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Abstract: Schizophrenia is a severe, chronic mental illness characterized by delusions, hallucinations,
negative symptoms, and cognitive dysfunction. Recently, several studies have demonstrated that the
pathogenesis of schizophrenia involves mitochondrial dysfunction and oxidative stress. However,
the effect of antipsychotic drugs for these events has been poorly investigated. In the present
study, we evaluated the neuroprotective effect of an atypical antipsychotic drug, ziprasidone (ZPD),
on rotenone (ROT)-induced neurotoxicity involving oxidative stress in PC12 cells. Our data showed
that ZPD treatment promoted the translocation of NF-E2-related factor-2 (Nrf2) from cytoplasm to
nucleus and activated the expression of its target genes NAD(P)H quinone oxidoreductase (NQO-1),
catalase (CAT), and heme oxygenase (HO-1). Additionally, ZPD prevented ROT-induced cell death
and intracellular reactive oxygen species production. Interestingly, the use of serotonin 5-HT1A

receptor antagonist 1-(2-methoxyphenyl)-4 (4-(2-phtalimido) butyl) piperazine (NAN-190) completely
blocked the protective effect of ZPD against ROT-induced cell death. Our results demonstrate
the neuroprotective effect of ZPD against ROT-induced neurotoxicity and suggest that ZPD may
be a potential candidate for the prevention of mitochondrial dysfunction and oxidative stress
in schizophrenia.

Keywords: schizophrenia; ziprasidone; rotenone; mitochondrial dysfunction; oxidative stress;
neurotoxicity; Nrf2 pathway; antioxidant enzyme

1. Introduction

Schizophrenia is a mental disorder characterized by the occurrence of psychotic symptoms,
including hallucinations and delusions [1–3]. It is prevalent in 1% of the global population and usually
emerges in early adulthood [2,4]. To date, many causes of schizophrenia have been elucidated; the most
convincing is the dopamine hypothesis [5], which has been the basis for the development and clinical
administration of many antipsychotic medications [6]. However, the exact molecular mechanisms
underlying the pathogenesis of this disorder remain to be elucidated.

Recent evidence suggests that oxidative stress may play an important role in the pathophysiology
of schizophrenia [7–9]. Oxidative stress refers to an imbalance of free radicals, such as reactive oxygen
species (ROS), which are generated from both normal metabolic processes involving neurotransmitters
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associated with schizophrenia, such as dopamine and glutamate, and various environmental
exposures [10–12]. In schizophrenia, dysregulation of free radical metabolism has been suggested,
as detected by abnormal activities of critical antioxidant enzymes and other indices of lipid peroxidation
in plasma, red blood cells, and cerebrospinal fluid [13]. However, further elucidation of the role of free
radicals and antioxidants in schizophrenia and its treatment requires systematic investigation.

In the present study, we used rotenone (ROT), a dopaminergic neurotoxin, to produce oxidative
stress. ROT is a cytotoxic compound that specifically inhibits mitochondrial complex I activity and
causes free radical generation along with mitochondrial dysfunction [14,15]. Determination of the
effects of potential agents on ROT-induced neurotoxicity, both in vitro and in vivo, is a useful approach
to delineate their neuroprotective profile [16,17]. In addition, ROT has been reported to induce
cell death in cultured rat pheochromocytoma cell line 12 (PC12) and nigral–striatal cocultures [18].
Thus, the ROT toxicity model is relevant for elucidating the pathogenesis of schizophrenia related to
not only oxidative stress but also dopaminergic neurons’ dysfunction.

PC12 is a cell line derived from the pheochromocytoma of rat adrenal medulla. It has been widely
used as a model system for nerve growth factor (NGF)-induced neuronal-like differentiation [19].
Recently, it has been reported that atypical antipsychotic drugs, namely olanzapine and aripiprazole,
reduced oxidative stress through the prevention of ROS generation in PC12 cells [20]. However,
the underlying mechanism of these effects is unknown. Likewise, the fundamental mechanisms for
the neuroprotective effects leading to the prevention of mitochondrial dysfunction and reduction of
oxidative stress have not been elucidated for ziprasidone (ZPD), an atypical antipsychotic drug.

