	.24
ESI-MS spectrum of compound 2i (positive)	.24
¹ H-NMR spectrum of compound 2j	. 25
¹³ C-NMR spectrum of compound 2 j	. 25
ESI-MS spectrum of compound 2j (negative)	. 26

ESI-MS spectrum of compound 2j (positive)	26
¹ H-NMR spectrum of compound 2k	27
¹³ C-NMR spectrum of compound 2k	27
ESI-MS spectrum of compound 2k (negative)	28
ESI-MS spectrum of compound 2k (positive)	28
¹ H-NMR spectrum of compound 3a	29
¹³ C-NMR spectrum of compound 3a	29
ESI-MS spectrum of compound 3a (negative)	30
ESI-MS spectrum of compound 3a (positive)	30
¹ H-NMR spectrum of compound 3b	31
¹³ C-NMR spectrum of compound 3b	31
ESI-MS spectrum of compound 3b (negative)	32
ESI-MS spectrum of compound 3b (positive)	32
¹ H-NMR spectrum of compound 3c	33
¹³ C-NMR spectrum of compound 3 c	33
ESI-MS spectrum of compound 3c (negative)	34
ESI-MS spectrum of compound 3c (positive)	34
¹ H-NMR spectrum of compound 3d	35
¹³ C-NMR spectrum of compound 3d	35
ESI-MS spectrum of compound 3d (negative)	36
ESI-MS spectrum of compound 3d (positive)	36
¹ H-NMR spectrum of compound 3e	37
¹³ C-NMR spectrum of compound 3e	37
ESI-MS spectrum of compound 3e (negative)	38
ESI-MS spectrum of compound 3e (positive)	38
¹ H-NMR spectrum of compound 3f	39
¹³ C-NMR spectrum of compound 3f	39
ESI-MS spectrum of compound 3f (negative)	40
ESI-MS spectrum of compound 3f (positive)	40
¹ H-NMR spectrum of compound 3 g	41
¹³ C-NMR spectrum of compound 3g	41
ESI-MS spectrum of compound 3g (negative)	42
ESI-MS spectrum of compound 3g (positive)	42
¹ H-NMR spectrum of compound 3h	43
¹³ C-NMR spectrum of compound 3h	43
ESI-MS spectrum of compound 3h (positive)	44
¹ H-NMR spectrum of compound 3i	45
¹³ C-NMR spectrum of compound 3i	45
ESI-MS spectrum of compound 3i (negative)	46
ESI-MS spectrum of compound 3i (positive)	46
¹ H-NMR spectrum of compound 3 <i>j</i>	47
¹³ C-NMR spectrum of compound 3 <i>j</i>	47
ESI-MS spectrum of compound 3j (negative)	48
ESI-MS spectrum of compound 3j (positive)	48

