Supporting information:

Fluorimetric and CD recognition between various ds-DNA/RNA depends on a cyanine connectivity in cyanine-guanidiniocarbonyl-pyrrole conjugate

Tamara Šmidlehner,^{1,4} Marta Košćak,¹ Ksenija Božinović,² Dragomira Majhen,² Carsten Schmuck, ⁺³ and Ivo Piantanida^{1,*}

- ¹ Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; <u>marta.koscak@irb.hr (M.K.), pianta@irb.hr</u> (I.P.).
- ² Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia. ksenija.bozinovic@irb.hr (K.B.), <u>dragomira.majhen@irb.hr</u> (D.M.)
- ³ University of Duisburg-Essen, Institute of Organic Chemistry, Essen, Germany.
- ⁴ Present address: National Institute of Chemistry, Hajdrihova 19, POBox 660, SI-1001 Ljubljana, Slovenia, tamara.smidlehner@ki.si_(T.Š.).
- * Correspondence: pianta@irb.hr (I.P.); Tel.: +385-1-4571-326

1. Structural properties of studied DNA and RNA

- 2. Physico-chemical properties of aqueous solutions
- 3. Study of interactions of 1 and 2 with double-stranded DNA/RNA

1. Structural properties of studied DNA and RNA

Polynucleotides were purchased as noted: poly dGdC – poly dGdC, poly dAdT – poly dAdT, poly A – poly U, *calf thymus* (ct)-DNA (Aldrich) and dissolved in sodium cacodylate buffer, I = 0.05 M, pH=7.0. The ct-DNA was additionally sonicated and filtered through a 0.45 mm filter to obtain mostly short (ca. 100 base pairs) rod-like B-helical DNA fragments [1]. The polynucleotide concentration was determined spectroscopically [2] as the concentration of phosphates (corresponds to c(nucleobase)).

Structure type	Groove width [Å]		Groove depth [Å]	
	major	minor	major	minor
^[a] poly rA – poly rU	3.8	10.9	13.5	2.8
^[b] ct-DNA (48% of GC-pairs)	11.4	3.3	7.5	7.9
^[b] poly dAdT – poly dAdT	11.2	6.3	8.5	7.5
^[c] poly dGdC – poly dGdC	13.5	9.5	10.0	7.2

Table S1. Groove widths and depths for selected nucleic acid conformation [3,4].

[a] A - helical structure

[b] B - helical structure

[c] B- helical structure with sterically blocked minor groove by amino groups of guanines

2. Physico-chemical properties of aqueous solutions

2.1. Solubility

All compounds were dissolved in water to give stock solutions of 10⁻³ M. The stock solutions where stored at -20 °C, and working aliquots kept at +25 °C. No visible precipitation or degradation was noticed over several months.

2.2. UV/Vis and fluorescence spectra, stability

The experiments where performed in buffer solution (sodium cacodylate buffer, I = 0.05 M, pH = 7.0). The absorbancies of **1** and **2** buffered solutions were proportional to their concentration within the used concentration range.

Figure S1. a) Dependence of UV/Vis spectra on concentration of **1**, **b)** Dependence of Abs(504 nm) on c (**1**) at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S2. a) Dependence of UV/Vis spectra on concentration of **1**, **b)** Dependence of Abs(504 nm) on c (**1**) at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S3. a) Dependence of UV/Vis spectra on concentration of **2**, **b)** Dependence of Abs(504 nm) on c (**2**) at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S4. a) Dependence of UV/Vis spectra on concentration of **2**, **b)** Dependence of Abs(504 nm) on c (**2**) at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Temperature dependence:

Figure S5. Temperature dependence of UV/Vis spectra ($c = 1.0 \times 10^{-5}$ M) at pH 7.0, sodium cacodylate buffer, I = 0.05 M. LEFT: 1; RIGHT: 2.

Table S2. Electronic absorption data of **1** and **2** determined from data on Figures S1-S4.