In the present study, we investigated whether the atypical antipsychotic drug ZPD imparts
neuroprotective effects on ROT-generated oxidative stress in NGF-induced neuronal PC12 cells.
Our findings demonstrate that ZPD protected the neuronal PC12 cells from neurotoxicity by activating
the NF-E2-related factor-2 (Nrf2) pathway and this effect was inhibited by serotonin 5-HT1A receptor
(5-HT1A-R) antagonist.

2. Results

2.1. Influence of ZPD on Cell Viability

We investigated the effect of ZPD on the viability of PC12 cells using CellTiter-Blue assay. ZPD did
not affect cell proliferation at concentrations below 1 µM, but cytotoxicity was observed at the
concentration of 10 µM (Figure 1). Therefore, we used ZPD at the concentrations of 0.01–1 µM for
subsequent experiments.
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Figure 1. Influence of ziprasidone (ZPD) on viability of PC12 cells. The cells were treated with ZPD
for 24 h. Cell viability was determined using CellTiter-Blue assay, and the results are expressed as
percentage of the Control value. Experiments were repeated at least three times, and the values
represent the mean of three experiments ± standard deviation (SD). ** p < 0.01 versus Control.
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2.2. Evaluation of Nrf2 Gene and Protein Expression Modulated by ZPD in PC12 Cells

Nrf2 controls the expression of key components of the glutathione and thioredoxin antioxidant
systems, as well as antioxidant enzyme generation, ROS generation, and xenobiotic detoxification [21].
Thus, Nrf2 plays a fundamental role in maintaining the redox homeostasis of the cell. Moreover, it has
been reported that Nrf2 translocates to the nucleus, where it activates the transcription of its downstream
targets [22]. Hence, to evaluate the effect of ZPD on Nrf2 activation, the mRNA level and protein level
of Nrf2 were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western
blot analysis, respectively. ZPD treatment did not affect mRNA levels, as indicated by RT-PCR analysis
(Figure 2a). In contrast, ZPD decreased the Nrf2 protein expression in a dose-dependent manner in the
cytoplasm (Figure 2b) and increased the nuclear Nrf2 protein expression in a dose-dependent manner
(Figure 2c), as indicated by Western blot analysis. These results suggest that ZPD enhanced the nuclear
translocation of Nrf2, rather than inducing Nrf2 transcription.
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2.3. ZPD Enhanced the Gene Expression of Antioxidative Enzymes in PC12 Cells 

Figure 2. Ziprasidone (ZPD) enhanced nuclear translocation of Nrf2 in differentiated PC12
cells in a dose-dependent manner. Cells were treated with 0.01, 0.1, and 1 µM ZPD for 24 h.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and histone H3 were used as internal standards.
(a) Representative semiquantitative RT-PCR analysis of Nrf2 mRNA expression in differentiated PC12
cells. (b,c) Western blot analysis of the effect of ZPD on cytoplasmic (b) and nuclear (c) expression of
Nrf2 protein. Abbreviations: Nrf2, NF-E2-related factor-2; RT-PCR, reverse transcription polymerase
chain reaction.

