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Abstract: In this study, silver nanoparticles were synthesized, characterized, and applied to a
dye-sensitized solar cell (DSSC) to enhance the efficiency of solar cells. The synthesized silver
nanoparticles were characterized with UV–Vis spectroscopy, dynamic light scattering, transmission
electron microscopy, and field emission scanning electron microscopy. The silver nanoparticles
infused titanium dioxide film was also characterized by Fourier transform infrared and Raman
spectroscopy. The performance of DSSC fabricated with silver nanoparticle-modified photoanode
was compared with that of a control group. The current and voltage characteristics of the devices as
well as the electrochemical impedance measurements were also carried out to assess the performance
of the fabricated solar cells. The solar-to-electric efficiency of silver nanoparticles based DSSC was
1.76%, which is quite remarkable compared to the 0.98% realized for DSSC fabricated without
silver nanoparticles.

Keywords: dye sensitized solar cell (DSSC); silver nanoparticles (AgNPs); titanium dioxide (TiO2);
electrochemical impedance spectroscopy (EIS); modified photoanode

1. Introduction

There is an inescapable need for sustainable and cleaner energy all over the world and currently,
the main source of energy in the world is fossil fuels like natural gas, coal, and oil. However, fossil fuels
are not ideal energy sources as they perpetuate pollution, making their continuous use unsustainable
and a cause of hazardous environmental problems [1,2]. Thus, the development of renewable energy
is integral in addressing the growing demand for cleaner and more sustainable energy throughout
the world [3,4]. The main sources of renewable energy that have been explored recently are solar,
wind, hydro, biomass, and geothermal energy. In particular, solar energy already provides energy for
all organisms on Earth through the process of photosynthesis [5–7]. Through the use of photovoltaic
cells, sunlight can be converted into and utilized as electricity [8–10]. Since solar energy is the most
abundant form of renewable energy, solar cells create the possibility of easily accessible energy for
inhabitants in various regions throughout the world.
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Current widely available solar cells are based on inorganic materials, require expensive methods of
production, and make use of a p-n/heterojunction and other metal-semiconductor junctions. However,
dye-sensitized solar cells (DSSC) provide a feasible alternative to present-day inorganic p-n junction solar
cells by converting solar energy into electric energy through the photosensitization of the cell [11–13].
Compared to solar cells based on inorganic materials, DSSCs require relatively low costs, involve an
easier method of production, and are environmentally sustainable [14,15]. Nonetheless, DSSCs result
in compromised efficiencies and its longstanding durability is in question. The efficiency of the DSSCs
in converting solar energy can be increased by manipulating parts of the cell, for instance, the cathode
or adding nanoparticles like silver (Ag) to enhance its performance [16]. The use of nanoparticles,
especially silver and gold nanoparticles in DSSCs in an effort to enhance the solar-to-electric power
efficiency, creates what is termed as the plasmonic effect [17]. When light interacts with the free
electrons (surface plasmons) of the metal nanoparticles, surface plasmon resonance (SPR), a property
of metal nanoparticles, is created. This results in the oscillations of the surface plasmons, creating an
extinction of light which increases the light absorption of surrounding dye molecules. These plasmonic
nanoparticles enhance the light absorption properties of the sensitizing dye and also improve the
electron dynamics. Incorporating Silver Nanoparticles (AgNPs) increases light absorption in the
photo-anode layer of DSSCs. The use of plasmonic nanoparticles (NPs) in DSSCs not only boosts their
power conversion efficiencies (PCEs) by increasing light absorbance of the cells, but also affects their
electron dynamics.

In this work, the DSSCs composed of AgNP-modified photoanodes were fabricated and characterized.
The performances of DSSC with and without AgNPs were compared and there was found to be
improved efficiency for DSSCs with AgNPs.