зотроина, рп	NIIII	E/ mmoi · cm-
1, pH 7.0	504	18018
1, pH 5.0	504	18868
2, pH 7.0	508	18629
2, pH 5.0	505	20917

Compound, pH $\lambda/nm \epsilon/mmol^{-1} cm^{2}$

3. Study of interactions with double-stranded DNA/RNA in aqueous medium

3.1 Fluorescence spectrophotometric titrations

3.1.1. Fluorescence Spectrophotometric titrations with 1

General conditions: slits 5-10; emission at 530 nm; excitation: 505 nm

Figure S6. a) Changes in fluorescence spectrum of **1** ($c = 5.0 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with ctDNA; **b)** Dependence of **1** intensity at $\lambda_{max} = 532$ nm on c(ctDNA), at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S7. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with ctDNA; **b)** Dependence of **1** intensity at $\lambda_{max} = 531$ nm on c(ctDNA), at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S8. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dAdT)₂; **b)** Dependence of **1** intensity at $\lambda_{max} = 533$ nm on $c(p(dAdT)_2)$, at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S9. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dAdT)₂; **b)** Dependence of **1** intensity at $\lambda_{max} = 533$ nm on $c(p(dAdT)_2)$, at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S10. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dGdC)₂; b) Dependence of **1** intensity at $\lambda_{max} = 530$ nm on $c(p(dGdC)_2)$, at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S11. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dGdC)₂; **b)** Dependence of **1** intensity at $\lambda_{max} = 530$ nm on $c(p(dGdC)_2)$, at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S12. a) Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with pApU; b) Dependence of **1** intensity at $\lambda_{max} = 534$ nm on c(pApU), at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S13. **a)** Changes in fluorescence spectrum of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with pApU; **b)** Dependence of **1** intensity at $\lambda_{max} = 534$ nm on c(pApU), at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S14. Changes in fluorescence of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon addition of polynucleotides at pH 7.0.

Figure S15. Changes in fluorescence of **1** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon addition of polynucleotides at pH 5.0.

3.1.2. Fluorescence Spectrophotometric titrations with 2 General conditions: slits 5-10; emission at 530 nm; excitation: 505 nm

Figure S16. a) Changes in fluorescence spectrum of **2** ($c = 5.0 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with ctDNA; **b)** Dependence of **2** intensity at $\lambda_{max} = 528$ nm on c(ctDNA), at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S17. a) Changes in fluorescence spectrum of **2** ($c = 5.0 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with ctDNA; **b)** Dependence of **2** intensity at $\lambda_{max} = 527$ nm on c(ctDNA), at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S18. a) Changes in fluorescence spectrum of **2** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dAdT)₂; **b)** Dependence of **2** intensity at $\lambda_{max} = 526$ nm on $c(p(dAdT)_2)$, at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S19. a) Changes in fluorescence spectrum of 2 ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dAdT)₂; b) Dependence of 2 intensity at $\lambda_{max} = 526$ nm on $c(p(dAdT)_2)$, at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure 7. a) Changes in fluorescence spectrum of 2 ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dGdC)₂; b) Dependence of 2 intensity at $\lambda_{max} = 528$ nm on $c(p(dGdC)_2)$, at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S20. a) Changes in fluorescence spectrum of 2 ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with p(dGdC)₂; b) Dependence of 2 intensity at $\lambda_{max} = 528$ nm on $c(p(dGdC)_2)$, at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S21. a) Changes in fluorescence spectrum of 2 ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with pApU; b) Dependence of 2 intensity at $\lambda_{max} = 533$ nm on c(pApU), at pH 7.0, sodium cacodylate buffer, I = 0.05 M.

Figure S22. a) Changes in fluorescence spectrum of 2 ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon titration with pApU; b) Dependence of 2 intensity at $\lambda_{max} = 532$ nm on c(pApU), at pH 5.0, sodium cacodylate buffer, I = 0.05 M.

Figure S23. Changes in fluorescence of **2** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon addition of polynucleotides at pH 7.0.

Figure S24. Changes in fluorescence of **2** ($c = 5 \times 10^{-7}$ M, $\lambda_{exc} = 505$ nm) upon addition of polynucleotides at pH 5.0.