2.3. ZPD Enhanced the Gene Expression of Antioxidative Enzymes in PC12 Cells

Translocation of Nrf2 from cytoplasm to nucleus is known to induce the expression of several
antioxidant enzymes, such as NAD(P)H quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1),
and catalase (CAT) [23]. NQO-1, HO-1, and CAT play an important role in cellular defense against
oxidative stress [24]. Hence, we investigated the expression of these antioxidant enzymes after ZPD
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treatment. NQO-1 expression was significantly enhanced by treatment with 1 µM ZPD (Figure 3a,d).
Similarly, treatment with 1 µM ZPD significantly enhanced the expression of HO-1 (Figure 3b,e) and
CAT (Figure 3c,f).
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Figure 3. Effect of ziprasidone (ZPD) on the gene expression of NQO-1, HO-1, and CAT in PC12 cells.
(a–c) PC12 cells were treated with 0.01–1µM ZPD for 24 h. The mRNA expression levels of NQO-1, HO-1,
and CAT were determined by semiquantitative RT-PCR as described in Section 4. GAPDH was used as
internal control. (d–f) Quantification of mRNA expression of NQO-1, HO-1, and CAT normalized with
GAPDH mRNA intensity (d, NQO-1/GAPDH; e, HO-1/GAPDH; f, CAT/GAPDH). Experiments were
repeated at least three times, and the values represent the mean of three experiments± standard deviation
(SD). * p < 0.05 compared to Control. ** p < 0.01 compared to Control. Abbreviations: CAT, catalase;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HO-1, heme oxygenase-1; NQO-1, NAD(P)H
quinone oxidoreductase; RT-PCR, reverse transcription polymerase chain reaction.

2.4. Effect of ZPD on ROT-Induced Neurotoxicity

We first determined the neurotoxic effect of ROT by evaluating the survival of PC12 cells.
The results revealed that ROT significantly increased cell death in a dose-dependent manner, with a cell
survival rate of 82 ± 1.53% being observed in response to 1 µM ROT treatment for 24 h (Figure 4a).
Therefore, 1 µM ROT was used in the subsequent experiments. Additionally, we assessed the protective
effect of ZPD on ROT-induced cell death. Prior to treatment with ROT to induce cell death, cells were
pre-incubated with ZPD for 8 h. As shown in Figure 4b, treatment with 0.1 and 1 µM ZPD increased
the viability of PC12 cells significantly.
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incubated with various concentrations of (a) ROT and (b) ROT and ZPD for 24 h. Cell viability
was determined by CellTiter-Blue assay. Experiments were repeated at least three times, and the
values represent the mean of three experiments ± standard deviation (SD). ** p < 0.01 versus Control.
†† p < 0.01, compared with ROT-treated cells.

2.5. Effect of ZPD on ROT-Induced Oxidative Stress

To examine the effect of ZPD on ROT-induced production of intracellular ROS in PC12 cells,
ROS production was determined using 2′-7′-dichlorodihydrofluorescein diacetate (DCFH-DA).
The generation of intracellular ROS was significantly enhanced by ROT. In contrast, ZPD inhibited
ROT-induced ROS production in a dose-dependent manner (Figure 5). These results suggest that ZPD
prevented oxidative stress by suppressing the ROT-induced ROS production.
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2.6. Role of 5-HT1A-R in the Protective Effect of ZPD

ZPD is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic
receptors and transporters and potent agonist activity at 5-HT1A-R [25]. Therefore, we investigated the
effect of 1-(2-methoxyphenyl)-4(4-(2-phtalimido) butyl) piperazine (NAN-190), a 5-HT1A-R antagonist,
on the protective effect of ZPD against ROT-induced neurotoxicity. NAN-190 (10 µM) did not
inhibit cell death induced by ROT alone (Figure 6). In contrast, the protective effect of ZPD against
ROT-induced cell death was inhibited by treatment with NAN-190 in a dose-dependent manner
(Figure 6). These findings suggest that prevention of ROT-induced neurotoxicity following treatment
with ZPD occurred through 5-HT1A-R.
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of ziprasidone (ZPD) against rotenone (ROT)-induced neurotoxicity in PC12 cells. PC12 cells were
pre-incubated in the presence or absence of NAN-190 (0–10 µM) for 2 h. ROT (1 µM) and ZPD (1 µM)
were added, and the cells were incubated for additional 24 h before CellTiter-Blue assay. Experiments
were repeated at least three times, and the values represent the mean of three experiments ± standard
deviation (SD). * p < 0.05 versus Control. ** p < 0.01 versus Control. †† p < 0.01, compared to ROT-treated
cells. N.S., not significant.

