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Abstract: Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): 

polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium 

triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical 

characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates 

that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The 

study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of 

relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved 

by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. 

The maximum DC ionic conductivity was measured to be 1.016 × 10−5 S cm−1 when 42 wt.% of 

plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 

V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where 

no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced 

by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 

mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used 

as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role 

of lattice energy of magnesium salts in energy storage performance is discussed in detail. 

Keywords: polymer blends; magnesium salt; impedance; dielectric properties; LSV and TNM; CV 

study; Salt lattice energy; electrochemical double-layer capacitor 
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1. Introduction 

The solid polymer electrolytes (SPEs) were applied for lithium batteries since 1979 [1]. Over 

decades, it has become one of the main components in electrochemical devices, such as proton 

batteries and electrochemical double-layer capacitor (EDLC). These liquid electrolytes show a good 

performance in a few energy devices, but they evaporate easily and also have detrimental impact on 

internal components of the devices, for instance corrosion and leaking problems [2–4]. Based on these 

considerations, researchers have found that SPEs are a better candidate to be an alternative to the 

liquid electrolytes. Moreover, safety, long shelf life, and simple fabrication process are features of 

SPEs [5]. To enhance the mechanical strength, thermal stability as well as increasing the sites 

availability for ion hopping of SPEs, it is much better to blend two or more different polymers [6,7]. 

Now, the role of natural polymers cannot be ignored as they possess high quality properties, 

such as biodegradability that fulfill the requirements of green chemistry. Chitosan (CS) and poly 

(vinyl alcohol) (PVA) are two common examples of natural polymer that have been extensively 

investigated in the applications of energy storage devices [8–10]. CS consists mainly of a linear 

polysaccharide that is linked by-(1–4)-linked-D-glucosamine and N-acetyl-D-glucosamine. To obtain 

this polymer, the deacetylation process of chitin has to be carried out. In comparison with other 

polymers, CS is characterized by biodegradability, biocompatibility, low toxicity as well as 

affordability properties [11,12]. Similarly, PVA is a nontoxic polymer characterized by enrichment 

with polar oxygen atom within the vinyl alcohol groups, which facilitates complexation with cations, 

forming unique polymer electrolyte complexes [13,14]. It also possesses relatively high dielectric 

strength, high chemical stability, reasonable charge storage capacity, dopant-dependent electric, 

optical properties, and abrasion resistance [15]. These two types of polymers invade the literatures 

[16–18]. 

In an attempt to enhance the ionic conductivity of SPEs, salt addition into the electrolyte has 

been introduced because it is critical to be implemented in electrochemical storage devices. However, 

the process of salt addition is not free from problems. For example; lithium-based salts show an 

overall good performance with non-biodegradability which has a detrimental impact on the 

environment [19]. Nowadays, the H+, Mg2+, and NH4+ ions are considered as the alternatives for Li+ 

ion in SPEs [2,20]. For example, the blend of PEO/EmimBF4 has shown an increase in ionic 

conductivity with the addition of magnesium triflate (Mg(CF3SO3)2) salt up to 9.4 × 10−5 Scm−1 at room 

temperature [21]. Sarangika et al. [22] also documented a relatively high ionic conductivity for the 

poly(ethylene oxide) (PEO) film of 1.19 × 10−4 Scm−1 with the addition of Mg(CF3SO3)2 salt at room 

temperature. The advantages of the addition of Mg(CF3SO3)2 salt are cheapness and that it can be 

grasped at open air and abundance in nature [23]. Guan et al. [24] believed that the divalent Mg2+ ion 

is strongly attracted by the lone pair electrons of oxygen atoms whereas CF3SO3− anion is 

characterized by delocalized negative charges across the sulfonate group, which is stabilized due to 

the resonance stabilization, which creates this triflate group as an excellent leaving group. This 

behavior facilitates salt dissolution within polymer bodies, thus enhancing the ionic mobility [25]. In 

another study, the impact of glycerol as a plasticizer on ionic conductivity of starch-Mg(C2H3O2)2 

system was carried out and it was demonstrated that the glycerol has the ability to accelerate the salt 

dissociation [26]. Glycerol weakens the columbic force between cations and anions. As a consequence, 

ion concentration can be increased with the increasing of salt dissociation, which is desired for 

improving the conductivity. Mattos et al. [27] achieved a development of conductivity of ions of the 

electrolyte systems from 10−7 S cm−1 to 10−5 S cm−1 as a result of glycerol addition. 

Herein, the electrochemical double-layer capacitor (EDLC) is one of the energy storage devices 

that appear as strong alternatives for the conventional batteries. Researchers have found that EDLC 

shows relatively high durability and power density compared to other supercapacitors (SCs) [28–30]. 