2. Experimental Section

2.1. Materials and Instrumentation

Fluorine-doped tin oxide (FTO) conducting glass slides were purchased from Harford Glass
Company, Hartford City, Indiana, USA. Sodium hydroxide (NaOH), acetone (C3H6O), ethanol
(C2H5OH), and acetic acid (CH3CO2H) were purchased from Sigma-Aldrich (St. Louis, MS, USA)
and were used without further purification. The synthetic N719 dye and silver nitrate (AgNO3) were
bought from Fisher Scientific and used in its original form. Colloidal graphite used to prepare the
counter electrode was purchased from Ted Pella Inc, Redding, CA 96003, USA. Titanium dioxide
powder (Degussa P-25) was purchased from the Institute of Chemical Education (University of
Wisconsin-Madison, Department of Chemistry, Madison, WI 53706, USA). The morphology of
synthesized AgNPs was analyzed using field emission scanning electron microscopy (Model FESEM:
JSM-7100FA JEOL USA, Inc.). The AgNPs were further characterized by high-resolution transmission
electron microscope (HRTEM), JEM-1400 PLUS (JEOL USA, Peabody, MA, USA). The images were
viewed using digital micrograph software from GATAN (GATAN Inc., Pleasanton, CA 94588, USA).
Absorption spectroscopy was carried out with a UV-3600 Plus from Shimadzu, Columbia, MD 21046,
USA. Emission spectroscopy was measured with a RF-5301PC from Shimadzu, Columbia, MD 21046,
USA. Raman studies were carried with a model DXR smart Raman spectrometer (Thermo Fisher
Scientific Co. Ltd., Waltham, MA 02451, USA). ATR spectra were obtained with a Thermo Nicolet
iS50 FTIR. TiO2 paste was printed on FTO glass using a WS-650 Series Spin Processor from Laurell
Technologies Corporation, North Wales, PA 19454, USA. The cell performance was measured using a
150 W fully reflective solar simulator with a standard illumination of air-mass 1.5 global (AM 1.5 G)
having an irradiance of 100 mW/cm2 (Sciencetech Inc. London, ON N6N 1R3, Canada). Reference 600
Potentiostat/Galvanostat/ZRA used for current, voltage, and impedance measurements was purchased
from GAMRY Instruments (Warminster, PA 18974, USA).
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2.2. Synthesis of Silver Nanoparticles

Silver Nanoparticles (AgNPs) were prepared by adding 1 mM of silver nitrate (AgNO3) to 2 mM
sodium borohydride (NaBH4), the reducing agent, and heating for 10 min to form a uniform solution.
The 1 mM of AgNO3 was added drop-wise, approximately one drop per second, to the borohydride
solution, and after 10 min of heating at a temperature of 70 ◦C under constant stirring with a magnetic
stir rod at 100 rpm, the solution was removed for cooling. Consequently, the color of the solution
turned yellow as a result of SPR, indicating the formation of AgNPs. The shade of yellow of the
solution served as an early indicator of the size of the AgNPs.

2.3. Fabrication of Dye-Sensitized Solar Cell

Preparation of the AgNPs-infused titanium dioxide films was carried out with the AgNPs
synthesized from sodium borohydride and silver nitrate as the reducing agent. The photoanode was
prepared by depositing a thin film of TiO2 infused with AgNPs on the conductive side of a FTO
glass slide using a spin coater and annealing the film at 380 ◦C for an hour. The titanium dioxide
paste was prepared with 3 mL silver nanoparticle solution, 3 mL acetic acid, 1 mL of dish soap water,
and 2.4 g of titanium dioxide powder. For samples with titanium tetrachloride (TiCl4), the TiO2

coated FTO glass was subsequently dipped into the TiCl4 solution at 70 ◦C for an hour and annealed
again for 30 min at 450 ◦C. The substrate was then immersed overnight in a prepared N719 dye
solution. The thickness of the titanium dioxide film on the FTO glass was determined by field emission
scanning microscopy cross-sectional imaging to be 8 µm. The thickness of the titanium dioxide film
determines its dye loading capacity and has been shown to influence the efficiency of the dye-sensitized
solar cell. Subramanian et al. reported the loading capacity of P25 with a thickness of 13 µm to be
2.4 µmol/cm2 [18]. The counter electrode (cathode) was prepared using colloidal graphite. The FTO
glass was first cleaned with water and ethanol and the colloidal graphite plastered uniformly on the
conductive side of the FTO glass. The device was finally assembled according to a protocol already
published [19]. The dye-sensitized photoanodes and the carbon electrodes were combined to form a
solar cell by sandwiching them with a redox iodine/iodide electrolyte solution. The electrolyte solution
was composed of iodine (I2) and potassium iodide (KI) in ethylene glycol. The electrolyte was dropped
between the photoanode and counter electrode and allowed to spread down by capillary.

