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Abstract: In the present work, we provide an electronic structure based method for the “on-the-fly”
determination of vibrational sum frequency generation (v-SFG) spectra. The predictive power of
this scheme is demonstrated at the air-water interface. While the instantaneous fluctuations in
dipole moment are obtained using the maximally localized Wannier functions, the fluctuations in
polarizability are approximated to be proportional to the second moment of Wannier functions.
The spectrum henceforth obtained captures the signatures of hydrogen bond stretching, bending,
as well as low-frequency librational modes.
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1. Introduction

Vibrational spectroscopy provides microscopic fingerprints of the structure and dynamics at
the molecular level in condensed phase systems [1–3]. However, theoretical interpretation and peak
characterization of vibrational spectra predominantly rely on molecular dynamics simulations [4–9].
Nevertheless, the success of simulations also depends largely on the force field employed to describe
the interatomic interactions. In this regard, ab initio molecular dynamics (AIMD) has proven
to be extremely useful as the interatomic forces are obtained from accurate electronic structure
calculations [10,11]. For periodic systems, the overall electronic state within the AIMD framework is
generally expressed in the terms of Bloch orbitals,

Ψ(r, k) = e(ik·r) ui(r, k), (1a)

where
ui(r, k) = ui(r + R, k), (1b)

with Ψ(r, k) being the electronic wavefunction, ui(r, k) the Bloch function, and R a translational lattice
parameter [12]. An alternative representation, which is more suited for chemical problems, is provided
by so-called maximally localized Wannier functions (MLWFs), i.e., wn(r− R) that are obtained by a
unitary transformation of the Bloch orbitals [13,14]. The construction of this Wannier representation
enables to split the continuously varying total electronic density into contributions originating from
localized fragments of the system. Mathematically, MLWFs are expressed as
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wn(r− R) =
V

2π3

∫
BZ

dk e−ik·R
J

∑
m=1

U(k)
mn ψmk(r), (2)

where R is the lattice vector of the unit cell and V is the real-space primitive cell volume. The J ×
J matrix U(k)

mn is the unitary transformation matrix and ψmk(r) are the eigenstates of the system
computed by density function theory (DFT). The corresponding MLWFs are then obtained by the
unitary transformation U(k)

mn that minimizes the spread functional

S = ∑
n

Sn = ∑
n
(
〈
wn
∣∣r2∣∣wn

〉
− 〈wn |r|wn〉2). (3)

Therein,
〈
r2〉 is the second moment, whereas 〈r〉2 is the squared first moment of the Wannier

centers. This unitary transformation-based localization can be readily implemented on the position
operator r̂ within the Wannier representation to obtain localized orbitals for a given periodic system of
arbitrary symmetry [15–17]. As a result, the scheme can be used to compute the electronic contributions
to the polarization of a system. Moreover, it also allows to calculate instantaneous fluctuations in
the molecular dipole moment and within the linear-response regime and obtain the linear as well
as nonlinear infrared spectrum using time-correlation function formalism [18–24]. In this regard,
Raman and higher nonlinear analogs like vibrational sum frequency generation (v-SFG), 2D-vSFG,
and 2D-Raman can also be computed by applying a constant periodic electric field using the Berry
phase formalism [25–27], or by calculating the polarizability tensor A

Aij = −
δMi(E)

δEj
, (4)

where M is the total dipole moment and E is an externally applied electric field. This scheme of
computing the polarizability tensor has been utilized to obtain isotropic Raman spectrum by means of
density functional perturbation theory [28–31].

In this paper, we present a novel computational method to obtain the v-SFG spectrum of the
air–water interface. This anisotropic Wannier Polarizability (WP) method is based on a technique of
computing the fluctuations within the dipole moment and polarizability “on-the-fly” during an AIMD
simulation without any additional computational cost [32]. For that purpose, the fluctuations in the
dipole moment are obtained using the Wannier centers, whereas the components of the polarizability
tensor are approximated using the second moment of the Wannier centers. However, it is noteworthy
that several other computational studies have obtained the vSFG spectrum using empirical maps [33–
40], velocity correlations [41–44], as well as directly from AIMD simulations [45–48].

