# **Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids**

# **Supplementary Information**

# Hsueh-Wei Tseng <sup>1</sup>, Tobias Baumann <sup>1</sup>, Huan Sun <sup>1</sup>, Yane-Shih Wang <sup>2,3</sup>, Zoya Ignatova <sup>4</sup>, and Nediljko Budisa <sup>1,5,\*</sup>

- <sup>1</sup> Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; justin3926@hotmail.com (H.W.T.); tobias.baumann@tu-berlin.de (T.B.); huansunluck@gmail.com (H.S.); nediljko.budisa@tu-berlin.de (N.B.).
- <sup>2</sup> Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; yaneshihwang@gate.sinica.edu.tw (Y.S.W.)
- <sup>3</sup> Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- <sup>4</sup> Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany; zoya.ignatova@uni-hamburg.de (Z.I.)
- <sup>5</sup> Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; nediljko.budisa@umanitoba.ca (N.B.)
- \* Correspondence: nediljko.budisa@tu-berlin.de or nediljko.budisa@umanitoba.ca; Tel.: +49-30-314-28821 or +1-204-474-9178 (N.B.)

### Note S1. DNA sequences

Sequence of the *Mm*PyIRS gene used in this study. Mutation sites for expanding the aaRS substrate range (L305, Y306, L309, N346, C348, V401, and W417) highlighted in yellow; mutation sites for improving the aaRS efficiency (T13, V31, I36, T56, R61, H62, H63, A100, and S193) highlighted in green.

Sequence of the codon-optimized *Mm*PyIRS gene used in this study.

Sequence of the stop codon suppression reporter sfGFP-R2TAG with the in-frame amber stop codon (sfGFP position 2) highlighted in red.

## Note S2. Primer list

| Name                       | Sequence (5'->3')                          |
|----------------------------|--------------------------------------------|
| PylRS_pBU_F                | AGAGGCATATGGATAAAAAACCACTAAACACTCTG        |
| PylRS_pBU_R                | AGAGGGGTACCAAAGCAGAAAAAACGCCGCTGAAC        |
| MmPylRS-                   | CACCTCGAAGAGTTTACCATGCTGGGCTTCCAGCAGATGG   |
| N346G/C348Q_F              | GATCGG                                     |
| MmPylRS-                   | CCGTGTGCATCCCGATCCCATCTGCTGGAAGCCCAGCATG   |
| N346G/C348Q_R              | GTAAACTC                                   |
| MmPylRS-                   | CACCTCGAAGAGTTTACCATGCTGGCGTTCCAGCAGATGG   |
| N346A/C348Q_F              | GATCGG                                     |
| MmPylRS-                   | CCGTGTGCATCCCGATCCCATCTGCTGGAACGCCAGCATG   |
| N346A/C348Q_R              | GTAAACTC                                   |
| MmPylRS-                   | CACCTCGAAGAGTTTACCATGCTGAGCTTCCAGCAGATGG   |
| N346S/C348Q F              | GATCGG                                     |
| MmPylRS-                   | CCGTGTGCATCCCGATCCCATCTGCTGGAAGCTCAGCATG   |
| N346S/C348O R              | GTAAACTC                                   |
| MmPvlRS-                   | CACCTCGAAGAGTTTACCATGCTGAGCTTCATGCAGATGG   |
| N346S/C348M F              | GATCGG                                     |
| MmPvlRS-                   | CCGTGTGCATCCCGATCCCATCTGCATGAAGCTCAGCATG   |
| N346S/C348M R              | GTAAACTC                                   |
| MmPvlRS-                   | CACCTCGAAGAGTTTACCATGCTGGGCTTCATGCAGATGG   |
| N346G/C348M F              | GATCGG                                     |
| MmPvIRS-                   | CCGTGTGCATCCCGATCCCATCTGCATGAAGCCCAGCATG   |
| N346G/C348M_R              | GTAAACTC                                   |
| MmPvIRS-                   | CACCTCGAAGAGTTTACCATGCTGGCGTTCATGCAGATGG   |
| N346A/C348M F              | GATCGG                                     |
| MmPvIRS-                   | CCGTGTGCATCCCGATCCCATCTGCATGAACGCCAGCATG   |
| N346A/C348M R              | GTAAACTC                                   |
| MmPvIRS-                   | GACCCATGCTTGCTCCAAACATGCTGAACTACGCGCGCAA   |
| L305M/Y306L/L309A F        | GCTTG                                      |
| MmPvIRS-                   | GGGCCCTGTCAAGCTTGCGCGCGCGTAGTTCAGCATGTTTGG |
| [305M/Y306L/L309A_R        | AGCAAGC                                    |
| MmPvIRS-                   | GACCCATGCTTGCTCCAAACATGCTGAACTACAGCCGCAA   |
| L305M/Y306L/L309S_F        | GCTTG                                      |
| MmPvIRS-                   | GGGCCCTGTCAAGCTTGCGGCTGTAGTTCAGCATGTTTGG   |
| L305M/Y306L/L309S_R        | AGCAAGC                                    |
| 100010, 10001, 10090_1     | CAATCCCCTATTCATAAACCCNNKATACCCCCACCTTTC    |
| MmPylRS-W417NNK_F          | G                                          |
|                            |                                            |
| MmPylRS-W417NNK_R          |                                            |
| MmPuIRS_VA01NNK F          |                                            |
| $M_{m}P_{v}IRS_VA01NINK_P$ |                                            |
| wimi yiko- v 4011010K_K    |                                            |
| MmPylRS-S193NNK_F          |                                            |
| ManDalDC C102NINIZ D       |                                            |
| wimpyiko-51931NINK_R       |                                            |
| MmPylRS-T13I_NdeI_F        |                                            |
| MudelDC V01LE              |                                            |
| MmPyIKS_V311_F             |                                            |
| MmPyIKS_V311_K             |                                            |
| MmPyIRS-I36V_F             | CACCACGAAGTCTCTCGAAGCAAAGTCTATATTG         |

