8-Hydroxyquinoline Glycoconjugates Containing Sulfur at the Sugar Anomeric Position - Synthesis and Preliminary Evaluation of Their Cytotoxicity

Monika Krawczyk ${ }^{\text {1,2,* }}$, Gabriela Pastuch-Gawołek ${ }^{\text {1,2 }}$, Agnieszka Hadasik ${ }^{1}$, Karol Erfurt ${ }^{3}$
1 Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; gabriela.pastuch@polsl.pl (G.P.-G.), agnieszkahadasik@gmail.com (A.H.)
${ }^{2}$ Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
${ }^{3}$ Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; karol.erfurt@polsl.pl (K.E.)
* Correspondence: monika.krawczyk@polsl.pl (M.K.); Tel.: +48-32-237-1759

1. Determination of glycoconjugates stability under the action of β-galactosidase from Aspergillus oryzae

Scheme S1. Scheme of the enzymatic reactions.
1.1. Procedure for the hydrolysis reactions using β-galactosidase (EC 3.2.1.23)
β-Galactosidase from Aspergillus oryzae was purchased from Sigma-Aldrich. The experiment was conducted according to the procedure provided by the enzyme supplier [54].

Preparation of test solutions:

- 10 mM Citric Acid Solution (A) was prepared by dissolving $210 \mathrm{mg}(1 \mathrm{mmol})$ of Citric Acid Monohydrate in 100 mL of deionized water.
- 20 mM Sodium Phosphate Solution (B) was prepared by dissolving $716 \mathrm{mg}(2 \mathrm{mmol})$ of Sodium Phosphate Dibasic Dodecahydrate in 100 mL of deionized water.
- 20 mM Phosphate-Citrate Buffer (C) was prepared using 100 mL of solution B and adjusted to pH 4.5 at $30^{\circ} \mathrm{C}$ with solution \mathbf{A}.
- 10 mM Substrate Solutions (D1-D4) were prepared by dissolving 0.025 mmol of $\mathbf{C 1}, \mathbf{C} 2, \mathbf{C} 5$, or C6 in 2.5 mL of Buffer C.
- β-Galactosidase Solution (E) was prepared by dissolving 1 mg of the enzyme in 1 mL of cold deionized water, obtained a solution (E1) with an activity of $8.9 \mathrm{unit} / \mathrm{ml}$. Then $100 \mu \mathrm{l}$ of the solution (E1) was diluted to a volume of 1 mL with cold deionized water, obtaining a solution (E2) with an activity of $0.89 \mathrm{unit} / \mathrm{ml}$.

Procedure:
The following reagents were pipetted into a test tube: 0.4 mL of 20 mM Phosphate-Citrate Buffer (C) and 0.5 mL of the appropriate 10 mM Substrate Solution (D1-D4), which then thoroughly mixed and equilibrated to $30^{\circ} \mathrm{C}$ with a thermoblock. Then 0.1 mL of β-Galactosidase Solution (E2) was added to the mixture, all immediately were mixed and incubated at $30^{\circ} \mathrm{C}$ for 24 h . The progress of the reactions was monitored by thin-layer chromatography (TLC) in a $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(5: 1)$ eluents system. Analysis was performed immediately before the addition of enzyme and then after $10 \mathrm{~min}, 30 \mathrm{~min}, 60 \mathrm{~min}$, 180 min , and 24 h . The TLC plates were visualized under UV light $(\lambda=254 \mathrm{~nm})$. The resulting TLC plates are shown in Figure S1.

The 1 mL reaction mixtures contained reagents in the following final concentrations: 18 mM PhosphateCitrate Buffer (C), 5 mM Substrate Solution (D), and 0.089 unit of β-Galactosidase.

Figure S1. Thin-layer chromatography (TLC) plates.

1.2. General Procedure for the Synthesis of Metabolite C3

8-(2-Propyn-1-yloxy)quinoline ($68 \mathrm{mg}, 0.37 \mathrm{mmol}$) and 2-azidoethanol ($70 \mathrm{mg}, 0.80 \mathrm{mmol}$) were dissolved in dry THF $(2 \mathrm{~mL})$ and $i-\mathrm{PrOH}(2 \mathrm{~mL})$. The catalysts system were prepared: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}$, 0.07 mmol) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and sodium ascorbate ($29 \mathrm{mg}, 0.15 \mathrm{mmol}$) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ mixed and immediately added to the solution of substrates. The reaction mixture was stirred for 24 h at room temperature. The progress of the reaction was monitored on TLC in a $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(5: 1)$ eluents system. After completion, the reaction mixture was concentrated in vacuo and purified using column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}\right.$, gradient: 100:1 to 20:1).