3. Results and Discussion

3.1. Absorption Measurements

UV–Visible absorption spectroscopy was carried out to characterize the absorption of the Silver
Nanoparticles (AgNP) solution. The UV–Vis spectra of the synthesized aqueous silver nanoparticles is
shown in Figure 1. The wavelength of maximum absorption for the AgNPs was 436 nm. The absorption
band at 436 nm is indicative of the surface plasmon resonance (SPR) band of silver nanoparticles and
thus the formation of silver nanoparticles. The SPR results from the interaction of free electrons and
electromagnetic radiation. This phenomenon enhances the absorption coefficient of the dye and optical
absorption, which results in the increase in the efficiency of the solar cell [20–23].

3.2. Dynamic Light Scattering Measurements

Dynamic light scattering (DLS) was used to measure the size of nanoparticles and their dispersity
in solution. Thus, one can obtain the hydrodynamic diameter as well as the size distribution curve of
the sample. The silver nanoparticle synthesized for application in DSSC was characterized with DLS
and the results of the measurements are displayed in Figure 2. The average size of the AgNPs was
23 nm with a standard deviation of 5.2 nm. The hydrodynamic diameter takes into the consideration
the nanoparticle core size as well as the shell of water around the nanoparticles [24].
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Figure 2. Dynamic light scattering measurement of synthesized silver nanoparticles.

3.3. Field Emission Scanning Electron Microscopy Imaging and Energy Dispersive X-ray Spectroscopy

The synthesized silver nanoparticles were further characterized by field emission scanning electron
microscopy (FESEM) imaging to obtain morphological information and with energy dispersive X-ray
spectroscopy (EDS) for elemental analysis of the silver nanoparticles sample. The results of the
measurements are illustrated in Figure 3. The FESEM image in Figure 3a shows that the particles
were nearly spherical in shape and turned to agglomerate. The EDS spectrum in Figure 3b shows the
presence of silicon, carbon, oxygen, silver, and sodium. The silicon peak represents the silver wafer
substrate use in the imaging. The sodium likely originated from the sodium borohydride used in the
reduction of silver nitrate to obtain the silver nanoparticles.



Molecules 2020, 25, 4021 5 of 10

Molecules 2020, 25, x FOR PEER REVIEW 5 of 11 

 

3.3. Field Emission Scanning Electron Microscopy Imaging and Energy Dispersive X-Ray Spectroscopy 

The synthesized silver nanoparticles were further characterized by field emission scanning 
electron microscopy (FESEM) imaging to obtain morphological information and with energy 
dispersive x-ray spectroscopy (EDS) for elemental analysis of the silver nanoparticles sample. The 
results of the measurements are illustrated in Figure 3. The FESEM image in Figure 3a shows that the 
particles were nearly spherical in shape and turned to agglomerate. The EDS spectrum in Figure 3b 
shows the presence of silicon, carbon, oxygen, silver, and sodium. The silicon peak represents the 
silver wafer substrate use in the imaging. The sodium likely originated from the sodium borohydride 
used in the reduction of silver nitrate to obtain the silver nanoparticles.  

 
Figure 3. Field emission scanning electron microscopy imaging (a) and the corresponding energy 
dispersive x-ray spectroscopy (b) of the synthesized silver nanoparticles. 

3.4. Transmission Electron Microscopy Imaging 

The AgNPs as well as the AgNP infused titanium dioxide were characterized by transmission 
electron microscopy (TEM). The high resolution of the TEM allows for the visualization of the 
individual nanoparticles. The images of the analysis are displayed in Figure 4. The TEM image of the 
silver nanoparticles with titanium dioxide showed a close interaction of AgNPs with titanium 
dioxide. The sizes of the AgNPs and titanium dioxide were similar, which accounted for the excellent 
interaction between the nanoparticles. 

 
Figure 4. Transmission electron microscopy of Silver Nanoparticles (AgNPs) (a) and AgNPs with 
titanium dioxide nanoparticles (b). 

  

Figure 3. Field emission scanning electron microscopy imaging (a) and the corresponding energy
dispersive X-ray spectroscopy (b) of the synthesized silver nanoparticles.