| MmPylRS-I36V_R             | CATGCCATTTCAATATAGACTTTGCTTCGAGAGAC        |
|----------------------------|--------------------------------------------|
| MmPylRS-T56P_F             | CTTGTTGTAAACAACTCCAGGAGCAGCAGGCCCGCAAG     |
| MmPyIRS-T56P_R             | GAGCGCTCTTGCGGGCCTGCTGCTCCTGGAGTTGTTTAC    |
| Multiple D(1K E            | GCAGGACTGCAAGAGCGCTCAAACACCACAAATACAGGA    |
| WIMPYIKS-KOIK_F            | AG                                         |
| MmPylRS-R61K_R             | TTTGCAGGTCTTCCTGTATTTGTGGTGTTTTGAGCGCTCTTG |
| MmPvIRS-H62Y F             | GCAGGACTGCAAGAGCGCTCAGGTATCACAAATACAGGA    |
| Winit yiko 11021_1         | AG                                         |
| MmPylRS-H62Y_R             | TTTGCAGGTCTTCCTGTATTTGTGATACCTGAGCGCTCTTG  |
| MmPvIRS-H63Y F             | GCAGGACTGCAAGAGCGCTCAGGCACTATAAATACAGGA    |
| 111111 J 1100 1 100 1 _1   | AG                                         |
| MmPylRS-H63Y_R             | TTTGCAGGTCTTCCTGTATTTATAGTGCCTGAGCGCTCTTG  |
| MmPvlRS-R61K/H63Y F        | GCAGGACTGCAAGAGCGCTCAAACACTATAAATACAGGA    |
| у , <u></u>                | AG                                         |
| MmPylRS-R61K/H63Y_R        | TTTGCAGGTCTTCCTGTATTTATAGTGTTTGAGCGCTCTTG  |
| MmPylRS_A100E_F            | GCGTAAAAGTCAAGGTCGTTTCTGAGCCTACCAGAACG     |
| MmPylRS-A100E_R            | GGCATTGCCTTTTTCGTTCTGGTAGGCTCAGAAACGACC    |
| MmPylRS-S193R F            | CAGGCAAGTGCCCCCGCACTTACGAAGCGTCAGACTGAC    |
|                            | AG                                         |
| MmPylRS-S193R_R            | GACTTCAAGCCTGTCAGTCTGACGCTTCGTAAGTGCG      |
| pBU16_coMmPylRS_Nd         | AGAGGCATATGGATAAAAAACCACTAAACACTCTGATCT    |
| eI_F                       | CTGCTACTG                                  |
| pBU16_coMmPylRS_PstI       | GAAACTGCAGTTTCCATGGTTACAGGTTGGTAGAAATCCC   |
| _R                         | GTTATAATAC                                 |
| coMmPylRS-                 | CTGGAGGAGTTTACCATGCTGAGCTTTATGCAAATGG      |
| N346S/C348M_F              |                                            |
| coMmPylRS-                 | CAACCTGAACCCATTTGCATAAAGCTCAGCATGGTAAACT   |
| N346S/C348M_R              | CC                                         |
| co <i>Mm</i> PylRS-V401G_F | GCGACCTGGAACTGTCTAGTGCCGGCGTTGGACCAATTC    |
| coMmPvIRS-V401G R          | GTCCAGCGGAATTGGTCCAACGCCGGCACTAGACAGTTCC   |
|                            | AGG                                        |
| coMmPylRS-                 | GCTCTTCTCGTACAGCACGTGCACTGAAACACTATAAATA   |
| R61K/H63Y_F                | TC                                         |
| coMmPylRS-                 | GTTTACAGGTTTTACGATATTTATAGTGTTTCAGTGCACGT  |
| R61K/H63Y_R                | G                                          |
| coMmPylRS-S193R_F          | CAAGCATCAGCTCCAGCACTGACAAAACGTCAAACCGAT    |
| coMmPulRS S193R R          | CAACCTCCAGACGATCGCTTTGACGTTTTGTCAGTCCTCC   |
|                            |                                            |