Product C3 was obtained as a brown solid ($81 \mathrm{mg}, 81 \%$); m.p.: $126-128^{\circ} \mathrm{C} ;\left[\alpha{ }^{27} \mathrm{D}=-0.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\right.$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.01\left(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.45\left(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}^{2}, \mathrm{CH}_{2}\right), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Oquin}\right)$, 7.28 (dd, 1H, J= $1.4 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, \mathrm{H}-7_{\text {Quin }}$), $7.35-7.48$ (m, 3H, H-3Quin, H-5Quin, H-6Quin), 7.94 (s, 1H, H-5 Triaz), 8.12 (d, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-4$ Quin), 8.83 (bs, $1 \mathrm{H}, \mathrm{H}-2$ Quin); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 52.82\left(\mathrm{CH}_{2} \mathrm{~N}\right), 61.02$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 62.75\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.78$ (C-7Quin), 120.19 (C-5Quin), 121.68 (C-3Quin), 124.65 (C-5Triaz), 126.82 (C-6Quin), 129.50 (C-4aQuin), 136.19 (C-4Quin), 140.00 (C-8aQuin), 143.72 (C-4Triaz), 149.12 (C-2Quin), 153.76 (C-8Quin); HRMS (ESI-TOF): calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: m / z 271.1195; found: m / z 271.1199.

1.3. General Procedure for the Synthesis of Metabolite $C 7$

8-(3-Azidopropoxy)quinolone ($109 \mathrm{mg}, 0.48 \mathrm{mmol}$) and propargyl alcohol ($35 \mu \mathrm{~L}, 0.61 \mathrm{mmol}$) were dissolved in dry THF (2 mL) and $i-\mathrm{PrOH}(2 \mathrm{~mL})$. The catalysts system were prepared: $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(24 \mathrm{mg}$, $0.10 \mathrm{mmol})$ dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and sodium ascorbate ($38 \mathrm{mg}, 0.19 \mathrm{mmol}$) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ mixed and immediately added to the solution of substrates. The reaction mixture was stirred for 24 h at room temperature. The progress of the reaction was monitored on TLC in a $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(5: 1)$ eluents system. After completion, the reaction mixture was concentrated in vacuo and purified using column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}\right.$, gradient: 100:1 to 20:1).

Product C7 was obtained as a brown oil ($117 \mathrm{mg}, 86 \%$); $[\alpha]^{25} \mathrm{D}=23.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO): $\delta 2.41\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.19\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $7.19(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, \mathrm{H}-7$ Quin $), 7.47-7.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3_{\text {Quin, }} \mathrm{H}-5\right.$ Quin, H-6Quin), 8.10 (s, 1H, H-5 Triaz), 8.32 (dd, $1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, \mathrm{H}-4$ Quin $), 8.89$ (bs, $1 \mathrm{H}, \mathrm{H}-$ Quin 2); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO): $\delta 29.56\left(\mathrm{CH}_{2}\right), 46.37\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.97\left(\mathrm{CH}_{2} \mathrm{OH}\right), 65.31\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.76\left(\mathrm{C}-7_{\text {Quin }}\right), 119.83\left(\mathrm{C}-5_{\text {Quin }}\right), 121.76$ (C-3Quin), 122.76 (C-5Triaz), 126.70 (C-6Quin), 128.97 (C-4aQuin), 135.71 (C-4Quin), 139.70 (C-8aQuin), 147.96 (C-4Triaz), 148.95 (C-2Quin), 154.13 (C-8Quin); HRMS (ESI-TOF): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z 285.1352$; found: $m / z 285.1354$.
2. Spectra

Fig. S2: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $9\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

씅 깽
NiN

9

Fig. S3: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $9\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S4: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $10\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

10

Fig. S5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $10\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S6: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $11\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

11

Fig. S7: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S8: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $12\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

$\stackrel{\leftrightarrow}{\dot{\sim}}$

8

12

1	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	$\begin{aligned} & 90 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	80	70	60	50	40	30	20	10	0

Fig. S9: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $12\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $13\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

13

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S12: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $14\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

14

Fig. S13: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $14\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

Fig. S14: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $15\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Nig inn

Fig. S15: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 15 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S16: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $16\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

16

1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S17: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 16 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S18: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $17\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

व⿵

17

1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S19: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $17\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S20: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $18\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

8
i
i
i

8

18

Fig. S21: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $18\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S22: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $19\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S23: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 19 ($100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S24: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $20\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S25: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $20\left(100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S26: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S27: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $21\left(100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

22

Fig. S28: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $22\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S29: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22 ($100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S30: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $23\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

23

Fig. S31: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S32: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $24\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Niñ
No minn in
$\stackrel{8}{i}$

24

Fig．S33：${ }^{13} \mathrm{C}$ NMR spectrum of compound $24\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$ ．

Fig. S34: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $25(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

25

Fig. S35: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 25 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

26

Fig. S36: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $26(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S37: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S38: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $27\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S39: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $27\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

Fig. S40: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $28\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

8
$\stackrel{0}{i}$

28

Fig. S41: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $28\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S42: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $29\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

