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Abstract: Pulsed electric fields (PEF) is a promising technology that allows the selective extraction 

of high-added value compounds by electroporation. Thus, PEF provides numerous opportunities 

for the energy efficient isolation of valuable microalgal bioactive substances (i.e., pigments and 

polyphenols). The efficiency of PEF-assisted extraction combined with aqueous or dimethyl 

sulfoxide (DMSO) solvents in recovering pigments and polyphenols from microalgae Tetraselmis 

chuii (T. chuii) and Phaeodactylum tricornutum (P. tricornutum) was evaluated. Two PEF treatments 

were applied: (1 kV/cm/400 pulses, 3 kV/cm/45 pulses), with a specific energy input of 100 kJ/kg. 

The total antioxidant capacity (TAC) was positively influenced by the use of DMSO. The highest 

TAC in the T. chuii culture was achieved at a lower extraction time and electric field than for P. 

tricornutum. The use of DMSO only improved the polyphenols′ extraction for P. tricornutum, 

whereas the PEF and extraction time were more important for T. chuii. Carotenoids and chlorophyll 

a were more efficiently extracted using DMSO, while chlorophyll b levels were higher following 

aqueous extraction for both microalgae. In P. tricornutum, the TAC and pigment extraction efficiency 

were in general higher at lower extraction times. It can be concluded that PEF may be a promising 

alternative for the enhancement of the selective extraction of antioxidant bioactive compounds from 

microalgae. 

Keywords: pulsed electric fields; Tetraselmis chuii; Phaeodactylum tricornutum; antioxidant bioactive 

compounds; extraction 

 

1. Introduction 

Over the last years, several research studies have evaluated the potential of microalgae as a 

source of nutrients and bioactive compounds for food (e.g., Spirulina, Chlorella, Nannochloropsis, etc.) 

and feed applications. For example, microalgae have been used to obtain healthier food products by 

replacing protein of animal origin [1–3], as well as being a source of high added-value compounds in 

food additives and nutraceuticals [4–6]. 

One of the key steps in harnessing the potential of these microalgae is the extraction of the 

compounds, traditionally performed on dried biomass, using solvents [7]. However, the long 
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extraction time, the co-extraction of undesirable compounds, as well as the increased downstream 

costs lead to the need for the development of more efficient and sustainable extraction technology 

alternatives [8–10]. 

In this sense, it has been shown that the use of pulsed electric fields (PEF), which is a technique 

consisting of the application of electrical pulses between two electrodes, has several advantages [6]. 

For instance, PEF lipid droplets remain intracellular after treatment, which provides advantages in 

selective processing [11] that targets the up-concentration of high value bioactive compounds. 

Moreover, the use of PEF being possible in aqueous solutions with a low dry matter content, opens 

opportunities for a more energy-efficient isolation of valuable microalgal compounds directly from 

the culture without the need for prior dewatering or drying [11]. 

Most of the studies evaluating the application of PEF focus on the use of aqueous suspensions 

of microalgae, thus mainly allowing extraction of water-soluble compounds [12,13], whereas the 

extraction of non-polar pigments (e.g., chlorophylls or carotenoids) is limited under these conditions. 

Some previous studies evaluated the use of supplementary extractions using 96% ethanol, obtaining 

considerable higher yields of pigments extracted from the PEF-pretreated microalgae Chlorella 

vulgaris [14]. More recently, the combination of PEF or ultrasound-pretreated microalgae suspensions 

and the binary mixture of water + organic solvent has been used to improve the extraction efficiency 

of pigments from microalgae Nannochloropsis spp. [15–17]. 

However, as reported in a previous review, the performance of extraction assisted by PEF varies 

greatly depending on the microalgae that is used [5]. This is why species-specific studies are 

necessary to generate the necessary information to be able to scale the process to an industrial level. 