3. Discussion

In the present study, we demonstrated that ZPD enhanced the expression of antioxidant enzymes
NQO-1, HO-1, and CAT via the Nrf2 pathway. In addition, ZPD prevented ROT-induced neurotoxicity,
which was indicated by reduction in cell death and ROS generation in PC12 cells. We also observed that
the effect of ZPD was completely blocked by application of a 5-HT1A-R antagonist. To the best of our
knowledge, this is the first report on neuroprotective effects of ZPD against ROT-induced neurotoxicity
with mitochondrial dysfunction and oxidative stress.

In addition to reducing the amount of energy in the brain, mitochondrial dysfunction has
been shown to cause neuronal depolarization and alterations in plasticity and circuitry, which can
ultimately lead to neuronal death [26,27]. Prabakaran et al. reported that about 50% of the significantly
changed proteins in the schizophrenia brain, identified through proteomics study, are associated with
mitochondrial function or oxidative stress [28]. Recent clinical studies have shown that antioxidant
treatment was effective in ameliorating schizophrenia symptoms. These studies concentrated on
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compounds such as N-acetylcysteine (NAC), Ginkgo biloba extract, and vitamin C [29–31]. However,
the antioxidant NAC has high water solubility; therefore, it is decomposed easily upon administration,
and it cannot pass through the blood–brain barrier. Thus, difficulties exist for the clinical application of
NAC [32]. Therefore, identification of viable therapeutic strategies to tackle mitochondrial dysfunction,
oxidative stress, and resulting physiological disturbances is required for the treatment of schizophrenia.

Nrf2 has a well-established role as the regulator of key endogenous defenses against oxidative stress
in the body [22]. Different types of cellular stresses superimposed on an Nrf2-deficient background have
significant detrimental effects on neuronal systems in the brain [33]. Jakel et al. reported that loss of
Nrf2-mediated transcription exacerbated vulnerability to neurotoxin 6-hydroxydopamine, an inhibitor
of complex I of the mitochondrial respiratory chain, both in cultured neurons and Nrf2-deficient mice
in vivo [34]. Thus, there is increasing clinical interest in using Nrf2 activators for therapeutic purposes.
Sulforaphane, a potent Nrf2 pathway activator, has been reported to protect the nervous system from
many diseases [17], and it is being clinically evaluated for the treatment of schizophrenia and autism
disorders [35]. Thus, the ZPD-induced Nrf2 activation may be useful in diseases associated with
mitochondrial dysfunction and oxidative stress.

Several antipsychotic drugs have been evaluated for their effect on mitochondrial dysfunction
and oxidative stress [20,36]. Typical and atypical antipsychotic drugs have been shown to have
different clinical and molecular profiles [37]. Haloperidol is a typical neuroleptic that primarily acts
as a dopamine D2 receptor antagonist [38]. It has been proposed that ROS play a causative role in
neurotoxic effects induced by haloperidol [39]. Similarly, in our study, we observed that haloperidol
exacerbated ROT-induced neurotoxicity (data not shown). In contrast, recent studies have suggested
that some atypical antipsychotic drugs may have protective effects against oxidative stress. Park et al.
reported that atypical antipsychotic drugs ZPD, olanzapine, and aripiprazole exerted antioxidant
effects by modulating ROS levels and superoxide dismutase activity [20]. In contrast, Brinholi et al.
reported that quetiapine and risperidone lacked antioxidant effects, as indicated by in vitro antioxidant
capacity study [40]. Thus, the effects of atypical antipsychotics are not unified, and the underlying
mechanisms that affect mitochondria and oxidative stress have not been elucidated. Our results suggest
that the neuroprotective effect of ZPD through the effect on mitochondrial dysfunction and oxidative
stress is mediated via 5-HT1A-R. Several studies employing the agonists of 5-HT1A-R have shown
their neuroprotective effects in the central nervous system [41,42]. It has been reported that these
agents protect against oxidative insults, in part, by upregulating endogenous antioxidant defenses [43].
The atypical antipsychotic drugs, such as aripiprazole and clozapine, have been reported to have
partial agonist activity for 5-HT1A-R [44,45]. Thus, it may be suggested that these drugs may have
the same effect as ZPD. Our study has a few limitations. First, although we have used the PC12 cell
line as a model system, this is an in vitro study. Thus, the results cannot be directly extrapolated
to in vivo models. To confirm the validity of our results, studies in both in vitro and in vivo model
systems should be undertaken in detail. Second, the analysis of gene expression was done using
semiquantitative RT-PCR analysis. For more conclusive results, future analyses should be done using
quantitative real-time PCR analysis.