The ease and cheapness of fabrication of EDLC is an interesting feature of this device. This is due to 

utilization of few materials in the fabrication of EDLC, such as carbon nanotubes [31], graphite, [32] 

and activated carbon [33]. Nowadays, activated carbon is found to be utilized that have better 

performance than other materials owing to reasonable chemical durability, big surface area, and also 

good electronic conductivity [34]. In dealing with this material, the mechanism of energy storage in 
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EDLC is explained that on the basis of the non-Faradaic mechanism whereby a double layer at the 

interfacial area is formed as a result of ion accumulation [35]. In other words, no electron transfer (i.e., 

Non-Faradaic process) takes place at the surface of the electrodes and the electrolytes. Instead, there 

is merely a buildup of charge 

In this present work, 40 w.t.% of Mg(CF3SO3)2 salt with various quantities of glycerol were mixed 

with the CS/PVA blend to prepare magnesium ion conducting polymer blend electrolytes. The 

impact of glycerol plasticizer on the ionic conductivity based on the electrical properties via electrical 

impedance spectroscopy was explored at room temperature. In the analysis of the data points, 

dielectric properties of the electrolytes are discussed. The relatively high conducting electrolyte is 

utilized in the fabrication of EDLC. 

2. Experimental 

2.1. Materials and Polymer Electrolyte Preparation 

All chemical materials were procured from Sigma-Aldrich and directly employed with no 

further purification. Two main raw materials used at the preparation of glycerolized the 

CS:PVA:Mg(CF3SO3)2 blend electrolyte systems are; chitosan (CS), and polyvinyl Alcohol (PVA) with 

the average molecular weights of 310,000–375,000 g·moL−1, and 35,000 g·moL−1, respectively. Other 

raw materials are magnesium triflate Mg(CF3SO3)2, acetic acid (CH3COOH), and glycerol (C3H8O3) 

where involved in solution casting technique. The preparation of the blend comprised a dissolution 

of 0.5 g of CS in 30 mL of the solution of 1% acetic acid, which was then stirred for several hours at 

room temperature. Meanwhile, dissolution of 0.5 g in PVA in 30 mL of distilled water at 80 °C was 

performed with stirring for several hours. Afterwards, this solution was cooled down to room 

temperature. The two separate solutions (CS and PVA) were mixed and stirred continuously under 

magnetic stirrer condition to prepare PVA:CS polymer blends. Subsequently, 40 wt.% (0.666) of 

magnesium triflate Mg(CF3SO3)2 salt was added to the CS:PVA blended solutions, and stirred until 

the homogenous mixture was gained. Then, glycerol plasticizer separately with various 

concentrations was added to the electrolyte systems. Finally, the CS:PVA:Mg(CF3SO3)2 systems were 

coded as CSPVMG1, CSPVMG2, and CSPVMG3 with the incorporation of 14, 28, and 42 wt.% of 

glycerol, respectively. To reach dryness, each of the prepared solutions was poured into dry and clean 

labeled Petri dishes and left untouched to evaporate leisurely at ambient temperature. Table 1 

displays the constitution of the solid polymer electrolyte film samples. 

Table 1. The designation and composition for the glycerol plasticized of PVA:CS:Mg(CF3SO3)2 

systems. 

Sample Designation PVA (g) CS (g) Mg (CF3SO3)2 (g) Glycerol (g) Glycerol W.t.% 

CSPVMG1 0.5 0.5 0.666 0.271 14 

CSPVMG2 0.5 0.5 0.666 0.647 28 

CSPVMG3 0.5 0.5 0.666 1.206 42 

2.2. Fabrication of the EDLC 

The construction of the electrochemical double-layer capacitor involves four successive simple 

steps. The 1st step comprises dry mixing process, in which 81.25% activated carbon (AC) and 6.25% 

carbon black (CB) are mixed using planetary ball miller at 500 r/min for 20 min. The 2nd step is 

dissolution process that AC-CB powder is dissolved in a solution of 15 mL N-methyl pyrrolidone 

(NMP) in the presence of 12.5% of polyvinylidene fluoride (PVdF) as a binder until appearance of 

thick black solution. The 3rd step is coating process. The obtained black solution can be coated on an 

aluminum foil via doctor blade with thickness of 0.25 mm. The last step is drying process. 

Subsequently, the coated aluminum foils are dried in a pre-heated oven at 60 °C for few hours. The 

dried electrodes are cut into a small specified circle shape with a geometric area of 2.01 cm2 and stored 
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in a desiccator prior to characterization processes. The arrangement of the EDLC design is AC| best 

conducting sample |AC. In this design, CR2032 coin cell is mounted in a Teflon case. 