Most of the studies evaluating the PEF-assisted extraction from microalgae biomass have been 

focused on Chlorella, Nannochloropsis, etc., observing a lack of data on the PEF impact on the extraction 

of high added-value compounds from other microalgae species. Tetraselmis chuii (T. chuii) is a marine 

unicellular microalgae 12–14 μm in length and 9–10 μm in width belonging to the 

Chlamydomonadaceae family. The characteristics of the species are the ovoid shape of the cell and 

the four flagella that emerge from a depression near the apex. Phaeodactylum tricornutum (P. 

tricornutum) is a marine diatom 5–27 μm in length and 3–4 μm in width belonging to the 

Phaeodactylaceae family. P. tricornutum can be found in different morphotypes (i.e., fusiform, 

triradiate and oval) that may have different behaviors under different downstream processing 

conditions. 

The novelty in the present work is mainly based on the use of a low electric field strength to 

promote microalgae electroporation, since most of the available works in the literature generally use 

high field strengths. Moreover, the PEF equipment used in this study allows for scaling up processing 

conditions to an industrial level. This also explains why the used field strength is low, since at an 

industrial level it is difficult to use high electric fields. 

Therefore, the present research is aimed at the evaluation of the efficiency of PEF-assisted 

extraction combined with aqueous or dimethyl sulfoxide (DMSO) supplementary extraction in 

recovering high added-value compounds (pigments and total phenolic compounds) from T. chuii and 

P. tricornutum.  

2. Results and Discussion 

In our study, the combined effects of the PEF treatment, extraction time and solvent type (polar: 

water vs. non-polar: DMSO) on antioxidant extraction from two microalgae species (i.e., T. chuii and 

P. tricornutum) were evaluated. It is known that polyphenols and pigments like carotenoids 

contribute significantly to the total antioxidant capacity (TAC) of microalgae [18]. For that reason, 

total phenolic compounds, carotenoids, chlorophyll a and chlorophyll b were also measured. The 

results on the TAC, total phenolics and pigments for T. chuii are summarized in Figure 1a for water 

and Figure 1b for DMSO, whereas the respective results for P. tricornutum are summarized in Figure 

2a for water and Figure 2b for DMSO. 
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Figure 1. Total Antioxidant Capacity (TAC) and concentration of total phenolic compounds (TPC), 

total carotenoids, chlorophyll a and chlorophyll b in (a) water and (b) DMSO 50% in water extracts 

from Tetraselmis chuii. Bars with different letters in the same parameter indicate significant statistical 

differences (p < 0.05). 

b) 

a) 
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Figure 2. Total Antioxidant Capacity (TAC) and concentration of total phenolic compounds (TPC), 

total carotenoids, chlorophyll a and chlorophyll b in (a) water and (b) DMSO 50% in water extracts 

from Phaeodactylum tricornutum. Bars with different letters in the same parameter indicate significant 

statistical differences (p < 0.05). 

2.1. Total Antioxidant Capacity 

The total antioxidant capacity (TAC) of the extracts measured by ABTS test also presented 

significant differences (p < 0.05). For instance, the analysis of variance (ANOVA) showed significant 

modifications in TAC according to the PEF treatment, solvent and time used for the extraction, 

independently of the microalgae evaluated (Figures 1 and 2). For example, for T. chuii, the ABTS 

values were in the range of 21.13 to 51.97 μM TE/g dry weight (DW). The maximum value in T. chuii 

was reached after applying a 1 kV/cm treatment and supplementary extraction with DMSO during 4 

h. On the other hand, for P. tricornutum, the TAC values varied between 15.58 and 51.36 μM TE/g 

b) 

a) 
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DW, reaching the maximum value after applying 3 kV/cm and supplementary extraction in DMSO 

during 24 h. These values are in agreement with those obtained by other authors [18–21], who found 

TEAC values in the range of 13.36–48.90 μM TE/g DW and 6.79–67.93 μM TE/g DW when they 

evaluated the TAC of the extracts from T. chuii and P. tricornutum, respectively. It should be noted 

that, in general, TAC data may vary among different studies, not only according to the microalgae 

species studied but also the growth conditions used. 

2.1.1. Polyphenols 

The total phenolic compounds (TPC) values in the T. chuii extracts ranged from 4.38 to 6.70 mg 

gallic acid equivalents (GAE)/g dry weight (DW), not observing any significant influence of the 

solvent used (Figure 1). Moreover, the maximum value was achieved with the PEF treatment at 3 

kV/cm and 4 h of extraction, independently of the solvent used (water: 6.42 GAE/g DW and DMSO 

50% in water: 6.70 mg GAE/g DW, respectively).  