4. Materials and Methods

4.1. Materials

ZPD (ziprasidone hydrochloride) was purchased from Selleck chemicals (Houston, TX, USA).
Murine NGF 2.5S (NGF derived from mouse submaxillary glands) was obtained from Alomone Labs
(Jerusalem, Israel). ROT was purchased from Sigma-Aldrich (St. Louis, MO, USA). DCFH-DA was
obtained from Thermo Fisher Scientific (Waltham, MA, USA). The 5-HT1A-R antagonist NAN-190
(NAN-190 hydrobromide) was purchased from Fujifilm (Tokyo, Japan).
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4.2. Cell Culture

The PC12 cell line was obtained from Riken Cell Bank (Ibaraki, Japan). The cells were maintained in
Dulbecco’s modified Eagle’s medium/F-12 supplemented with 10% (v/v) fetal bovine serum (FBS; Gibco,
Life Technologies, Franklin Lakes, NJ, USA) and 1% (v/v) penicillin–streptomycin. Cells were kept in
an incubator at 37 ◦C in an atmosphere of 5% CO2/95% air. For the ROT treatment, cells were seeded in
cell culture multi-well plates (Thermo Scientific, Nunc, Naerum, Denmark) for 24 h and then treated
with fresh medium containing NGF (final concentration of 50 ng/mL) for 48 h. Then, the cells were
treated with ROT for 24 h to induce neurotoxicity. Cells were pretreated with ZPD for 8 h prior to
exposure to ROT in the presence of NGF. The control group was treated with the same medium without
ROT and ZPD.

4.3. Cell Viability Assay

PC12 cells were seeded into 96-well plates (Thermo Scientific, Nunc) at a density of
1.0 × 104 cells/well for 24 h. Following treatment, cell viability was assessed using the cell proliferation
reagent CellTiter-Blue (Promega, Southampton, UK) according to the manufacturer’s instructions.
Briefly, the culture medium was removed from the wells after treatment, and 100 µL of medium
containing 10 µL CellTiter-Blue was added to each well. Fluorescence intensity (excitation 560 nm,
emission 590 nm) was determined after 4 h.

4.4. Semiquantitative RT-PCR Analysis

RT-PCR was used to analyze the levels of Nrf2, NQO-1, HO-1, CAT, and GAPDH mRNA.
GAPDH was used as an internal standard. Total RNA was isolated from 5 × 106 PC12 cells in
the logarithmic phase using RNAiso Plus (Takara, Shiga, Japan) according to the manufacturer’s
instructions. Reverse transcription was done using ReverTra Ace Master Mix from Toyobo (Osaka, Japan)
following the manufacturer’s instructions. Semiquantitative RT-PCR was performed with a thermal
cycler system (Bio-Rad) using PrimeSTAR GXL DNA polymerase (Takara, Shiga, Japan). The primers
used for PCR are listed in Table 1. The RT-PCR products were separated on 2% agarose gel, and the
intensity of each band was quantified using SynGene software (SynGene, Cambridge, UK) and
expressed in arbitrary units (GeneGenius Super 12, Syngene, Cambridge, UK).