2.3. Electrical and Electrochemical Characterization 

2.3.1. Impedance and Electrical Study 

The LCR meter (HIOKI 3531 Z Hi-tester, Nagano, Japan) impedance analyzer was used in the 

electrical impedance measurements of the synthesized samples in the range of frequencies between 

50 Hz and 5 MHz. In the measurement process, the free-standing films were cut into small discs with 

diameter of 2 cm. The CSPVMG electrolyte samples were sandwiched between two stainless-steel 

electrodes as blocking electrodes for with a great pressure in order to reach enough contact. The 

Nyquist plot of real (Zr) and imaginary (Zi) parts of complex impedance (Z*) were obtained. Finally, 

in the analysis process, the bulk resistance (Rb) was taken from extrapolating the spike to the (Zr-axis) 

at the relatively high intercept of a semicircle for each sample. 

2.3.2. Transference Number Analysis (TNM) 

From the analysis of the TNM, the main charge carrier species in the electrolyte was determined 

using V&A Instrument DP3003 digital DC power supply. The electrolyte with the maximum 

conductivity was placed in between two ions-blocking stainless steel (SS) electrodes where mounted 

in a Teflon case. The polarization process starts at 0.80 V working potential at room temperature. 

Both ion (tionic) and electron (telec) transfer numbers were calculated using the following equation: 

������ =
�� − ��

��
 (1) 

����� = 1 − ������ (2) 

where; Ib is the onset current and Is is the steady state current. 

2.3.3. Linear Sweep Voltammetry (LSV) 

The electrolyte potential window was examined with linear sweep voltammetry (LSV). Similar 

to TNM measurements, the cell arrangement was organized. The potentiostat Digi-IVY DY2300 was 

arranged for the measurement at 20 mV/s scan rate. The potential range between 0 and 3.5 V was 

chosen at ambient temperature. 

2.3.4. Cyclic Voltammetry (CV) of the EDLC 

The preliminary test for the constructed EDLC was done at room temperature using cyclic 

voltammetry (CV) to determine the energy storage mechanism. Digi-IVY DY2300 potentiostat was 

used at various scan rates of 10, 20, 50, and 100 mV/s. 

3. Results and Discussion 

3.1. XRD Analysis 

The XRD pattern for the CS:PVA:Mg(CF3SO3)2 blend electrolytes doped with different glycerol 

amount is portrayed in Figure 1. The XRD spectra of pure PVA and CS films are indicated in Figure 

1a,b. Previous study showed that the two distinct crystalline peaks at 2θ = 15.1° and 20.9° are feature 

of pure CS film. These crystalline peaks at 15.1° and 20.9° correspond to the reflection planes of (110) 

and (220), respectively. The broad peak at 2θ extended from 35° to 55° is the feature of the amorphous 

structure of CS [36]. A peak at around 19° proofs the semi-crystalline structure of pure PVA. The PVA 

attachment with OH groups along the main chain is sufficient to have a strong intramolecular and 

intermolecular hydrogen bonding. Remarkably, a broad peak centered at 2θ = 40.7° refers to an 

amorphous structure in PVA [37]. 
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The deconvolution route is performed so as to specify the amorphous peaks and crystalline 

peaks [38]. The degree of crystallinity (Xc) of the peaks is obtained from the XRD deconvolution, as 

indicated in Figure 1. The broad and large peaks indicate the amorphous region, whereas the narrow, 

sharp, and small peaks denote crystalline peaks. This research indicated that as the 50 wt.% of CS 

was blended with 50 wt.% of PVA, the intensity of the diffraction peaks decreased and broadened 

(see Figure 1c). In addition, the crystalline peak of PVA at 2θ = 19°changed into two smaller 

diffraction peaks, as documented in literature [39,40]. This is caused by hydrogen bonding disruption 

owing to the dominance of amorphous structure in the blend system. Thus, polymer blending could 

be considered as an effective methodology to decrease the crystalline segment of PVA. It is notable 

to see that the Xc is reduced upon the addition of CS content (see Table 2). The Xc of CS in this research 

is quite close to the previous report [41]. As clear in Figure 1d–f, the crystalline peaks in CSPVMG1 

become less sharp and smaller due to the inclusion of glycerol. Further glycerol inclusion up to 42 

wt.% will cause to produce lesser crystalline peaks and as exhibited in CSPVMG3. The Xc for each 

system was achieved with Equation (4) and is shown in Table 2. The Xc of the CSPVMG1 system is 

13.87. The lowest Xc, which is 4.55, is acquired for CSPVMG3. This shows that CSPVMG3 is the most 

amorphous system. The amorphous structure dominance accelerates polymer backbone segmental 

motion, which increases the ions transportation and conductivity [37]. 