3.4. Transmission Electron Microscopy Imaging

The AgNPs as well as the AgNP infused titanium dioxide were characterized by transmission
electron microscopy (TEM). The high resolution of the TEM allows for the visualization of the individual
nanoparticles. The images of the analysis are displayed in Figure 4. The TEM image of the silver
nanoparticles with titanium dioxide showed a close interaction of AgNPs with titanium dioxide.
The sizes of the AgNPs and titanium dioxide were similar, which accounted for the excellent interaction
between the nanoparticles.

Molecules 2020, 25, x FOR PEER REVIEW 5 of 11 

 

3.3. Field Emission Scanning Electron Microscopy Imaging and Energy Dispersive X-Ray Spectroscopy 

The synthesized silver nanoparticles were further characterized by field emission scanning 
electron microscopy (FESEM) imaging to obtain morphological information and with energy 
dispersive x-ray spectroscopy (EDS) for elemental analysis of the silver nanoparticles sample. The 
results of the measurements are illustrated in Figure 3. The FESEM image in Figure 3a shows that the 
particles were nearly spherical in shape and turned to agglomerate. The EDS spectrum in Figure 3b 
shows the presence of silicon, carbon, oxygen, silver, and sodium. The silicon peak represents the 
silver wafer substrate use in the imaging. The sodium likely originated from the sodium borohydride 
used in the reduction of silver nitrate to obtain the silver nanoparticles.  

 
Figure 3. Field emission scanning electron microscopy imaging (a) and the corresponding energy 
dispersive x-ray spectroscopy (b) of the synthesized silver nanoparticles. 

3.4. Transmission Electron Microscopy Imaging 

The AgNPs as well as the AgNP infused titanium dioxide were characterized by transmission 
electron microscopy (TEM). The high resolution of the TEM allows for the visualization of the 
individual nanoparticles. The images of the analysis are displayed in Figure 4. The TEM image of the 
silver nanoparticles with titanium dioxide showed a close interaction of AgNPs with titanium 
dioxide. The sizes of the AgNPs and titanium dioxide were similar, which accounted for the excellent 
interaction between the nanoparticles. 

 
Figure 4. Transmission electron microscopy of Silver Nanoparticles (AgNPs) (a) and AgNPs with 
titanium dioxide nanoparticles (b). 

  

Figure 4. Transmission electron microscopy of Silver Nanoparticles (AgNPs) (a) and AgNPs with
titanium dioxide nanoparticles (b).

3.5. Fourier Transform Infrared Measurements

Fourier transform infrared (FTIR) measurements were performed on the titanium dioxide film and
dye-sensitized titanium dioxide and silver nanoparticle-modified dye-sensitized titanium dioxide film
to evaluate the N719 dye/AgNP/titanium dioxide interaction. The results of the FTIR measurements are
shown in Figure 5. The IR spectra of the titanium dioxide film, as shown in Figure 5, show vibrational
modes at 3413 cm−1 and 1622 cm−1, which were ascribed to TiO2 for υO-H at 3413 cm−1 and δO-H
at 1622 cm−1, respectively. Peaks at 1463 cm−1 and 1627 cm−1 in both the dye-sensitized titanium
dioxide and silver nanoparticle-modified dye-sensitized titanium dioxide film originated from the
N719 dye. The band between 600 cm−1 and 700 cm−1 was attributed to the bending and stretching
mode of Ti–O–Ti. The broadband in the region of around 3500–300 cm−1 was also a characteristic
carboxyl group (O–H stretch) of the N719. The carboxyl group bond with the hydroxyl of the titanium
dioxide providing a channel for the transfer of electrons.
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3.6. Raman Spectroscopy

The interaction between the AgNPs and the titanium dioxide was further evaluated with Raman
spectroscopy. Raman studies on the silver doped dye-sensitized titanium dioxide films were performed
in the range of 200–3400 cm−1, and the results are shown in Figure 6. The D and G bands at 1490 cm−1

and 1950 cm−1 respectively, are consistent with previous studies that attribute the peaks to the high
disorder exhibited by sp3 carbons [25]. The presence of the additional peaks is an indication of the
interaction between the TiO2 nanoparticles and the AgNPs.Molecules 2020, 25, x FOR PEER REVIEW 7 of 11 
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3.7. Current and Voltage Characteristics