ォ mo
No
No
No
$\stackrel{8}{\circ}$

29

Fig. S43: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $29\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S44: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $30\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

30

Fig. S45: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $30\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S46: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $31\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S47: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $31\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S48: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $32\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

$\stackrel{N}{N}$

8
i

32

Fig. S49: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $32\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S50: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $33\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S51: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $33\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

A 0.8 N N N

34

Fig. S52: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $34\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$)

Fig. S53: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $34\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S54: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $35\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

8	$\stackrel{\square}{6}$	\bigcirc
$\stackrel{\infty}{0}$	๗ั	¢
\cdots	$\stackrel{ }{1}$	

35

Fig. S55: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $35\left(100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S56: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $36\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

NRME
NiNo

36

Fig. S57: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $36\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

37

Fig. S58: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $37\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$

M	~ก กิ	¢	ON ${ }^{\text {N }}$
$\bigcirc \bigcirc$	กิ่	\%	ल⿵冂
4	†		

go o o
No o
Nio
$\stackrel{8}{i}$

37

Fig. S59: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $37\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S60: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $38\left(400 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S61: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $38\left(100 \mathrm{MHz} / \mathrm{CD}_{3} \mathrm{OD} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

39

Fig. S62: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 39 ($400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

品
$\stackrel{\infty}{\stackrel{\infty}{n}}$

39

Γ	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1	1	1
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S63: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 39 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S64: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $40\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

n
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{\oplus}{\stackrel{\circ}{1}}$
$\stackrel{8}{i}$

40

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S65: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $40\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

N오 N N N
N~~N NiN

41

Fig. S66: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $41\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

$\stackrel{i}{i=1} \xrightarrow[i]{\text { in }}$
$\stackrel{\leftrightarrow}{\infty}$

41

Fig. S67: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 41 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S68: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $42\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S69: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 42 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S70: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $43\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S71: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $43\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S72: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $44\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

ค		
¢ $0^{\circ} 9$		¢ัウ M M
43		¢ ${ }^{\circ}$

44

Fig. S73: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $44\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S74: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $45\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

45

Fig. S75: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $45\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S76: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $46\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S77: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $46\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S78: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $47(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S79: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 47 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S80: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $48(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S81: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 48 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S82: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

49

Fig. S83: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

50

Fig. S84: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $50(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S85: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 50 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S86: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $51\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S87: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $51\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S88: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $52\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

ल ¢ ¢ ¢		仿
\bigcirc	ベg す ¢ ¢ ¢	
\cdots	－	「こう「

Fig．S89：${ }^{13} \mathrm{C}$ NMR spectrum of compound $52\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$ ．

Fig. S90: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53 ($400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

1	1	,	I	1	1	1	1	1	1	1	1	1	1	1	1	1	\top
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S91: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S92: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $54\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

M N M O	$\stackrel{\square}{\sim}$	\％	寸8	N앗om ${ }_{\sim}^{0}$	$\stackrel{\square}{0}$	$\stackrel{\sim}{\sim}$	¢ ¢ ¢ ¢ ¢ m No			
	$\stackrel{\infty}{\sim}$	กั	寸	N్入入へ N్入入	\bigcirc	$\stackrel{\sim}{+}$	∞ －－べゥ	$\begin{aligned} & \text { o } \\ & \hline 1 \end{aligned}$	m 옹 o	－
H97		$\stackrel{7}{1}$	－	17		∞	介易近	1		

54

Fig．S93：${ }^{13} \mathrm{C}$ NMR spectrum of compound 54 （ $100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$ ）．

Fig. S94: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 55 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S95: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 55 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

56

Fig. S96: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 56 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S97: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 56 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S98: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $57(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S99: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S100: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $58(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S101: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S102: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $59\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S103: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59 ($100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S104: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $60\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S105: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $60\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S106: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1}\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

61

1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Fig. S107: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $61\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right.$).

62

Fig. S108: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $62\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S109: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $62\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S110: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Noscon

63

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0

Fig. S111: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S112: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 64 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S113: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 64 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S114: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $65(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S115: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 65 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S116: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $66(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S117: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 66 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

67

Fig. S118: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $67\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S119: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $67\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S120: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $68\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S121: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $68\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S122: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $69(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

69

Fig. S123: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $69(100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S124: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $70(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S125: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 70 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S126: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 71 ($400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S127: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 71 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

Fig. S128: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $72(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S129: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72 ($100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm})$).

C3

Fig. S130: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{C 3}\left(400 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

C3

Fig. S131: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{C 3}\left(100 \mathrm{MHz} / \mathrm{CDCl}_{3} / \mathrm{TMS} ; \delta(\mathrm{ppm})\right)$.

Fig. S132: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathrm{C} 7(400 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

Fig. S133: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{C 7}(100 \mathrm{MHz} / \mathrm{DMSO} / \mathrm{TMS} ; \delta(\mathrm{ppm}))$.