The conductivity values follow the trend of degree of crystallinity. 

�� =
��

��
× 100% (3) 

where Ac and AT are the areas of total crystalline and the area of total amorphous and crystalline, 

respectively that is obtained using the deconvolution method with the OriginPro software. The 

Gaussian function mode was performed to fit the XRD spectra. Compared to the pure films and 

CS:PVA blend, the Xc in the plasticized systems is significantly decreased (see Table 2). 
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Figure 1. XRD pattern for (a) pure PVA, (b) pure CS, (c) CS:PVA blend, (d) CSPVMG1, (e) CSPVMG2, 

and (f) CSPVMG3. 
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Table 2. The degree of crystallinity using XRD spectra deconvolution. 

Sample Designation Degree of Crystallinity (%) 

Pure PVA 41.68 

Pure CS 15.97 

CS:PVA 15 

CSPVMG1 13.87 

CSPVMG2 11.26 

CSPVMG3 4.55 

3.2. Dielectric Properties 

To deal with the mechanism of ions transport in the electrolyte systems and the polarization 

effect at the sample/electrode interface, the dielectric properties were determined. The behavior of 

ion conduction inside the polymer electrolyte was examined. The two dielectric properties are 

dielectric constant and dielectric loss. Generally, the energy stored in each cycle, and polarity of the 

polymers were specified from the dielectric constant, whereas the waste energy of ions mobility 

represented by dielectric loss [42–44]. The dielectric behavior, such as dielectric constant (ε′), and 

dielectric loss (ε″) of the glycerolized CS:PVA:Mg(CF3SO3)2 electrolyte systems were determined by 

Equations (5) and (6): 

�� =  
�"

��� (��� + �"�)
 (4) 

��� =  
��

��� (��� + �"�)
 (5) 

 

where ε″ and ε′ refer to dielectric loss and dielectric constant, correspondingly. The ω stands for the 

applied field angular frequency (ω = 2πf). 

The Co is the capacitance, which is equal to εoA/t, where εo refers the free space permittivity, A 

stands for the electrodes area, and t refers the sample thickness. Figures 2 and 3 demonstrate the 

variation of dielectric parameters (i.e., ε′ and ε″) along with the frequency for the CSPVMG systems 

at ambient temperature. It is interesting to notice that the dielectric parameters are quite high at low 

(log) frequencies, indicating the existence of electrode polarization (EP) and space charge impacts 

[45–47]. The power of the frequency can easily be identified at intermediate frequency regions due to 

the dominance of the EP effect. A previous study established that the EP region is crucial for 

calculating the mobility and effective ion concentration [48]. Thus, the high value of EP means high 

carrier density. The existences of high charge carriers are important to produce EDLC devices with 

high capacitance. However, the dielectric value drops with rising frequency until it arrives constant 

values at high frequencies due to the periodic reversal of the electric field taken place quickly, 

reflecting no ion dispersion toward the field. In terms of energy storage, a buildup of charges at the 

electrodes and electrolytes interfaces results in the electric dispersion in the intermediate-frequency 

regions [49,50]. Based on Klein et al.’s [48] approach, the behavior of ε′ and ε″ versus log scale of 

frequency should plateau at a lower frequency and then a power law dispersion of ε′ and ε″ spectra 

must be identified at intermediate frequency regions. These phenomena can be seen in Figure 2 and 

Figure 3. These figures explain that the (ε′, ε″) values increase with the quantity of glycerol plasticizer 

into the system, and a sharp rise in the (ε′) for the CSPVMG3 electrolyte sample indicates the high 

ionic conductor at low-frequency [51]. 
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Figure 2. Variation of logarithmdielectric constant (ε′) versus frequency for the CSPVMG1, 

CSPVMG2, and CSPVMG3 electrolyte samples at ambient temperature. 

