The Application of Reversible Intramolecular Sulfonamide Ligation to Modulate Reactivity in Organometallic Ruthenium(II) Diamine Complexes.

Samuel Kemp, Timothy J. Prior, Huguette Savoie, Ross W. Boyle, Benjamin S. Murray* Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, UK. E-mail b.s.murray@hull.ac.uk.

Crystallography

Figure S1: Disorder present in **1**. The second component generated by the action of the mirror plane is shown in blue.

Table S1: X-ray diffraction parameters for the measurement of single crystals of 1 - 6.

Identification code	1	2	3	4	5	6
Empirical formula	C11 H21 C1 F6 N3 O2 P Ru S	C12 H20 Cl F9 N3 O2 P Ru S	C11 H18 Cl F9 N3 O2 P Ru S	C12 H15 F9 N3 O2 P Ru S	C13 H22 C1 F9 N3 O2 P Ru S	C12 H21 C1 F6 N3 O P Ru
Formula weight	540.86	608.86	594.98	568.37	622.88	504.81
Temperature / K	150(2)	150(2)	150(2)	150(2)	290(2)	100(2)
Wavelength / Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 2 ₁ /m	P-1	P21/c	P21/n	P21/c	Cc
Unit cell dimensions	$\begin{array}{l} a=9.797(3)\ \mathring{A},\ \alpha=90^{\circ}.\\ b=8.0578(14)\ \mathring{A},\ \beta=\\ 106.65(2)^{\circ}.\\ c=12.566(3)\ \mathring{A},\ \gamma=90^{\circ}. \end{array}$	$ \begin{split} a &= 8.653(2) ~~{\rm \AA}, ~\alpha {=} 62.25(2)^\circ. \\ b &= 11.646(4) ~~{\rm \AA}, ~\beta {=} \\ 74.794(17)^\circ. \\ c &= 12.582(2) ~~{\rm \AA}, ~\gamma ~= 70.94(2)^\circ. \end{split} $	$ \begin{split} a &= 10.2766(6) \; \mathring{A}, \; \alpha = 90^{\circ}. \\ b &= 15.9431(11) \; \mathring{A}, \; \beta = \\ 103.692(5)^{\circ}. \\ c &= 12.2666(7) \; \mathring{A}, \; \gamma = 90^{\circ}. \end{split} $	$ \begin{split} a &= 17.3745(6) ~~\mathring{A}, ~\alpha = 90^{\circ}. \\ b &= 12.9936(6) ~~\mathring{A}, ~\beta = \\ 106.252(3)^{\circ}. \\ c &= 17.5162(6) ~~\mathring{A}, ~\gamma = 90^{\circ}. \end{split} $	$ \begin{split} a &= 10.6575(10) ~~\mathring{A}, ~\alpha = 90^\circ. \\ b &= 18.2064(11) ~~\mathring{A}, ~\beta = \\ 102.291(7)^\circ. \\ c &= 11.8695(11) ~~\mathring{A}, ~\gamma = 90^\circ. \end{split} $	$ \begin{array}{l} a = 21.3588(13) ~~\AA, ~\alpha = 90^{\circ}. \\ b = 11.3132(5) ~~\AA, ~\beta = \\ 98.312(5)^{\circ}. \\ c = 15.2874(9) ~~\AA, ~\gamma = 90^{\circ}. \end{array} $
Volume / Å ³	950.4(4)	1051.3(5)	1952.7(2)	3796.4(3)	2250.3(3)	3655.2(4)
Z	2	2	4	8	4	8
Density (calculated) / Mgm ⁻³	1.890	1.923	2.024	1.989	1.839	1.835
Absorption coefficient / mm ⁻¹	1.227	1.141	1.226	1.120	1.068	1.155
F(000)	540	604	1176	2240	1240	2016
Crystal size / mm ³	$0.310 \times 0.280 \times 0.050$	$0.350\times0.180\times0.030$	$0.140\times0.140\times0.130$	$0.5 \times 0.4 \times 0.28$	0.480 x 0.450 x 0.440	0.250 x 0.220 x 0.180
2θ range for data collection / $^\circ$	2.170 to 26.367	1.845 to 26.372	2.040 to 29.253	1.945 to 29.201	2.082 to 27.999	3.267 to 33.432
Index ranges	$-12 \le h \le 12, -9 \le k \le 10,$ $-13 \le 1 \le 15$	$\begin{array}{c} -10 \leq h \leq 10, -14 \leq k \leq 14, \\ -12 \leq l \leq 15 \end{array}$	$\begin{array}{c} -11 \leq h \leq 14, -21 \leq k \leq 19, \\ -16 \leq l \leq 16 \end{array}$	$\begin{array}{c} -23 \leq h \leq 22, -16 \leq k \leq 17, \\ -23 \leq l \leq 23 \end{array}$	$\begin{array}{c} -10 \leq h \leq 14, -23 \leq k \leq 24, \\ -15 \leq l \leq 15 \end{array}$	$\begin{array}{c} -33 \leq h \leq 29, -14 \leq k \leq 17, \\ -22 \leq l \leq 23 \end{array}$
Reflections collected	6550	14406	14660	29653	14540	15658
Independent reflections	2071 [R(int) = 0.0337]	14406 [R(int) = 0.120]	5232 [R(int) = 0.0331]	10212 [R(int) = 0.0296]	5424 [R(int) = 0.0545]	11230 [R(int) = 0.0335]
Completeness to theta = 25.242°	99.3 %	97.3 %	99.6 %	100.0 %	99.7 %	99.2 %
Absorption correction	Semi-empirical from equivalents	Analytical	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.776 and 0.733	0.9678 and 0.7151	0.968 and 0.963	0.933 and 0.915	0.773 and 0.721	0.839 and 0.787
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	2071 / 248 / 195	14406 / 0 / 272	5232 / 15 / 267	10212 / 29 / 495	5424 / 49 / 262	11230 / 52 / 457
Goodness-of-fit on F ²	1.065	0.929	0.856	1.063	0.950	0.972
Final R indices [I>2sigma(I)]	R1 = 0.0610, wR2 = 0.1713	R1 = 0.1013, wR2 = 0.2558	R1 = 0.0290, wR2 = 0.0579	R1 = 0.0471, wR2 = 0.1380	R1 = 0.0601, wR2 = 0.1752	R1 = 0.0356, wR2 = 0.0857
R indices (all data)	R1 = 0.0768, wR2 = 0.1820	R1 = 0.1380, wR2 = 0.2807	R1 = 0.0504, wR2 = 0.0610	R1 = 0.0643, wR2 = 0.1445	R1 = 0.0915, wR2 = 0.1903	R1 = 0.0429, wR2 = 0.0882
Absolute structure parameter	none	none	none	none	none	0.36(3)
Largest diff. peak and hole / $e Å^{-3}$	1.156 and -1.078	2.218 and -1.758	0.929 and -0.505	1.301 and -1.375	1.223 and -1.253	0.891 and -0.772