3e: $R_1 = H$; $R_2 = 4$ -NO₂

3i: $R_1 = 3 - NO_2$; $R_2 = 4 - OCH_3$ **3j**: $R_1 = 3 - NO_2$; $R_2 = 4 - Cl$

vvi.) and fit of unobelinearbazones 2a K and bu J.									
Comp.	R1	R2	Yield (%)	m.p (°C) Mol.For. (Mol. Wt.)		Rf			
2a	Н	Н	97.0	210.1-212.2	C18H23N3S (313.46)	0.46			
2b	Н	3-NO2	92.7	244.2-246.1	C18H22N4O2S (358.46)	0.38			
2c	Н	4-OCH ₃	95.7	224.5-227.7	C19H25N3OS (343.49)	0.50			
2d	Н	2-OH	95.7	203.8-205.6	C18H23N3OS (329.46)	0.46			
2e	Н	4-NO2	91.3	258.1-260.1	C18H22N4O2S (358.46)	0.43			
2f	Н	$4-OC_2H_5$	95.6	232.2-233.6	C20H27N3OS (357.52)	0.54			
2g	Н	4-Cl	89.6	238.9-239.7	C18H22ClN3S (347.91)	0.68			
2h	2-OH	5-CH3	91.0	241.6-242.5	C19H25N3OS (343.49)	0.54			
2i	3-NO2	$4-OC_2H_5$	61.2	218.7-220.7	C20H26N4O3S (402.51)	0.64			
2j	3-NO2	4-Cl	78.5	252.8-254.0	C18H21ClN4O2S (392.90)	0.53			
2k	2-CH ₃	5-CH3	92.5	212.4-213.8	C20H27N3S (341.52)	0.68			
3a	Н	Н	91.8	231.2-232.7	C19H25N3S (327.49)	0.46			
3b	Н	3-NO2	67.0	251.7-253.5	C19H24N3O2S (372.49)	0.47			
3c	Н	4-Br	65.5	240.9-242.9	C19H24BrN3S (406.39)	0.46			
3d	Н	4-OH	44.3	272.8-273.5	C19H25N3OS (343.49)	0.53			
3e	Н	4-NO2	90.4	266.5-268.9	C19H24N4O2S (372.49)	0.50			
3f	3-NO2	4-Br	17.5	224.5-225.3	C19H23BrN4O2S (451.38)	0.53			
3g	Н	4-Cl	94.0	235.0-236.3	C19H24ClN3S (361.93)	0.58			
3h	Н	4-CH3	73.5	230.3-232.2	C20H27N3S (341.52)	0.36			
3i	3-NO2	4-OCH ₃	69.3	224.6-226.3	C20H26N4O3S (402.51)	0.45			
3j	3-NO2	4-Cl	49.8	250.9-252.4	C19H23ClN4O2S (406.93)	0.54			

Table 1. Melting point (m.p), yield (%), molecular formulae (Mol.For.), molecular weight (Mol. Wt.) and Rf of thiosemicarbazones **2a**–k and **3a–j**.

*Solvent: chloroform/acetone (95/5, *v*/*v*), visualization at UV 254 nm.

	MIC of Synthesized Compounds (µM)								
Comp. No.		Gram (+)		Gram (–)			Fungus		
	EF	SA	BC	EC	PA	SE	CA		
2a	100	25	25	-	-	-	25		
2b	25	50	25	-	-	-	6.25		
2c	12,5	50	100	-	-	-	6.25		
2d	25	-	100	-	100	-	25		
2e	100	50	50	-	-	-	12.5		
2f	50	50	50	-	-	-	25		
2g	25	25	25	-	-	-	6.25		
2h	50	25	50	-	100	-	12.5		
2i	50	50	25	-	-	-	12.5		
2j	50	50	50	-	-	-	25		
2k	100	25	50	-	-	-	12.5		
3a	25	25	50	-	-	-	12.5		
3b	100	25	25	-	-	-	25		
3c	100	100	100	-	-	-	25		
3d	50	50	50	-	-	-	25		
3e	25	25	25	-	-	-	6.25		
3f	25	50	50	-	-	-	25		
3g	25	100	100	-	-	-	25		
3h	50	25	50	-	-	-	12.5		
3i	50	50	50	-	-	-	25		
3ј	100	25	50	-	-	-	12.5		
STM	350	350	175	44	350	175	NT		
CHM	NT	NT	NT	NT	NT	NT	114		

Table 2. Minimum inhibitory concentration (MIC) of synthesized thiosemicarbazones 2a-k and 3a-j.

EF: *Enterococcus faecalis* (ATCC13124); SA: *Staphylococcus aureus* (ATCC25923); BC: *Bacillus cereus* (ATCC 13245); EC: *Escherichia coli* (ATCC25922); PA: *Pseudomonas aeruginosa* (ATCC27853); SE: *Salmonella enterica* (ATCC12228); CA: *Candida albicans* (ATCC10231); STM: streptomycine; CHM: Cycloheximide; NT: not tested; - : inactive.