 

Figure 3. Variation of logarithm dielectric loss (ε″) versus frequency for the CSPVMG1, CSPVMG2, 

and CSPVMG3 electrolyte samples at ambient temperature. 
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To detect the relaxation behavior in the CS:PVA:Mg(CF3SO3)2 systems, the tangent loss (tanδ) 

was analyzed. Figure 4 provides insight into the variation of tangent loss (tanδ) along with the 

frequency for the CSPVMG films at ambient temperature. It is clear that the tangent loss (tanδ) raises 

with increasing frequency, and the maximum value at a definite frequency is observed and beyond 

it commences to decrease. This is resulted from faster increasing in ohmic component (i.e., active 

current) than its capacitive counterpart (i.e., reactive) at the lower frequency [52]. The cause for the 

decline in (tanδ) at a high-frequency region is attributed to independency of an ohmic component to 

the frequency and capacitive component rise in proportion to the frequency [53]. Furthermore, the 

presence of broad peaks at a mid-frequency designates the presence of the non-Debye type of 

relaxation process [54]. Consequently, the loss spectra peaks and their corresponding shifts with 

various quantity of glycerol plasticizer confirm the dielectric relaxation (DR) phenomena [55]. The 

DR occurs in materials subjected to an external electric field (EEF). When an EEF is applied to a 

medium such as polymer electrolyte, microscopic rearrangement (polarization) of the particles 

comprising the medium including electrons, atoms, molecules, and ions takes place so as to align 

with the external field. In general, a time lag develops between the EEF and the polarization of the 

polymer electrolyte. The relaxation time depends on the different characteristic rearrangement time 

of the medium. Previous studies revealed that plasticizer inclusion into the polymer electrolytes 

results in increasing the amorphous phase and dissociate more slats [56–58]. In plasticized polymer 

electrolytes chain and segmental motion increases [59,60]. It is reported that the segmental movement 

increment of polymer chains decreases the relaxation time as a result aids the mechanism of 

transportation. This is mathematically determined from τ = 1/2πfmax, where τ refers to the relaxation 

time for the carrier species. This means that, as the ions mobility increases, the relaxation time is 

decreased, which shows the increment in conductivity of ions as a result of the rise in the system 

segmental movement [61]. 

 

Figure 4. Variation of loss tangent (tanδ) versus frequency for the CSPVMG1, CSPVMG2, and 

CSPVMG3 electrolyte samples at room temperature. 

  

0

5

10

15

20

25

1 2 3 4 5 6 7

Log(f)

T
a

n
d

CSPVMG1

CSPVMG2

CSPVMG3



Molecules 2020, 25, 4503 10 of 22 

 

3.3. Impedance Analysis 

In present work, the SPE films containing a various quantity of glycerol plasticizer were 

characterized using the AC impedance spectroscopy technique. For this purpose, the Nyquist plots 

of impedance spectra (Zi versus Zr) for the all glycerolized CS: PVA: Mg(CF3SO3)2 systems at room 

temperature are exhibited in Figure 5a–c. All spectra are featured by low-frequencies spike (i.e., tail), 

and high-frequencies semicircle [62–64]. From the data analysis, it is achieved that incorporation of 

glycerol plasticizer into the CSPVMG based solid polymer electrolyte systems enhances the ionic 

conductivity. It is also observed that all the electrolyte samples exhibited an inclined spike with the 

semicircle, confirming their semiconducting characteristics [65]. The appearance of the semicircle at 

the high-frequencies is ascribed to the bulk character of the polymer electrolytes and the straight-line 

region at the low-frequencies is caused by blocking electrode effect [66]. It is seen that the diameter 

of half-circle diminishes with raising the quantity of glycerol. From the analysis, the CSPVMG films 

ionic conductivity (σdc) has been calculated using the bulk resistance (Rb) acquired from extrapolating 

the spike to the (Zr-axis) at the higher intercept of a semicircle, using the following equation: 

��� = �
1

��
� × (

�

�
) (6) 

where; t is the film thickness, and A is equal to the known electrode area. In the present work, the 

obtained maximum ionic conductivity is 1.016 × 10−5 S cm−1 when 42 w.t.% plasticizer (i.e., glycerol) 

was added at room temperature, as listed in Table 3. It is clear that the increment of the glycerol 

quantity to the system results in considerable improvement in the ionic conductivity, indicating an 

increase in the charge carrier mobility [67,68]. Inside the polymer body, (i.e., electrolyte films) there 

is an ionic crystal where columbic interaction is disrupted by glycerol plasticizer. Thereby, free ion 

and the film flexibility are dominating [59]. The present results have shown higher conductivity 

compared to our earlier work that the PVA: CS: NH4I system without plasticizer was studied that 2 

× 10−7 Scm−1 was obtained [13]. However, in another study [69] CS:Starch:LiClO4:glycerol system was 

examined and a maximum ions conductivity of 3.7 × 10−4 Scm−1 at room temperature was obtained 

which is slightly higher than the current value of conductivity. 