Table S2: Extra data table to compare 6 at different temperatures.

Identification code	6 (low T)	6 (high T)		
Empirical formula	C12 H21 Cl F6 N3 O P Ru	C12 H21 C1 F6 N3 O P Ru		
Formula weight	504.81	504.81		
Temperature / K	100(2)	298(2)		
Wavelength / Å	0.71073	0.71073		
Crystal system	Monoclinic	Monoclinic		
Space group	Cc	C2/c		
Unit cell dimensions	$\begin{array}{l} a=21.3588(13)~{\rm \AA},~\alpha=90^{\circ}.\\ b=11.3132(5)~{\rm \AA},~\beta=98.312(5)^{\circ}.\\ c=15.2874(9)~{\rm \AA},~\gamma=90^{\circ}. \end{array}$	$\begin{split} a &= 21.808(8) \ \mathring{A}, \ \alpha &= 90^\circ. \\ b &= 11.359(3) \ \mathring{A}, \ \beta &= 98.91(3)^\circ. \\ c &= 15.552(7) \ \mathring{A}, \ \gamma &= 90^\circ. \end{split}$		
Volume / Å ³	3655.2(4)	3806(2)		
Ζ	8	8		
Density (calculated) / Mgm ⁻³	1.835	1.762		
Absorption coefficient / mm ⁻¹	1.155	1.110		
F(000)	2016	2016		
Crystal size / mm ³	0.250 x 0.220 x 0.180	0.300 x 0.250 x 0.180		
2θ range for data collection / $^\circ$	3.267 to 33.432	3.219 to 29.574		
Index ranges	$\begin{array}{c} -33 \leq h \leq 29, -14 \leq k \leq 17, \\ -22 \leq l \leq 23 \end{array}$	-30<=h<=30, -15<=k<=13, - 21<=l<=16		
Reflections collected	15658	23219		
Independent reflections	11230 [R(int) = 0.0335]	5313 [R(int) = 0.0442]		
Completeness to theta = 25.242°	99.2 %	99.3 %		
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents		
Max. and min. transmission	0.839 and 0.787	0.842 and 0.711		
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²		
Data / restraints / parameters	11230 / 52 / 457	5313 / 0 / 216		
Goodness-of-fit on F ²	0.972	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0356, wR2 = 0.0857	R1 = 0.0435, wR2 = 0.1198		
R indices (all data)	R1 = 0.0429, wR2 = 0.0882	R1 = 0.0649, wR2 = 0.1293		
Absolute structure parameter	0.36(3)	none		
Largest diff. peak and hole / $e {\mathring{A}}^{-3}$	0.891 and -0.772	0.926 and -0.795		

¹H, ¹³C and ¹⁹F NMR spectra

Figure S2: ¹H (top) and ¹³C{¹H} and ¹⁹F (following page) NMR spectra (DMSO- d_6) of **1**.

Figure S3: ¹H (top), ¹³C{¹H} and ¹⁹F (following page) NMR spectra (DMSO- d_6) of *N*-(2-(cyclohexa-1,4-dien-1-yl)ethyl)-2,2,2-trifluoroethane-1-sulfonamide.