The initial aaRS screening results indicated that the constructed MmPyIRS variants were capable of activating Trp analogs. The E. coli strain BL21(DE3) was cultured in M9 minimal medium (with Amp and Kan) and distributed to 200 µL in 96-wells plates containing different ncAAs (1 mM) in each well (see Table S2 and S3). The assay plates were incubated at 37 °C with shaking for 18 h. Fluorescence intensities and OD<sub>600</sub> were measured, the former via bottom reading (excitation wavelength of 481 nm, emission wavelength of 511 nm).



1 mM ncAAs

Substrate range of *Mm*PylRS-N346A/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by MmPylRS-AMG as measured via the reporter fluorescence intensity.



A.



Substrate range of *Mm*PylRS-N346G/C348M/V401G.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by MmPylRS-GMG as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-N346A/C348Q/V401G.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-AQG as measured via the reporter fluorescence intensity.





1 11111 1107 11

Substrate range of *Mm*PyIRS-N346G/C348Q/V401G.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-GQG as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-N346S/C348Q/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-SQG as measured via the reporter fluorescence intensity.





Substrate range of *Mm*PylRS- L305M/Y306L/L309S/N346S/C348M. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-MLS\_SM as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346A/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_AMG as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346G/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_GMG as measured via the reporter fluorescence intensity.





Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346S/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_SMG as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346A/C348Q/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_AQG as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346G/C348Q/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_GQG as measured via the reporter fluorescence intensity.

L.



Substrate range of *Mm*PylRS-T13I/I36V/N346S/C348M/V401G.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-IV\_SMG as measured via the reporter fluorescence intensity.

K.



Substrate range of *Mm*PylRS-V31I/T56P/H62Y/A100E/N346S/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-IPYE\_SMG as measured via the reporter fluorescence intensity.



MmPylRS-IPYER\_SMG Fluorescence Intensity/OD<sub>600</sub> Bta 6000 5000 G 1-NaA 4000 3000 D 2000 С В 1000 A 0 2 3 12 1 4 5 6 7 8 9 10 11 1 mM ncAAs

Substrate range of *Mm*PylRS-V31I/T56P/H62Y/A100E/S193R/N346S/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-IPYER\_SMG as measured via the reporter fluorescence intensity.

М.



Substrate range of codon optimized *Mm*PylRS-N346S/C348M/V401G. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-coSMG as measured via the reporter fluorescence intensity.

#### **Supplementary Figure S2**

Reporter-based aaRS screening results indicating that mutations of PylRS residue W417 can lead to activation of Tyr analogs. The *E. coli* strain BL21(DE3) was cultured in M9 minimal medium (with Amp and Kan) and distributed to 200  $\mu$ L in 96-wells plates containing different ncAAs 1 mM in each well (see Table S2 and S3). The assay plates were incubated with shaking for 18 h at 37 °C. Fluorescence intensities and OD<sub>600</sub> were measured, the former via bottom reading (excitation wavelength of 481 nm, emission wavelength of 511 nm).