2. Results

2.1. Anisotropic Wannier Polarizability Method

The original isotropic WP method has been implemented to compute the isotropic Raman
spectrum of isolated gas phase molecules, as well as aqueous solutions [32,49]. The underlying
principle of the method is that the polarization induced by an externally applied perturbation is
directly proportional to the molecular volume of the system [50,51]. As Wannier centers provide
a picture where the total electronic density is partitioned into the localized electronic densities of
different fragments of the system, the fluctuations in the electronic polarizability can be connected to
the fluctuations of the volume of the Wannier centers instead of the overall molecular volume. As a
result, the net isotropic polarizability can be expressed as

Ā =
1
3

NWF

∑
i=1

Ai =
β

3

NWF

∑
i

S3
i , (5)
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where Si is the spread of the ith Wannier center, NWF is the number of MLWFs, and β is a proportionality
constant. The isotropic Raman spectrum is then obtained as the Fourier transform of the polarizability
time-correlation function. On similar lines, the v-SFG spectrum of a non-centrosymmetric system is
given by

χ2
abc(ω) =

∫ ∞

0
dteiωt 〈Mc(0) · Aab(t)〉 , (6)

which can be rewritten as

χ2
abc(ω) =

1
iω2

∫ ∞

0
dteiωt 〈Ṁc(0) · Ȧab(t)

〉
, (7)

where χ2
abc is the second-order susceptibility, whereas Aab is the abth component of the polarizability

tensor and Mc is cth component of the dipole moment [41]. In contrast to Raman spectroscopy,
the computation of v-SFG spectra requires the diagonal elements of the polarizability tensor. In this
regard, we note that the second moment

〈
wn
∣∣r2

ab

∣∣wn
〉

and the polarizability are tensors of same size.
Moreover, the off-diagonal elements of the second moment should correspond to the time-dependent
evolution of the off-diagonal polarizability tensor components. Accordingly, we have approximated
that the component specific fluctuations in the polarizability are proportional to the second moment of
the Wannier centers, i.e.,

Aab ∝
〈
wn
∣∣r2

ab
∣∣wn

〉
. (8)

This is to say that the correspondence between the second moment of the Wannier centers and the
polarizability tensor allows us to approximate the fluctuations within the polarizability without actually
calculating the exact numerical value of each component of the polarizability tensor. The strength of
the anisotropic WP method is that for each set of an electron pair, we have a unique Wannier center and
its corresponding moments. As a result, the method can be used to specifically study the contributions
from the different fragments of the system. Moreover, it is also computationally less expensive as the
polarizability is determined on-the-fly from the second moments of the Wannier centers, which is in
contrast with existing approaches, where the polarizability is obtained by numerical differentiation of
the total dipole moment with respect to an externally applied electric field. This is to say that a simple
minimization of the spread functional provides the Wannier centers and their corresponding moments
that are used to obtain the dipole and the polarizability, respectively. Thus, a single AIMD-based
Wannier center calculation is sufficient to obtain the dipole moment, as well as the polarizability.

2.2. Application to the Air–Water Interface

To demonstrate the predictive power of the present anisotropic WP method, we have computed the
v-SFG of at the air–water interface. For the sake of simplicity, we have assumed that the contributions
originating from Wannier centers, which are associated with the lone pair of electrons, to the overall
polarizability can be safely neglected. Moreover, the spectral dynamics is predominantly governed
by the dynamical evolution of the Wannier centers corresponding to the bonded electron pairs.
This assumption is based on the fact that the time-dependent evolution of the Wannier centers with
respect to centers of molecules corresponding to the bonded electron pairs is mutually complementary
to that of the lone pairs. For timescales at around 1 ps, which is the timescale of hydrogen bond
rearrangements, the strengthening of the donating hydrogen bonds leads to shift of the Wannier
centers associated with bonded electron pairs away from the centers of water molecules, and vice
versa for the Wannier centers corresponding to the lone pairs. The average molecular dipole moment
of the water molecules obtained using the Wannier centers, whose distribution is shown in Figure 1,
was found to be 2.46 Debye.

The dipole polarizability cross-correlation function and the v-SFG spectrum computed based on
the fluctuations within the dipole moments obtained by using the Wannier centers and polarizabilities
by means of the second moment are shown in Figures 2 and 3, respectively.



Molecules 2020, 25, 3939 4 of 10

1.5 2 2.5 3 3.5

  (Debye)

0

1

2

3

4

5

6
10

4

Figure 1. Distribution of molecular dipole moment (µ) of water molecules at ambient conditions,
as computed using the maximally localized Wannier centers.
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Figure 2. The dipole polarizability cross-correlation function, as obtained by the present anisotropic
Wannier Polarizability (WP) method.
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Figure 3. The vibrational sum frequency generation (v-SFG) spectrum of interfacial water molecules
computed by the present anisotropic WP method.

We find that the v-SFG spectrum obeys characteristic peaks corresponding to librational,
bending, OH stretching, as well as free OH modes. As there are various previous experimental
and simulation-based studies analyzing the stretching, bending, and librational modes within the
v-SFG spectrum at the air–water interface, we only briefly highlight our findings in light of the existing
literature. First, we will focus on the spectral region of 3000–3800 cm−1, which is predominantly
attributed to OH stretching modes. More precisely, earlier simulation studies have reported a broad
negative peak between 3000 to 3600 cm−1 and a sharp positive peak around 3700 cm−1 [33,34,36,37,45].
Using our anisotropic WP method, we also find a broad negative peak at 2900–3500 cm−1 and sharp
positive peak around ∼3600 cm−1. The former broad negative peak contribution originates from
hydrogen-bonded water molecules with the overall dipole aligned towards the bulk, whereas the
latter sharp positive peak is connected with the free and dangling OH modes of the interfacial water
molecules.