Comp. No.	IC50 of Synthesized Compounds (µM)								
		Gram (+)		Gram (–)			Fungus		
	EF	SA	BC	EC	PA	SE	CA		
2a	24.78	4.78	4.12	-	-	-	6.78		
2b	10.78	8.99	12.45	-	-	-	3.57		
2c	5.68	9.66	8.24	-	-	-	3.45		
2d	4.89	-	25.22	-	24.67	-	5.35		
2e	25.89	6.78	6.09	-	-	-	5.56		
2f	12.78	7.88	7.82	-	-	-	6.35		
2g	6.78	7.89	6.88	-	-	-	3.24		
2h	11.67	6.24	7.56	-	27.45	-	4.57		
2i	12.78	12.56	12.11	-	-	-	3.57		
2j	6.88	22.67	22.12	-	-	-	4.34		
2k	47.89	6.45	8.49	-	-	-	5.68		
3a	6.34	6.99	12.33	-	-	-	3.67		
3b	25.89	8.99	9.91	-	-	-	7.89		
3c	28.99	50.22	40.45	-	-	-	5.67		
3d	17.89	21.45	25.89	-	-	-	6.78		
3e	4.67	9.23	10.11	-	-	-	3.22		
3f	13.57	21.44	11.88	-	-	-	3.67		
3g	4.78	35.67	32.11	-	-	-	5.34		
3h	12.56	7.88	9.85	-	-	-	6.79		
3i	12.57	15.67	25.62	-	-	-	7.89		
3ј	35.46	6.46	7.49	-	-	-	4.67		

Table 3. IC₅₀ of synthesized thiosemicarbazones 2a-k and 3a-j.

EF: Enterococcus faecalis ATCC13124; SA: Staphylococcus aureus ATCC25923; BC: Bacillus cereus ATCC

13245; EC: *Escherichia coli* ATCC25922; PA: *Pseudomonas aeruginosa* ATCC27853; SE: *Salmonella enterica* ATCC12228; CA: *Candida albicans* ATCC10231; - : inactive