Substrate range of *Mm*PylRS-N346A/C348M/W417L. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-AML as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-N346S/C348M/W417V. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-SM\_W417V as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PyIRS-N346S/C348M/W417L.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-SML as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-N346G/C348M/W417L. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-GML as measured via the reporter fluorescence intensity.





Substrate range of *Mm*PylRS-N346G/C348M/W417T.

The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-GMT as measured via the reporter fluorescence intensity.



Substrate range of *Mm*PylRS-N346G/C348M/W417V. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-GMV as measured via the reporter fluorescence intensity.



MmPylRS-KYR\_SM\_W417I



Substrate range of *Mm*PylRS-R61K/H63Y/S193R/N346S/C348M/W417I. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-KYR\_SM\_W417I as measured via the reporter fluorescence intensity.



Substrate range of codon optimized *Mm*PylRS-N346G/C348M/W417L. The library of amino acids was tested for incorporation into sfGFP-R2TAG by *Mm*PylRS-coGML as measured via the reporter fluorescence intensity.

#### Supplementary Figure S3

Comparison of Bta incorporation efficiency mediated by screened MmPylRS variants. Fluorescence was generated through suppression of the amber stop codon located in the reporter gene (sfGFP-R2TAG) by different MmPylRS variants through ribosomal incorporation of Bta. MmPylRS-SMG showed higher fluorescence intensity than other synthetase variants. Control setup is without induction and ncAA supplementation; no ncAA: control with IPTG induction but without Trp or Bta supplementation, respectively. Trp supplementation did not lead to pronounced signal changes (cf. no ncAA samples). Data are means  $\pm$  SD (n = 3).



H.

Comparison Bta incorporation efficiency between codon-optimized *Mm*PylRS-coSMG (coSMG) and unoptimized *Mm*PylRS-SMG (SMG). Intact cell fluorescence was generated through suppression of the amber stop codon in the sfGFP-R2TAG reporter gene. Different *Mm*PylRS setups were tested for Trp and Bta incorporation. Control setup is without induction and ncAA supplementation; no ncAAs: control with IPTG induction but without Trp or Bta supplementation, respectively. Data are means  $\pm$  SD (n = 3).



Comparison of Bta incorporation efficiency by *Mm*PylRS-SMG variants with mutagenesis of additional aaRS positions (T13, V31, I36, T56, R61, H62, H63, A100, and S193). Intact cell fluorescence was generated through suppression of the amber stop codon in the sfGFP-R2TAG reporter gene. Different *Mm*PylRS setups were tested for Trp or Bta incorporation. Control setup is without induction and ncAA supplementation; no ncAAs: control with IPTG induction but without Trp or Bta supplementation, respectively. Data are means  $\pm$  SD (n = 3).



Comparison of Bta incorporation efficiency by MmPyIRS-SMG co-expression upon full mutagenesis of aaRS position S193. Intact cell fluorescence was generated through suppression of the amber stop codon in the sfGFP-R2TAG reporter gene. Different MmPyIRS variants were tested for Trp or Bta incorporation. Control setup is without induction and ncAA supplementation; no ncAAs: control with IPTG induction but without amino acids supplementation. Data are means ± SD (n = 3).



Comparison of Bta incorporation efficiency by *Mm*PylRS-SMG variants with mutagenesis of additional aaRS positions (T13, V31, I36, T56, R61, H62, H63, and A100) combined with S193R replacement. Intact cell fluorescence was generated through suppression of the amber stop codon in the sfGFP-R2TAG reporter gene. Different *Mm*PylRS variants were tested for Trp or Bta incorporation. Control setup is without induction and ncAA supplementation; no ncAAs: control with IPTG induction but without Trp or Bta supplementation, respectively. Data are means  $\pm$  SD (n = 3).



SDS-PAGE of SUMO-sfGFP (R2TAG) expression in presence of 1 mM Bta with co-expression of *Mm*PylRS-SMG, *Mm*PylRS-coSMG (codon-optimized gene variant), *Mm*PylRS-KYR\_SMG, or *Mm*PylRS-13IPYER\_SMG, respectively. (M: protein ladder; 1: whole cell extract non-induced; 2: whole cell extract with 1 mM IPTG induction and 1 mM Bta; 3: cell lysate; 4: affinity column flow-through; 5: wash fraction with 20 mM imidazole in PBS buffer; 6: elution fraction with 300 mM imidazole in PBS buffer). (FL = full-length, TR= truncated product).



