Luminescent sensor based on Ln(III) ternary complex for NAD(P)H detection

Filip Smrčka and Přemysl Lubal*

Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic * Correspondence: lubal@chemi.muni.cz

Content

The

The high-resolution mass spectra (HR-MS) of chosen Ln(III) ternary complexes

Fig. S1. Ternary Eu(III) complex	2
Fig. S2. Ternary Tb(III) complex	3
Fig. S3. Ternary Yb(III) complex	4
quenching effect of NADPH compound:	
Fig. S4. Ternary Eu(III) complex	5
Fig. S5. Ternary Tb(III) complex	5
Fig. S6. Ternary Sm(III) complex	6
Fig. S7. Ternary Nd(III) complex	6
Fig. S8. Ternary Yb(III) complex	7

Fig. S9. The effect of gating time on luminescence spectra of mixture	
NADPH an Tb(III) ternary complex	7

Fig. S10. The effect of Eu(III) complex on enzymatic reaction of ethanol transformation	
catalyzed by ADH	8

C₂₄H₂₉O₈N₅Eu exact mass: 668.1230

Fig. S1. The HR-MS for ternary [Eu(DO3A)(IQCA)]⁻ complex

C₂₄H₂₉O₈N₅Tb

exact mass: 674.1270

Fig. S2. The HR-MS for ternary [Tb(DO3A)(IQCA)]⁻ complex

Fig. S3. The HR-MS for ternary [Yb(DO3A)(IQCA)]⁻ complex

Fig. S4. The quenching effect of NADPH on luminescence intensity of ternary Eu(III) complex with DO3A macrocyclic and IQCA ligands (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), $c_{Ln} \sim 0.2$ mM, $c_{DO3A} \sim 0.3$ mM, $c_{IQCA} \sim 0.3$ mM). λ_{em_NADPH} = 460 nm, λ_{em_EuL} = 618 nm

Fig. S5. The quenching effect of NADPH on luminescence intensity of ternary Tb(III) complex with DO3A macrocyclic and IQCA ligands (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), $c_{Ln} \sim 0.2$ mM, $c_{DO3A} \sim 0.3$ mM, $c_{IQCA} \sim 0.3$ mM). λ_{em_NADPH} = 460 nm, λ_{em_TbL} = 545 nm.

Fig. S6. The quenching effect of NADPH on luminescence intensity of ternary Sm(III) complex with DO3A macrocyclic and IQCA ligands (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), *c*_{Ln} ~ 0.2 mM, *c*_{DO3A} ~ 0.3 mM, *c*_{IQCA} ~ 0.3 mM). λ_{em_NADPH} = 460 nm, λ_{em_SmL} = 597 nm

Fig. S7. The quenching effect of NADPH on luminescence intensity of ternary Nd(III) complex with DO3A macrocyclic and IQCA ligands (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), $c_{Ln} \sim 0.2$ mM, $c_{DO3A} \sim 0.35$ mM, $c_{IQCA} \sim 0.2$ mM). λ_{em_NADPH} = 460 nm, λ_{em_NdL} = 880 nm.

Fig. S8. The quenching effect of NADPH on luminescence intensity of ternary Yb(III) complex with DO3A macrocyclic and IQCA ligands (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), $c_{Ln} \sim 0.2$ mM, $c_{DO3A} \sim 0.35$ mM, $c_{IQCA} \sim 0.2$ mM). λ_{em_NADPH} = 460 nm, λ_{em_YbL} = 980 nm

Fig. S9. The emission spectra of ternary Tb(III) complex with DO3A macrocyclic and IQCA ligands in presence of NADPH compound (λ_{exc} = 325 nm, pH = 7.5 (40 mM HEPES), *c*_{Tb} ~ 0.2 mM, *c*_{DO3A} ~ 0.35 mM, *c*_{IQCA} ~ 0.2 mM). The corrected spectra have not been gated (lower picture) while upper in inset were gated by Δt = 50 ms.

Fig. S10 The example of time trace of fluorescence intensity for enzymatic reaction under the same experimental conditions (pH = 8.0, c_{EtOH} = 0.1 M, c_{EuLZ} = 0.1 mM, c_{NAD} = 0.1 mM, λ_{exc} = 325 nm, λ_{em} = 460 nm