The observed red-shift within the peak positions can be most likely attributed to the choice of XC
functional and employed pseudopotentials in the present study. Earlier experimental and simulation
studies of the bending mode have reported a broad negative peak around 1650 cm−1 and a positive
shoulder around 1750 cm−1 [43,46]. Here, using the anisotropic WP method, we also observe a broad
negative peak between 1400 and 1650 cm−1, which is governed by the free and dangling OH modes.
However, at variance to these earlier studies [43,46], we cannot confirm any positive shoulder in our
calculations. Finally, we observe a negative peak at around 450–650 cm−1 that is governed by the
librational motion of water molecules.

However, we find it important to emphasize that the present scheme slightly underestimates the
contributions originating from the bonded OH modes. This accounts for a shallow negative peak in
the stretching region and a missing positive shoulder in the bending region. Apart from a consistent
red-shift within the peak positions, our results are in good agreement with earlier results that have
also reported a negative peak in the region of 700–800 cm−1 [42]. In Figure 4, we have compared
the spectral line shape with available experimental results [6,42,43]. For the purpose to gauge the
accuracy of the present method, we have also compared the stretching mode with the one obtained
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by the surface-specific velocity–velocity correlation function (ssVVCF) based on exactly the same
trajectory [41,44].
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Figure 4. Comparison between the vSFG spectra as obtained using our WP method and experimental
and theoretical measurements of (a) librational, (b) bending, and (c) stretching modes, respectively.
The intensities of the experimental references were rescaled to match the theoretically obtained spectra.

3. Computational Methods

Ab initio molecular dynamics simulations were performed by using the method of Car and
Parrinello [10,52], as implemented in the CPMD code [53]. Simulations of the air–water interface
comprising of 80 H2O molecules were performed at 300 K in a cubic box of edge length 12.43 Å
corresponding to the density at ambient conditions [54]. The air–water interface was generated by
increasing the edge length of the box to 37.2 Å in the z-direction. The Kohn–Sham formulation of
density functional theory was applied to represent the electronic structure of the system within a plane
wave basis set [11]. In order to represent the core–shell electrons, Vanderbilt ultra-soft pseudopotentials
were used and the plane wave expansion of Kohn–Sham orbitals was truncated at a kinetic energy
cutoff of 25 Ry [55]. The electronic orbitals were assigned a fictitious mass of 400 a.u. and equations of
motion were integrated with a time step of 4 a.u.

In the present work, we have used the dispersion corrected BYLP-D exchange and correlation
(XC) functional [56–58], as previous AIMD studies have shown that inclusion of London dispersion
interactions not only improves the structure, but also predicts the dynamics, spectroscopy and phase
diagram of ab initio water and aqueous solutions in better agreement with experiment [48,59–62].
The initial configuration was generated using classical molecular dynamics simulations. Subsequently,
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the production run was carried out in the canonical NVT ensemble using Nose-Hoover
thermostats [63,64] for 50 ps.

The identification of interfacial water molecules at the air-water system was conducted using the
algorithm for the identification of truly interfacial molecules ITIM [65,66]. This scheme uses a probe
sphere to detect the molecules at the surface. The radius of the probe sphere was set to 2 Å which has
been proven to be a good value for water [66]. A cut-off-based cluster search was also performed using
3.5 Å as a cut-off, which corresponds to the first minimum of the O· · ·O radial distribution function in
liquid water.

4. Conclusions

To summarize, we have proposed a computationally efficient on-the-fly method to determine the
v-SFG spectrum for interfacial systems. This anisotropic WP method utilizes the second moment of the
Wannier centers to estimate the polarizability fluctuations. The major strength of this method is that
it captures the spectral signatures of the system for the collective, as well as highly localized modes.
Furthermore, it can be directly applied to spectral decomposition by computing fragment-specific
contributions from the Wannier centers and their second moment to assist the interpretation of
the experimental measurements. Moreover, the algorithm employed here can be easily extended
to other spectroscopic techniques like two-dimensional v-SFG [67], time-dependent v-SFG [68],
2D-Raman-Thz [69], pump-probe Thz [70], and 2D-Raman [71] to name just a few. From the application
perspective, interfacial reactivity, on-water catalysis, and other interfacial chemical processes can also
be studied using our anisotropic WP-based method. Nevertheless, for greater agreement with the
experiment, it would be important to better understand the role of simulation protocols, system size,
and the approximations made, which we propose as an extensions for future works.
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