MmPylRS-KYR\_SMG

MmPylRS-13IPYER\_SMG

Deconvoluted ESI-MS spectra of purified sfGFP modified by site-specific incorporation of ncAAs. Observed and calculated intact protein masses are as follows: sfGFP-R2 3-MeY calculated is 27774.3 Da, observed is 27774 Da; sfGFP-R2 1-MeW calculated is 27797.3 Da, observed are 27726 Da (background signal) and 27796 Da; sfGFP-R2 AzAla calculated is 27794.3 Da, observed are 27725 Da (background signal) and 27794 Da; sfGFP-R2 2-NaA calculated is 27794.3 Da, observed is 27794 Da; sfGFP-R2 Bpa calculated is 27848.3 Da, observed is 27848 Da. Background signal: The theoretical mass of sfGFP with glutamine (Gln) incorporation is 27725 Da.)

Commonly referred to as near-cognate suppression, Gln incorporation is known to occur naturally in *E. coli* at amber stop codon sites, with the endogenous  $tRNA_{CUG}^{Gln}$  recognizing the UAG codon [1–4]).



Comparison between the expression of wild-type (amber codon free) sfGFP and the suppression of the amber stop codon at sfGFP position 2 (sfGFP-R2TAG) by screened *Mm*PylRS variants. Fluorescence was generated by reporter gene (wt-sfGFP) expression as well as by suppression of the amber stop codon located in the reporter gene (sfGFP-R2TAG) mediated by different *Mm*PylRS variants through ribosomal incorporation of Bta. Control setup is without induction, AAs and ncAAs supplementation; no ncAAs: control with IPTG induction but without Trp or Bta supplementation, respectively. Data are means  $\pm$  SD (n = 3).



Comparing the expression of wt-sfGFP and the suppression of the amber stop codon in sfGFP (sfGFP-R2TAG) by Bta incorporation via screened MmPylRS variants in different growth media. The setup of the sfGFP-R2TAG controls lacks the o-pair plasmid. Data are means ± SD (n = 3).



\* Auto-induction medium: 0.5% glycerol, 0.075% glucose, 0.05% a-Lactose monohydrate, 2 mM MgSO4, 0.45% Monosodium succinate (pH 6.8), 25 mM Na<sub>2</sub>HPO<sub>4</sub>, 25 mM KH<sub>2</sub>PO<sub>4</sub>, 50 mM NH<sub>4</sub>Cl, 5 mM Na<sub>2</sub>SO<sub>4</sub>, trace metals (10  $\mu$ M FeCl<sub>3</sub>, 4  $\mu$ M CaCl<sub>2</sub>, 2  $\mu$ M MnCl<sub>2</sub>, 2  $\mu$ M ZnSO<sub>4</sub>, 0.4  $\mu$ M CoCl<sub>2</sub>, 0.4  $\mu$ M NiCl<sub>2</sub>, 0.4  $\mu$ M NiCl<sub>2</sub>, 0.4  $\mu$ M Na<sub>2</sub>MoO<sub>4</sub>, 0.4  $\mu$ M Na<sub>2</sub>SeO<sub>3</sub>, 0.4  $\mu$ M H<sub>3</sub>BO<sub>3</sub>), 0.2 mg/mL amino acids (each) [5].

\* LB medium: 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl.

Deconvoluted ESI-MS spectra of purified sfGFP modified by site-specific incorporation of Bta.



Bta incorporation by MmPyIRS-KYR\_SMG

A. Deconvoluted ESI-MS spectra of purified sfGFP-R2\_Bta produced by *Mm*PylRS-KYR\_SMG variant co-expression in rich media. The calculated molecular mass is 27800 Da whereas the observed mass is 27800 Da.



B. Deconvoluted ESI-MS spectra of purified sfGFP-R2\_Bta produced by *Mm*PyIRS-13IPYER\_SMG variant co-expression in rich media. The calculated molecular mass is 27800 Da whereas the observed mass is 27800 Da.