The performance of the DSSC was evaluated via the measurements of the open-circuit voltage,
short-circuit current, fill factor, maximum voltage, and the maximum current of the cell. The current
and voltage characteristic measurements of the fabricated solar cell are displayed in Table 1 and Figure 7.
The DSSC fabricated with AgNPs and soaked in the TiCl4 solution gave the highest solar-to-electric
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power of efficiency of 1.76%, with an open-circuit voltage of 0.50 V, short-circuit current of 6.45 mA/cm2,
and a fill factor of 0.47. The efficiency of N719 + TiO2 and N719 was 1.20% and 0.98%, respectively.
The increase from 0.98% to 1.2% to a large extent was the result of the increase in the short circuit
current from 4.69 mA/cm2 to 5.46 mA/cm2 as well as an increase in the open-circuit voltage. The fill
factor decreased from 0.42 to 0.40. This could be due to resistance and leaks in the circuit. The overall
enhanced photovoltaic performance could be attributed to the plasmonic effect of the AgNPs that result
in a swift transfer of an electron from the AgNPs to the TiO2 [26]. The free electrons in metals can be
excited by electrical components of light to produce collective oscillations. These oscillations could be
confined in a very small volume around a silver nanoparticle, which results in enhancement of the local
field and helps increase light incident on the nanoparticles. Thus, the silver nanoparticles embedded
in the titanium dioxide improved the absorption of the light exposed to the dye sensitized solar cell
and thus enhanced the efficiency of the solar cell. The use of the TiCl4 also provided an additional
enhancement of the efficiency of the DSSC since the TiCl4 increased the dye adsorption [27]. The TiCl4
boosted the efficiency by increasing the dye absorption of the titanium dioxide, which consequently
increased the short-circuit current density. There was a remarkable increase in the open-circuit voltage
and an improvement in the fill factor.

Table 1. Photovoltaic performance for fabricated dye-sensitized solar cell (DSSCs) with and without
Silver Nanoparticles (AgNPs).

Voc (V) Jsc
(mA/cm2) Vmp (V) Imp

(mA/cm2)
Fill

Factor
Efficiency

(%)

N719 0.50 4.69 0.27 3.42 0.42 0.98
N719 + AgNPs 0.55 5.46 0.31 3.78 0.40 1.20

N719 + AgNPs + TiCl4 0.58 6.45 0.38 4.68 0.47 1.76
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3.8. Electrochemical Impedance Spectroscopic Measurements

Electrochemical impedance spectroscopic (EIS) measurements were performed to evaluate the
charge transfer and resistance in the fabricated DSSC [28–30]. EIS data were presented in Nyquist
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and Bode plots, as displayed in Figures 8 and 9, respectively. The measurements were performed
under illumination.
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Figure 9. Bode plot of DSSCs fabricated with only N719, N719 with AgNPs treatment, and N719 with
AgNPs and TiCl4 treatment.

A Nyquist plot typically displays two or three semicircles. A smaller semicircle at a high frequency
corresponds to a charge transfer resistance at the cathode/electrolyte interface, while a larger semicircle
corresponds to a charge transfer resistance at the titanium dioxide/dye/electrolyte interface.

The Bode plot correlates peak frequencies to the lifetime (τ) of the charge. The lifetime is inversely
proportional to the peak frequency, as displayed in Equation (1).

τ = 1/2πf (1)
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The Bode plot of the solar cell fabricated with AgNPs, as shown in Figure 9, has a lower frequency,
thus leading to a relatively longer electron lifetime, which ultimately leads to the higher efficiency of
the DSSC. A long electron lifetime is beneficial for the DSSC device as it will improve the open-circuit
current from which the efficiency of the cell is calculated.

4. Conclusions

In this study, the AgNPs were synthesized, characterized, and applied in DSSC to enhance the
efficiency of the solar cells. The performance of the DSSC fabricated using the N719 dye and AgNPs-
modified paste of TiO2 was compared with that of a control group created using just the N719 dye.
The silver and the pre-treatment of TiCl4 appeared to have the maximum effect on efficiency (1.76%).
The enhanced photovoltaic performance of the DSSCs could be attributed to the plasmonic effect of the
AgNPs and the use of TiCl4 that allowed for increased dye adsorption and a swift transfer of charge.
The silver nanoparticles embedded in the titanium dioxide thus improved the absorption of the light
exposed to the dye-sensitized solar cell and enhanced the efficiency of the solar cell.
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