Comp. No.	Conc.	Hep3B	Hela	A549	MCF-7
	30µM	69.07 ± 1.37	71.58 ± 1.49	75.40 ± 1.50	58.80 ± 1.23
2a	100 µM	64.47 ± 0.86	60.07 ± 0.97	70.38 ± 0.94	49.35 ± 0.79
- 4	30µM	76.33 ± 1.79	55.29 ± 1.10	83.32 ± 1.96	45.42 ± 0.91
2b	100 µM	70.72 ± 0.46	53.80 ± 1.41	77.20 ± 0.50	43.31 ± 2.63
_	30µM	68.60 ± 2.74	72.09 ± 2.30	76.36 ± 1.82	59.22 ± 1.89
2c	100 μM	59.84 ± 2.20	59.67 ± 1.43	65.32 ± 2.40	49.02 ± 1.18
. 1	30µM	19.34 ± 2.54	61.12 ± 1.91	21.11 ± 2.78	50.21 ± 1.57
2d	100 μM	16.82 ± 1.60	24.55 ± 1.85	18.37 ± 1.75	20.17 ± 1.52
•	30µM	67.73 ± 1.34	72.77 ± 2.42	73.94 ± 1.46	59.79 ± 1.99
2e	100 μM	68.2 ± 0.63	61.01 ± 1.16	74.45 ± 0.69	50.12 ± 0.95
26	30µM	63.5 ± 1.47	69.84 ± 1.85	69.32 ± 1.61	57.38 ± 1.52
21	100 µM	54.53 ± 1.19	57.2 ± 2.90	59.53 ± 1.30	47.00 ± 2.38
2-	30µM	76.83 ± 2.31	71.65 ± 2.01	83.87 ± 2.52	42.50 ± 2.35
2g	100 µM	70.25 ± 0.41	47.90 ± 2.03	76.69 ± 0.44	39.35 ± 1.67
0h	30µM	23.71 ± 0.88	44.42 ± 2.35	25.88 ± 0.96	36.50 ± 1.93
211	100 µM	21.86 ± 0.20	34.76 ± 1.36	23.86 ± 0.22	28.55 ± 1.12
2:	30µM	78.88 ± 2.63	64.37 ± 1.47	86.11 ± 2.88	52.89 ± 1.21
21	100 µM	76.06 ± 0.27	61.40 ± 0.17	83.03 ± 0.29	50.45 ± 0.14
2:	30µM	65.01 ± 2.17	46.16 ± 0.38	70.97 ± 2.37	37.92 ± 0.31
2 j	100 µM	62.83 ± 2.23	40.66 ± 1.04	68.59 ± 2.43	33.40 ± 0.86
21	30µM	67.46 ± 1.69	69.88 ± 2.12	73.64 ± 1.84	57.41 ± 1.74
ZK	100 µM	46.78 ± 0.21	55.18 ± 2.92	51.06 ± 0.23	45.33 ± 2.40
3a	30µM	72.06 ± 1.92	74.40 ± 1.07	78.67 ± 2.09	61.12 ± 0.88
	100 µM	67.93 ± 1.11	69.77 ± 0.35	74.16 ± 1.22	57.32 ± 0.29
3h	30µM	75.15 ± 0.36	70.17 ± 1.90	82.04 ± 0.40	57.64 ± 1.56
50	100 µM	71.76 ± 0.48	68.65 ± 2.51	78.34 ± 0.52	56.40 ± 2.06
30	30µM	85.76 ± 2.42	81.90 ± 2.11	93.62 ± 2.64	67.28 ± 1.74
50	100 µM	68.37 ± 1.58	64.27 ± 2.47	74.63 ± 1.73	52.80 ± 2.03
3d	30µM	80.15 ± 1.68	81.46 ± 1.60	87.5 ± 1.83	66.92 ± 1.31
0 u	100 µM	72.57 ± 1.83	73.28 ± 2.50	79.22 ± 2.00	60.20 ± 2.05
3e	30µM	67.02 ± 1.37	80.59 ± 1.39	73.17 ± 1.49	66.21 ± 1.14
	100 µM	53.79 ± 0.71	77.66 ± 0.29	58.72 ± 0.77	63.80 ± 0.24
3f	30µM	72.26 ± 1.01	77.05 ± 2.19	78.89 ± 1.11	63.30 ± 1.80
	100 µM	65.95 ± 0.25	67.78 ± 1.64	71.99 ± 0.28	55.68 ± 1.35
3g	30µM	80.42 ± 1.16	62.38 ± 0.71	87.79 ± 1.27	51.25 ± 0.58
	100 µM	70.65 ± 1.77	51.23 ± 0.49	77.13 ± 1.94	42.09 ± 0.40
3h	30µM	75.08 ± 1.11	81.90 ± 1.04	81.96 ± 1.21	67.28 ± 0.85
3i	100 μM	67.16 ± 2.57	75.92 ± 1.60	73.31 ± 2.81	62.37 ± 1.31
	30µM	78.34 ± 0.71	77.12 ± 2.03	85.52 ± 0.77	63.36 ± 1.67
	100 μM	74.04 ± 0.61	56.81 ± 1.81	80.83 ± 0.67	46.67 ± 1.49
3j	30µM	69.54 ± 2.39	87.18 ± 1.91	75.92 ± 2.61	71.62 ± 1.57
	100 μM	61.25 ± 2.24	74.51 ± 2.17	66.86 ± 2.45	61.21 ± 1.78
CPT*	0.3 μM	69.56 ± 1.27	57.06 ± 1.35	67.68 ± 1.88	56.68 ± 0.68
	14.4 µM	37.65 ± 1.21	18.61 ± 0.56	26.74 ± 2.16	28.89 ± 1.07

Table 4. The effect of newly synthesized thiosemicarbazones **2a-k** and **3a-j** on the viability of HeP3B, Hela, A549, and MCF-7 cells after 48 h of incubation.

*Camptothecine. Data is presented as percentage of the cell viability \pm SD.

¹H-NMR spectrum of compound **2b**

ESI-MS spectrum of compound **2b** (positive)

¹H-NMR spectrum of compound **2c**

¹H-NMR spectrum of compound **2d**

¹H-NMR spectrum of compound **2e**

300

307.9

190.8

151.9

150

0.0-

209.8

200

250

342.0

350

326.0

356.9 371.0

400

485.0

m/z

450

ESI-MS spectrum of compound 2j (negative)

¹H-NMR spectrum of compound 3a

¹H-NMR spectrum of compound **3b**

¹H-NMR spectrum of compound **3d**

¹H-NMR spectrum of compound **3f**

¹H-NMR spectrum of compound **3g**

S42

¹H-NMR spectrum of compound **3h**

S44