## **Supplementary Table 1**

Information on *Mm*PylRS variants used in this study. The usage of codon-optimized genes for aaRS coexpression is indicated by "co". Please note the scheme used to discriminate between the two Ile mutations at aaRS position 13 and 36, respectively.

| Name                | Mutations                                    |  |  |
|---------------------|----------------------------------------------|--|--|
| MmPylRS-SM          | N346S/C348M                                  |  |  |
| MmPylRS-GQ          | N346G/C348Q                                  |  |  |
| MmPylRS-GM          | N346G/C348M                                  |  |  |
| MmPylRS-SMG         | N346S/C348M/V401G                            |  |  |
| MmPylRS-GQG         | N346G/C348Q/V401G                            |  |  |
| MmPylRS-GML         | N346G/C348M/W417L                            |  |  |
| MmPyIRS-MLA_GQ      | L305M/Y306L/L309A/N346G/C348Q                |  |  |
| MmPylRS-MLS_SM      | L305M/Y306L/L309S/N346S/C348M                |  |  |
| MmPyIRS-IV_SMG      | T13I/I36V/N346S/C348M/V401G                  |  |  |
| MmPyIRS-IPYE_SMG    | V31I/T56P/H62Y/A100E/N346S/C348M/V401G       |  |  |
| MmPylRS-KYR_SMG     | R61K/H63Y/S193R/N346S/C348M/V401G            |  |  |
| MmPylRS-IVR_SMG     | T13I/I36V/S193R/N346S/C348M/V401G            |  |  |
| MmPyIRS-IPYER_SMG   | V31I/T56P/H62Y/A100E/S193R/N346S/C348M/V401G |  |  |
| MmPylRS-13IPYE_SMG  | T13I/T56P/H62Y/A100E/N346S/C348M/V401G       |  |  |
| MmPylRS-13IPYER_SMG | T13I/T56P/H62Y/A100E/S193R/N346S/C348M/V401G |  |  |
| MmPyIRS-IIPYE_SMG   | T13I/V31I/T56P/H62Y/A100E/N346S/C348M/       |  |  |
|                     | V401G                                        |  |  |
| MmPylRS-IIPYER_SMG  | T13I/V31I/T56P/H62Y/A100E/S193R/N346S/       |  |  |
|                     | C348M/V401G                                  |  |  |
| MmPylRS-SMGL        | N346S/C348M/V401G/W417L                      |  |  |
| MmPylRS-SMGK        | N346S/C348M/V401G/W417K                      |  |  |
| MmPylRS-SMGI        | N346S/C348M/V401G/W417I                      |  |  |
| MmPylRS-KYR_SMGL    | R61K/H63Y/S193R/N346S/C348M/V401G/           |  |  |
|                     | W417L                                        |  |  |
| MmPylRS-KYR_SMGK    | R61K/H63Y/S193R/N346S/C348M/V401G/           |  |  |
|                     | W417K                                        |  |  |
| MmPylRS-KYR_SMGI    | R61K/H63Y/S193R/N346S/C348M/V401G/           |  |  |
|                     | W417I                                        |  |  |
| MmPylRS-SML         | N346S/C348M/W417L                            |  |  |
| MmPylRS-SMV         | N346S/C348M/W417V                            |  |  |
| MmPylRS-KYR_SML     | R61K/H63Y/S193R/N346S/C348M/W417L            |  |  |
| MmPylRS-KYR_SMI     | R61K/H63Y/S193R/N346S/C348M/W417I            |  |  |
| MmPylRS-coSMG       | N346S/C348M/V401G (codon-optimized)          |  |  |
| MmPylRS-coS193R_SMG | S193R/N346S/C348M/V401G                      |  |  |
|                     | (codon-optimized)                            |  |  |
| MmPylRS-coKYR_SMG   | R61K/H63Y/S193R/N346S/C348M/V401G            |  |  |
|                     | (codon-optimized)                            |  |  |

## Supplementary Table 2

Layout of the amino acids screening system used for *Mm*PylRS variants in 96-well plate format.

|   | 1      | 2      | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
|---|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Α | W/O    | W/O    | Met | Ala | Gly | Phe | Trp | Tyr | Val | Cys | His | Pro |
| В | No AAs | No AAs | Leu | Ile | Lys | Arg | Ser | Thr | Asn | Gln | Glu | Asp |
| С | 1      | 2      | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
| D | 13     | 14     | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  |
| Е | 25     | 26     | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| F | 37     | 38     | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  |
| G | 49     | 50     |     |     |     |     |     |     |     |     |     |     |
| н |        |        |     |     |     |     |     |     |     |     |     |     |

W/O: control without AAs, ncAAs, and IPTG induction; No AAs: control with IPTG induction but without amino acids supplementation.