Table 1. Primer sequences for RT-PCR analyses.

Gene Accession No. Sense (5′-3′) Antisense (5′-3′)

Nrf2 NM_031789 GGACCTAAAGCACAGCCAAC ATCTCTGGTCTGCTGCAGAG
NQO-1 NM_017000 ATGGGAGGTGGTCGAATCTG TCTCCAGACGCTTCTTCCAC
HO-1 NM_012580 CTTACACACCAGCCACACAG ACTGAGTGTGAGGACCCATC
CAT NM_012520 GATGAAGCAGTGGAAGGAGC TCGGTCGCTGAACAAGAAAG

GAPDH NM_017008 AGGCTGAGAATGGGAAGCTG TAGGAACACGGAAGGCCATG

Abbreviations: CAT, catalase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HO-1, heme oxygenase-1;
NQO-1, NAD(P)H quinone oxidoreductase; Nrf2, NF-E2-related factor-2; RT-PCR, reverse transcription polymerase
chain reaction.

4.5. Western Blot Analysis

Western blot analyses were performed as previously described [19]. The subcellular fractions
(cytosolic and nuclear fractions) were separated using a nuclear/cytosolic fractionation kit (Cell Biolabs,
San Diego, CA, USA) according to the manufacturer’s instructions. Protein samples containing
20 µg of total protein were separated via electrophoresis with 4–15% sodium dodecyl sulfate
(SDS)–polyacrylamide gels, after which they were transferred onto polyvinylidene fluoride (PVDF)
membrane (Bio-Rad, Hercules, CA, USA). After transfer, PVDF membrane was blocked with 5% bovine
serum albumin (Fujifilm) in TBS containing 0.1% Tween-20 at room temperature for 1 h. Immunoblotting
was then performed using primary antibodies against Nrf2 (1:1000, Proteintech, Rosment, IL, USA),



Molecules 2020, 25, 4206 9 of 12

GAPDH (1:5000, Cell Signaling Technology, Danvers, MA, USA), and histone H3 (1:2000, Cell Signaling
Technology). GAPDH and histone H3 were used as internal standards. Horseradish peroxidase
conjugated secondary antibody was used to detect immunoreactivity (Amersham Pharmacia Biotech,
Piscataway, NJ, USA), which was visualized using enhanced chemiluminescence Western blotting
detection reagents (Amersham Pharmacia Biotech) and RX-U Fuji X-ray film (Fujifilm).

4.6. Detection of ROS Production

The levels of intracellular hydrogen peroxide and other peroxides in PC12 cells were estimated by
loading cells with DCFH-DA as described previously [46]. In brief, the PC12 cells were washed with
PBS (pH 7.4) and then loaded with 10 µM DCFH-DA for 30 min at 37 ◦C. The images were captured
using a fluorescence microscope (BZ-X810, Keyence Co, Osaka, Japan).

4.7. Statistical Analysis

Quantitative data are presented as mean ± standard deviation (SD). Statistical analyses of
quantitative data were performed using analysis of variance (ANOVA) followed by Tukey’s post hoc
test. The differences with p < 0.05 were considered statistically significant.

5. Conclusions

The present study demonstrated that ZPD protected against ROT-induced neurotoxicity.
Our findings suggest that the underlying molecular mechanism for this effect of ZPD was enhanced
translocation of Nrf2 from cytoplasm to nucleus after the triggering of signaling cascade through
5-HT1A-R. Since oxidative stress and mitochondrial dysfunction have been associated with the
pathophysiology of schizophrenia, the increased expression of antioxidant enzymes elicited by ZPD
observed in this study may be an effective and potential therapeutic strategy for the treatment
of schizophrenia.
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