The electrical equivalent circuit (EEC) depiction is performed in impedance analysis as it offers 

the total picture of the systems [70]. The Cole-Cole plot for the systems comprises a semicircle arc 

and a tail. Thus, the EEC could be indicated by a connection of Rb and constant phase element (CPE) 

in parallel and with another CPE in series [70]. The Zr and Zi values linked to the EEC are expressed 

as: 

���� =
1

���
���� �

��

2
� − � ��� �

��

2
�� (7) 

�� =
��

�(�) + ��

2��(�) + � + 1
+

��� �
���

�
�

�����
 (8) 

where 

� = ����� ��� �
���

�
�,� = ��

���
����� (9) 

�� =
��

�(�)

2��(�) + � + 1
+

��� �
���

�
�

�����
 (10) 

where 

� = ����� ��� �
���

2
� (11) 

where C1 refers the capacitance at high frequency, C2 refers the capacitance at low frequency, p1 refers 

the departure of the circle from the imaginary axis, and p2 refers to the departure of the spike from 

the real axis. The parameters of the EEC for the systems are indicated in Table 4. 



Molecules 2020, 25, 4503 11 of 22 
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CSPVMG3 films at room temperature. 

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Zr (Ohm) x 103

Z
i (

O
h
m

) 
x
 1

03

Experimental
Fitting

Rb

CPE1

CPE2

   (a)

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Zr (Ohm) x 103

Z
i 
(O

h
m

) 
x

 1
0

3

Experimental
Fitting

Rb

CPE1

CPE2

   (b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Zr (Ohm) x 103

Z
i (

O
h
m

) 
x
 1

03

Experimental
Fitting

Rb

CPE1

CPE2

   (c)



Molecules 2020, 25, 4503 12 of 22 

 

Table 3. Ionic conductivity of glycerol plasticized of CS:PVA:Mg(CF3SO3)2 systems at room 

temperature. 

Sample Designation Rb σdc (S cm−1) 

CSPVMG1 1.5 × 105 1.286 × 10−7 

CSPVMG2 5.6 × 103 3.446 × 10−6 

CSPVMG3 1.9 × 103 1.016 × 10−5 

Table 4. The EEC fitting parameters for CPEs system at room temperature. 

Sample Designation K1 (F−1) K2 (F−1) C1(F) C2(F) 

CSPVMG1 6.0 × 108 8.0 × 105 1.67 × 10−9 1.25 × 10−6 

CSPVMG2 5.0 × 108 1.9 × 105 2.0 × 10−9 5.26 × 10−6 

CSPVMG3 5.0 × 107 1.8 × 105 2.0 × 10−8 5.56 × 10−6 

In Table 4, K1and K2 refers the reciprocal of capacitance at high and low frequency, respectively. 

3.4. Transfer Number Measurement (TNM) Study 

There are two charge carrier species in a salt-doped electrolyte; electrons and ions. In 

construction of EDLC, it is vital to determine the identity of species which is the main charge carrier. 

Figure 6 shows the polarization of SS| high conducting electrolyte | SS at holding voltage of 0.80 V. 

It is seen that a huge current of 56.2 μA appears at beginning stage. It is known that both electrons 

and ions contribute in the whole conductivity process in the electrolyte; thus, providing a high value 

of Ib. After 10 s, the current starts to drop to 6.9 μA. This lowering in current response resulted from 

surface blocking of the electrode (stainless steel) due to ion accumulation. Then, a steady state current 

is reached with a constant value of 1.6 μA. The accumulation of maximum number of ions at stainless 

steel electrode leads to increasing the polarization or a charge double-layer at SS | electrolyte 

interfacial region. As a result, at the steady-state stage, the current response is due to electrons rather 

than ions. The electrolyte under study (CSPVMG3) possesses tionic and telec of 0.972 and 0.028, 

respectively. The combined polyethlylene glycol (PEG) and magnesium acetate (Mg(CH3COO)2) 

system has shown tionic of 0.97 as reported by Polu and Kumar [71]. In other study carried by 

Shanmuga et al. [72], it was confirmed that the dominancy of ions in a system of I-carrageenan: 

magnesim nitrate (Mg(NO3)2) with large tionic of 0.97. In thee PVA-Mg(CH3COO)2 system, ions are the 

primary charge carriers by achieving tionic of 0.96 [73]. 

To be implemented in EDLC, the electrolyte has to have high ionic transference number. Herein, 

more charge double-layer can be developed with high number of free ions where in CSPVMG3, it is 

confirmed that ions are the primary charge carriers. 
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Figure 6. Polarization of SS| best conducting electrolyte | SS at 0.80 V. 