However, in the case of P. tricornutum, we observed a significant influence of the solvent in 

relation to the recovery of antioxidant compounds (Figure 2). For instance, as shown in Figure 2, the 

values obtained after the aqueous extraction were significantly lower than those obtained after using 

DMSO. However, in this case, neither the field strength and pulses treatment nor the extraction time 

had any significant influence on the extraction of antioxidant compounds, since no significant 

differences were found. The maximum extraction yield was obtained after PEF pre-treatment + 

DMSO 50% in water, obtaining values ≈ 8 mg GAE/g DW. These values are in agreement with those 

obtained previously by Goiris et al. [18] for TPC after a conventional extraction with ethanol/water 

solvent; they extracted 3.74 mg GAE/g DW and 3.75 mg GAE/g DW for Tetraselmis spp. and 

Phaeodactylum tricornutum, respectively. Moreover, Safafar et al. [19] also found similar results when 

they evaluated the extraction of TPC from P. tricornutum using methanol as a solvent (3.16 mg GAE/g 

DW). 

2.1.2. Pigments 

Finally, although the amount of total phenolic compounds obtained was similar, the amount of 

pigments was different between the two microalgae species studied, especially after the DMSO-

assisted extraction (Figures 1 and 2). This fact can be explained by the potential differences in the 

total pigment levels of both microalgae, as well as in the extraction efficiency resulting from their 

differences in cellular structure and size, the cells of P. tricornutum being slightly bigger than those of 

T. chuii and possessing different forms. Tetraselmis chuii cells have an oval form (10 × 14 μm), while 

P. tricornutum presents three different morphotypes [22]. These morphotypes are ovoid (10–12 μm in 

length), triradiate (15–20 μm) and fusiform (20–30 μm in length, with a diameter of 1–3 μm) [23]. The 

difference in the size and form of the cells may be the reason behind the higher pigment extraction 

efficiency in P. tricornutum, demonstrating that both the shape and size of the cell may influence the 

effect of electroporation by PEF. Moreover, for elongated cells like the fusiform morphotypes of P. 

tricornutum, their orientation in the medium with respect to the electric fields may also influence the 

electroporation efficiency, depending on which side (the long or the short one) is positioned parallel 

to the electrodes [24]. Nevertheless, in the case of T. chuii, as the cells have a more spherical form, 

their orientation may be less important. 

The composition of the cell wall must also be considered, since it is an important factor that can 

influence extraction [25]. Contrary to what is usual in diatoms, the P. tricornutum cell wall is mainly 

composed of sulphated glucuronomannan and is poor in silica, especially in its triradiate and 

fusiform morphotypes, which makes them softer [23,26]. On the other hand, the T. chuii cell wall is 

rich in a pectin-like polysaccharide, possibly conferring a relatively higher resistance to the cells [27]. 

The total carotenoids and chlorophyll a were more efficiently extracted using DMSO than using 

water for both microalgae species studied, while the analyzed chlorophyll b levels were higher 

following the aqueous extraction. The extraction time did not significantly influence the recovery of 

these compounds. In T. chuii, the highest recovery of carotenoids (0.48 mg/g DW) was observed after 

24 h extraction using DMSO as the solvent and a PEF at 1 kV/cm and 400 pulses. 
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Regarding chlorophyll a, all the samples treated with PEF presented a higher extraction than the 

control samples. Regarding the extraction of chlorophyll b, the optimal treatment for the highest 

recovered amount (0.79 mg/g DW) was found after applying PEF (3 kV/cm, 45 pulses) followed by 

24 h of extraction using water. In this case, no significant differences were found, but this was 

probably due to the high variability of one of the treatments (Control 4 h). 