# Supplementary Table 3

Non-canonical amino acids (ncAAs) used in this study.

| No. | Name                                       | CAS No.      | Company  | Structure                  |
|-----|--------------------------------------------|--------------|----------|----------------------------|
| 1   | 5-Cyano- <i>DL</i> -Tryptophan<br>(5-CNW)  | 2089602-82-2 | Biosynth | H<br>H <sub>2</sub> N COOH |
| 2   | 5-Hydroxy- <i>L</i> -Tryptophan<br>(5-OHW) | 145224-90-4  | Biosynth | H<br>H <sub>2</sub> N COOH |
| 3   | 5-Bromo- <i>DL</i> -Tryptophan<br>(5-BrW)  | 6548-09-0    | Biosynth | H<br>H <sub>2</sub> N COOH |
| 4   | 6-Bromo- <i>DL</i> -Tryptophan<br>(6-BrW)  | 33599-61-0   | Biosynth | H <sub>2</sub> N COOH      |
| 5   | 7-Bromo- <i>DL</i> -Tryptophan<br>(7-BrW)  | 852391-45-8  | Biosynth | H <sub>2</sub> N COOH      |













| 36 | β-(1-Azulenyl)-L-Alanine<br>(AzAla)                               | 273408-71-2 | It was synthesized by our<br>lab as reported previously<br>[6,7] | H <sub>2</sub> N COOH      |
|----|-------------------------------------------------------------------|-------------|------------------------------------------------------------------|----------------------------|
| 37 | 2-Amino-4-(Methylsulfinyl)Butanoic acid<br>(Methionine sulfoxide) | 62697-73-8  | Alfa Aesar                                                       | O<br>S<br>NH <sub>2</sub>  |
| 38 | 4-Fluoro-DL-Tryptophan<br>(4-FluW)                                | 25631-05-4  | Biosynth                                                         | H<br>H <sub>2</sub> N COOH |
| 39 | 5-Fluoro-DL-Tryptophan<br>(5-FluW)                                | 154-08-5    | abcr GmbH                                                        | H <sub>2</sub> N COOH      |







#### Reference

- Muzika, M.; Muskat, N.H.; Sarid, S.; Ben-David, O.; Mehl, R.A.; Arbely, E. Chemically-defined lactose-based autoinduction medium for site-specific incorporation of non-canonical amino acids into proteins. *RSC Adv.* 2018, *8*, 25558–25567, doi:10.1039/c8ra04359k.
- 63. Beyer, J.N.; Hosseinzadeh, P.; Gottfried-Lee, I.; van Fossen, E.M.; Zhu, P.; Bednar, R.M.; Karplus, P.A.; Mehl, R.A.; Cooley, R.B. Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase. *J. Mol. Biol.* **2020**, *432*, 4690–4704, doi:10.1016/j.jmb.2020.06.014.
- 65. Schumacher, D.; Lemke, O.; Helma, J.; Gerszonowicz, L.; Waller, V.; Stoschek, T.; Durkin, P.M.; Budisa, N.; Leonhardt, H.; Keller, B.G.; Hackenberger, C. P. R. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. *Chem. Sci.* **2017**, *8*, 3471–3478, doi:10.1039/C7SC00574A.
- Loidl, G.; Musiol, H.J.; Budisa, N.; Huber, R.; Poirot, S.; Fourmy, D.; Moroder, L. Synthesis of [beta]-(1-azulenyl)-L-alanine as a potential blue-colored fluorescent tryptophan analog and its use in peptide synthesis. *J. Pept. Sci.* 2000, *6*, 139–144.
- 67 Aerni, H.R.; Shifman, M.A.; Rogulina, S.; O'Donoghue, P.; Rinehart, J. Revealing the amino acid composition of proteins within an expanded genetic code. *Nucleic Acids Res.* **2015**, *43*, 8, doi:10.1093/nar/gku1087.
- Inokijchi, H.; Kodaira, M.; Yamao, F.; Ozeki, H. Identification of transfer RNA suppressors in Escherichia coli:
  II. Duplicate genes for tRNA2Gln. J. Mol. Biol. 1979, 132, 663–677, doi:10.1016/0022-2836(79)90381-4.
- 69 Ogawa, A.; Hayami, M.; Sando, S.; Aoyama, Y. A Concept for Selection of Codon-Suppressor tRNAs Based on Read-Through Ribosome Display in an In Vitro Compartmentalized Cell-Free Translation System. *J. Nucleic Acids* **2012**, 2012, 7, doi:10.1155/2012/538129.