3.5. Linear Sweep Voltammetry (LSV) 

One of the key criteria of the utilization of electrolyte in energy devices is tolerance toward 

applied potential which is so called potential stability. Therefore, for an electrolyte to be used in the 

energy devices, it is necessary to have high electrochemical stability. This is to make sure that the 

electrolyte tolerates rapid charge-discharge process in the EDLC. Figure 7 shows the current-potential 

response in the potential window of 3.5 V. It is seen that there is no considerable change in current 

value as the potential reaches 2.4 V. Beyond 2.4 V, a sharp rise in current value is seen. This indicates 

oxidation of CSPVMG3 starts at 2.4 V; in other words, the decomposition voltage (Vd) of CSPVMG3 

is 2.4 V. Jo et al. [74] documented the potential stability window for a magnesium salt-based 

poly(ether urethane) electrolyte that is stable up to 1.9 V. Similarly, an electrolyte system of 

polymethyl methacrylate (PMMA) as the host polymer and magnesium triflate (Mg(CF3SO3)2) as the 

ionic source was studied by Zainol et al. [75]. This electrolyte system has shown a potential stability 

range from 0 to 2.4 V. In another study that carried out for pectin-magnesium chloride (MgCl2) 

system, an electrochemical stability of 2.05 V was recorded [76]. This magnesium-based electrolyte 

has almost similar results to the present study. Hamsan et al. [77,78] reported that the potential 

stability window for the electrolyte systems of CS: Mg(CH3COO)2: glycerol and CS: MgCl2: glycerol 

is stable up to 2.4 V and 1.83 V, respectively and the authors used both of the electrolytes in EDLC 

application. Thus, CSPVMG3 can be used as the electrodes separator (i.e., electrolyte medium) in the 

construction of the EDLC. 
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Figure 7. LSV plot for CSPVMG3 at a scan rate of 20 mV/s. 

3.6. Cyclic Voltammetry (CV)  

In the characterization process of EDLC, cyclic voltammetry (CV) was recorded. The effect of 

scan rate on CV shape is shown in Figure 8. In all scan rate values, the CV responses are featured by 

leaf shape. It is well-known that a perfect capacitor possesses perfect rectangular shape in the CV 

response. However, in a real capacitor, several factors have to be taken into consideration, such as 

porosity and internal resistance of the electrode. These two factors impact the relationship between 

current and voltage [79]. From the recorded CV response of the constructed EDLC, it is seen that 

there is no reduction/oxidation peak. From the CV response, the mechanism of energy storage of an 

EDLC is verified where non-Faradaic process occurs. In this process, cations and anions undergo 

adsorption and de-sorption processes at negative and positive electrode, respectively, other than 

intercalation/deintercalation process [80]. The specific capacitance (Ccyc) was determined from CV 

using the equation shown below [9]: 
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Where ʃI(V)dV is the area of CV profile, which was calculated using Origin 9.0 software. In this work, 

the CV was run between V1 (0 V) and V2 (0.9 V), m and S are the mass of active material used and scan 

rate, correspondingly. 
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Figure 8. CV plot of the constructed EDLC at different scan rates from 0 V to 0.9 V. 

The calculated Ccyc are listed in Table 5. It is clear that a high Ccyc is recorded at lower scan rate 

while it is not the case at larger scan rates. In this work, ions create a stable double-layer charge at the 

interfacial region between the AC electrode surfaces at low scan rates. Under this condition, a large 

value of capacitance is achieved. At the low scan rate, almost perfect plateau region can be observed, 

indicating that the free ions migrate at a roughly constant rate and therefore create the buildup of 

ions at the electrodes and electrolytes interfaces with small ohmic resistance. It is important to note 

that, at the low scan rate, a thick diffuse layer will form at the interface region between electrolyte 

and electrode. Meanwhile, at the high scan rate, a thin diffuse layer leads to a faster ionic conduction 

which hinders the formation of the desired polarization process [81]. 

Table 5. Calculated specific capacitance from the CV plot at different scan rates. 

Scan rate (mV/s) Area M (g) V2 − V1 (V) Ccyc (F/g) 

100 3.24 × 10−3 2.43 × 10−3 0.9 7.41 

50 3.13 × 10−3 2.43 × 10−3 0.9 14.31 

20 2.21 × 10−3 2.43 × 10−3 0.9 25.26 

10 1.43 × 10−3 2.43 × 10−3 0.9 32.69 

Compared to our previous works in which MgCl2 [78] and MgCH3COO [77] were used as Mg2+ 

ion providers; the Ccyc of the present work is lower. Based on our previous work [77], EDLC with 

CS:Mg(CH3COO)2:glycerol possesses specific capacitance of 39.72 F/g at the 10 mV/s. Moreover, the 

EDLC with CS:MgCl2:glycerol possesses specific capacitance of 50 F/g at the 10 mV/s [78]. In this 

work, Mg(CF3SO3)2 is used as the ionic source. Mg(CF3SO3)has lattice energy (UL) of 1967.51 kJ/moL, 

which is slightly lower than those estimated for Mg(CH3COO)2 (2627.64 kJ/moL) and MgCl2 (2582.13). 