3.2. Circular dichroism (CD) experiments

3.2.1. CD titrations with 1

Figure S25. CD titration of a) ctDNA, b) $p(dAdT)_2$, c) $p(dGdC)_2$, d) pApU (c = 2 × 10⁻⁵ M) with **1** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, I = 0.05 M).

Figure S26. CD titration of a) ctDNA, b) $p(dAdT)_2$, c) $p(dGdC)_2$, d) pApU (c = 2 × 10⁻⁵ M) with **1** at molar ratios r = [compound] / [polynucleotide] (pH 5.0, buffer sodium cacodylate, I = 0.05 M).

3.2.2. CD titrations with 2

Figure S27. CD titration of a) ctDNA, b) $p(dAdT)_2$, c) $p(dGdC)_2$, d) pApU (c = 2 × 10⁻⁵ M) with **2** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, I = 0.05 M).

Figure S28. CD titration of a) ctDNA, b) $p(dAdT)_2$, c) $p(dGdC)_2$, d) pApU (c = 2 × 10⁻⁵ M) with **2** at molar ratios r = [compound] / [polynucleotide] (pH 5.0, buffer sodium cacodylate, I = 0.05 M).

3.3.1. ΔTm with 1

a)

a)

Figure S29. a) Melting curve of ctDNA upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 7.0 (buffer sodium cacodylate, l = 0.05 M), **b)** first derivation of absorbance on temperature.

Figure S30. a) Melting curve of ctDNA upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 5.0 (buffer sodium cacodylate, l = 0.05 M), b) first derivation of absorbance on temperature.

Figure S31. a) Melting curve of $p(dAdT)_2$ upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 7.0 (buffer sodium cacodylate, I = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S32. a) Melting curve of $p(dAdT)_2$ upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 5.0 (buffer sodium cacodylate, I = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S33. a) Melting curve of pApU upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 7.0 (buffer sodium cacodylate, l = 0.05 M), b) first derivation of absorbance on temperature

a)

Figure S34. a) Melting curve of pApU upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **1** at pH 5.0 (buffer sodium cacodylate, l = 0.05 M), b) first derivation of absorbance on temperature.

3.3.2. ΔTm with 2

a) b) **Figure S35. a)** Melting curve of ctDNA upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 7.0 (buffer sodium cacodylate, l = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S36. a) Melting curve of ctDNA upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 5.0 (buffer sodium cacodylate, l = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S37. a) Melting curve of $p(dAdT)_2$ upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 7.0 (buffer sodium cacodylate, l = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S38. a) Melting curve of $p(dAdT)_2$ upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 5.0 (buffer sodium cacodylate, I = 0.05 M), **b)** first derivation of absorbance on temperature

Figure S39. a) Melting curve of pApU upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 7.0 (buffer sodium cacodylate, l = 0.05 M), b) first derivation of absorbance on temperature

Figure S40. a) Melting curve of pApU upon addition r = 0.1 and r = 0.2 ([compound/ [polynucleotide]) of **2** at pH 5.0 (buffer sodium cacodylate, l = 0.05 M), b) first derivation of absorbance on temperature.

899, doi: 10.1002/poc.680.

Saenger, W. *Principles of Nucleic Acid Structure*; *Springer-Verlag* **1983**, New York.
Cantor, C. R.; Schimmel; P. R. Biophysical Chemistry. *WH Freeman and Co.* **1980**, *3*, 1109-1181, San Francisco.

^{1.} Chaires, J.B.; Dattagupta, N.; Crothers, D.M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: Equilibrium binding studies on interaction of daunomycin with deoxyribonucleic. *Biochemistry* **1982**, *21*, 3933–3940. 2. Tumir, L.-M.; Piantanida, I.; Cindrić Juranović, I.; et al New permanently charged phenanthridinium-nucleobase conjugates. Interactions with nucleotides and polynucleotides and recognition of ds-polyAH+. *J Phys Org Chem* **2003**, *16*, 891–