Figure S4: ¹H (top), ¹³C{¹H} and ¹⁹F (following page) NMR spectra (DMSO- d_6) of [Ru(η^6 -2,2,2-trifluoro-*N*-phenethylethane-1-sulfonamide)Cl₂]₂.

Figure S5: ¹H (top), ${}^{13}C{}^{1}H$ and ${}^{19}F$ (following page) NMR spectra (DMSO- d_6) of **2**.

Figure S6: ¹H (top), ¹³C{¹H} and ¹⁹F (following page) NMR spectra (DMSO- d_6) of **3**.

Figure S9: ¹H (top), ¹³C{¹H} and ¹⁹F (following page) NMR spectra (DMSO- d_6) of **6**.

Figure S10: ¹H (top), ¹³C{¹H} and ¹⁹F (following page) NMR spectra (D₂O) of [Ru(η^6 -C₆H₅CH₂CH₂NHTr)(C₂O₄)(H₂O)].

Figure S12: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **1** at pD = 5.98 (top) and 9.04 (bottom) – conditions where the open- and chelate-forms of the complexes dominate respectively. Selected peaks are labelled (coloured circles) to illustrate chemical shift differences between the open and chelate-form of the complex. Arene loss can be observed in the bottom spectrum – labelled with a black circle.

Figure S13: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **2** at pD = 4.16 (top) and 7.98 (bottom) – conditions where the open- and chelate-forms of the complexes dominate respectively. Selected peaks are labelled (coloured circles) to illustrate chemical shift differences between the open and chelate-form of the complex. Arene loss can be observed in the bottom spectrum – labelled with a black circle.

Figure S14: ¹H NMR (D_2O , 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **3** at pD = 3.24 (top) and 7.46 (bottom) – conditions where the open- and chelate-forms of the complexes dominate respectively. Selected peaks are labelled (coloured circles) to illustrate chemical shift differences between the open and chelate-form of the complex. Arene loss can be observed in the bottom spectrum – labelled with a black circle.

Figure S15: ¹H NMR (D_2O , 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **4** at pD = 1.55 (top) and 7.40 (bottom) – conditions where the open- and chelate-forms of the complexes dominate respectively. Selected peaks are labelled (coloured circles) to illustrate chemical shift differences between the open and chelate-form of the complex.

Figure S16: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **4** with 1 eq 5'-GMP at pD = 7.5 at t = 0 h (top) and t = 144 h (bottom) following incubation at 310 K. The spectra highlight the lack of reactivity between **4** and 5'-GMP under these pH conditions.

Figure S17: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **4** with 1 eq 5'-GMP at pD = 6.5 at t = 0 h (top) and t = 144 h (bottom) following incubation at 310 K. The spectra highlight the slightly increased reactivity between **4** and 5'-GMP under these pH conditions versus pD = 7.5. Due to the low intensity of the signal for the 5'-GMP H8 proton associated with the Ru-5'-GMP adduct this experiment was repeated in quadruplicate. The percentage of 5'-GMP coordinated to ruthenium after 144 h incubation was calculated to be $16 \pm 1.6 \%$ - this value being the average of the four experiments.

Figure S18: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **6** with 1 eq 5'-GMP at pD = 7.5 (top) and pD = 6.5 (bottom) at t = 144 h following incubation at 310 K. The spectra highlight the reactivity of **6** and 5'-GMP under both pH conditions.

Figure S19: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **4** with 1 eq L-histidine at pD = 7.5 at t = 0 h (top) and t = 144 h (bottom) following incubation at 310 K. The spectra highlight the lack of reactivity between **4** and L-histidine under these pH conditions. The changing ratio between L-histidine imidazole proton resonances over the incubation is most likely explained by hydrogen-deuterium exchange at the C2 proton [21].

Figure S20: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **4** with 1 eq L-histidine at pD = 6.5 at t = 0 h (top) and t = 144 h (bottom) following incubation at 310 K. The spectra highlight the lack of reactivity between **4** and L-histidine under these pH conditions. The changing ratio between L-histidine imidazole proton resonances over the incubation is most likely explained by hydrogen-deuterium exchange at the C2 proton [21].

Figure S21: ¹H NMR (D_2O , 295 K, 2.46 mM complex, 0.1 M NaCl) spectra of **6** with 1 eq L-histidine at pD = 7.5 (top) and pD = 6.5 (bottom) at t = 144 h following incubation at 310 K. The spectra highlight the reactivity of **6** and L-histidine under both pH conditions, but predominantly at pD 7.5 due to increased imidazole protonation at pD 6.5.

Figure S22: ¹H NMR (D₂O, 295 K, 2.46 mM complex, 200 mM phosphate buffer, 0.1 M NaCl) spectra of **4** with 0.5 mM bovine serum albumin t = 0 h (top) and t = 72 h (bottom) following incubation at 310 K. The spectra highlight the lack of reactivity of **4** towards bovine serum albumin under these conditions.

References

21. Bradbury, J.H.; Chapman, B.E.; Pellegrino, F.A.; Hydrogen-Deuterium Exchange Kinetics of the C-2 Protons of Imidazole and Histidine Compounds. *J. Am. Chem. Soc.* **1973**, 95, 6139–6140.