The UL for Mg(CF3SO3)2, Mg(NO3)2, MgCl2,and Mg(CH3COO)2 were calculated using Kapustinskii’s 

equation (see Table 6) [82,83]: 
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where v is the ion number and do is the sum of cation species radius and anion species radius. Z+ and 

Z- are the number of charges. It was well reported [84,85] that salts with lower UL tends to associate 

more easily compared to salts with higher UL. Due to the lower value of UL, there is a greater chance 

for the cation and anion to associate again. Previous studies [84,85], revealed that polymer electrolytes 

impregnated with low lattice energy salts such as NH4BF4 results in high association of ions and the 

leakage of a large amount of aggregate salts to the surface of the films and lower DC conductivities 

(10−7–10−8 S/cm). Consequently, few free ions are available, thus resulting in a lower capacitance value. 

This could be due to the ionic radius of the anion species. (CF3SO3)- anion has ionic radius of 256 pm, 

which is bigger than CH3COO− anion (162 pm) and Cl− anion (167 pm). Bigger ions have lower 

mobility compared to small ions as it is harder for the bigger ions to travel from the electrolyte to the 

surface of the electrode. This could be the reason of lower capacitance value of the EDLC device with 

CS:PVA:Mg(CF3SO3)2):glycerol in this work. Table 6 shows the lattice energy and anion size for some 

magnesium salts. Table 7 shows a comparison of the present work with other reported ones using 

carbon electrode materials based on EDLC in terms of specific capacitance value obtained from CV 

response. 

Table 6. Lattice energy for some of magnesium salts. 

Ammonium 

Salts 
Cation Anion 

Cation Radius 

(pm) [83] 

Anion Radius 

(pm) [83] 

Lattice Energy 

(KJ/moL) 

Mg(CF3SO3)2 Mg+2 CF3SO3- 72 256 [70] 1967.51 

Mg(NO3)2 Mg+2 NO3- 72 185 2429.51 

MgCl2 Mg+2 Cl- 72 167 2582.13 

Mg(CH3COO)2 Mg+2 CH3COO- 72 162 2627.64 

Table 7. Various reported carbon electrode materials based EDLC studies with their respective value 

of specific capacitance from CV. 

System Ccyc(F/g) Scan Rate (mV/s) Reference 

PVA-CH3COONH4 0.14 10 [85] 

Starch-LiClO4 8.70 10 [86] 

HEC-Mg(CF3SO3)2 21.40 5 [87] 

EC-DMC-LiTFSI 24.00 5 [88] 

P(VdF-HFP)-EMI-BTI 29.60 3 [89] 

PEMA-Mg(CF3SO3)2 1.99 10 [90] 

PVA-CS-NH4SCN-glycerol 25.05 10 [91] 

PEMA-Mg(CF3SO3)2-BmImBr 7.34 10 [92] 

PVA-NaCF3SO3 14.78 3 [93] 

CS-PVA-Mg(CF3SO3)2:glycerol 32.69 10 This work 

4. Conclusions 

The preparation of CS: PVA: Mg(CF3SO3)2:glycerol polymer electrolytes was performed via a 

solution cast methodology. Chitosan and PVA were used as the polymer blend host where ions 

provided by magnesium triflate (Mg(CF3SO3)2) that participates in the conduction process. The 

insertion of 42 wt.% glycerol improved the conductivity to 1.016 × 10−5 S cm−1. The outcome from the 

XRD examination displayed that the maximum conducting plasticized system possesses the smallest 

Xc which was determined to be 4.55. The dielectric relaxation analysis has displayed that the peak 

emergence obeys the non-Debye kind of relaxation process. It was concluded that ions in CS: PVA: 

Mg(CF3SO3)2:glycerol is the main charge carrier, as evidenced by transference number analysis that 

tionic(0.972) > telec(0.028). Polymer electrolyte has shown a satisfactory tolerance towards an applied 
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potential up to 2.4 V, indicating eligibility of the electrolyte in the fabrication of the EDLC. It is also 

proven that the electrolyte system is characteristically capacitive to a large extent. The effect of scan 

rate on specific capacitance is clarified where a low scan rate increases specific capacitance, and at a 

high scan rate, the effect is reversed. The role of the lattice energy of salt is important to be considered 

prior to fabricate EDLC devises. It appears that very low lattice energy magnesium salts are not 

favorable for EDLC device fabrication. 
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