In P. tricornutum, the highest carotenoid yield (1.5 mg/g DW) was observed after a PEF pre-

treatment (3 kV/cm, 45 pulses) followed by 4 h of extraction in DMSO 50% in water. The highest 

concentration of chlorophyll a (4.42 mg/g DW) was found after 4 h and a PEF pre-treatment (3 kV/cm, 

45 pulses) using DMSO 50% in water as the solvent media. Finally, the highest recovery of 

chlorophyll b was obtained in control samples after 4 h of extraction, while the PEF treatment 

decreased the yield of the process, especially at 3 kV/cm. These results are in agreement with 

Parniakov et al. [15], who obtained values in the same range to those found in our study when they 

evaluated the total carotenoids and chlorophylls extraction after a PEF pre-treatment (20 kV/cm, 400 

pulses of 10 μs) and a subsequent extraction using binary mixtures of DMSO or ethanol at 50% in a 

water solution for Nannochloropsis spp. microalgae.  

Moreover, in another study, Parniakov et al. [17] also measured the values for carotenoids and 

chlorophylls, again obtaining similar values for Nannochloropsis spp. after a PEF pre-treatment (20 

kV/cm, 160 J per pulse and a treatment duration between 0.01 and 6 ms). Luengo et al. [14] obtained 

an increase of 124, 164 and 218% in the extraction of carotenoids, chlorophyll a and chlorophyll b, 

respectively, from Chlorella vulgaris after applying a PEF treatment (20 kV/cm for 75 μs). However, 

the same authors did not find any significant improvement in the extraction of these pigments when 

they applied 15 kV/cm or lower electric fields. In addition, the values for total carotenoids, 

chlorophyll a and chlorophyll b obtained by these authors after a PEF pre-treatment and subsequent 

ethanolic extraction were in the same range as our results for aqueous extracts (0–2 mg/g DW). In 

contrast, Pataro et al. [28] obtained higher values for carotenes (41.8 mg/g DW) and chlorophyll a 

(60.2 mg/g DW) when they treated Nannochloropsis oceanica at 10 kV/cm and 100 kJ/kg. Finally, Safafar 

et al. [19] obtained higher values for total carotenoids (2.92–6.70 mg/g) in methanolic extracts for 

Chlorophyta microalgae (Chlorella sp., Dunaniella and Desmodesmus) and 4.60 mg/g for P. tricornutum. 

However, the values for chlorophyll a and b were closer to our results. Chlorophyll a reached values 

from 0.62 to 3.42 mg/g for Chlorella sp., Dunaniella and Desmodesmus, and 2.71 mg/g for P. tricornutum. 

On the other hand, they extracted from 0.39 to 1.45 mg/g of chlorophyll b from Chlorophyta 

microalgae, while they did not detect any chlorophyll b in P. tricornutum methanolic extracts. 

In our study, the yield of pigment extraction was low in comparison to other studies. This may 

be due to the high water concentrations we used. Leonhardt et al. [29] had a reduction of 50% in the 

yield of chlorophyll extraction when they used EtOH 70% in water instead of pure ethanol. Moreover, 

the extraction of chlorophylls also decreased by 67% when they used DMSO 70% in water rather than 

pure DMSO. Pigments can be found within the cell, both outside and inside organelles such as 

chloroplasts [30]. Thus, another relevant factor that may have influenced the pigment extraction 

efficiency was the field strength used in the PEF pre-treatment. Pore formation is directly related to 

the intensity of the treatment. More specifically, the electric field is inversely related to the size of the 

cell membrane. Therefore, to create pores in intracellular organelles such as chloroplasts, a higher 

electric field is necessary. In this sense, it has been seen that the electric field required to electroporate 

organelles is 100 kV/cm [6]. On the other hand, it has been seen that, in order to achieve 

electroporation in the cells of some microalgae such as Chlorella vulgaris, a treatment greater than 10–

15 kV/cm with pulses lasting in the microseconds range was adequate [6,14]. Moreover, it has been 

found that pore formation can also be promoted using a lower electric field strength by increasing 

the duration of the electric pulse to the millisecond range [31]. Therefore, this may explain our results, 

where we observed a lower pigment concentration in the extracts obtained, probably due to the fact 

that part of the pigments present in the intracellular medium were extracted, while those present in 

the organelles were not, due to the low-intensity electric field strength applied. 

In our results, there is a clear increase in the pigment extraction yield when DMSO was used as 

a solvent. This is in agreement with previous studies [15,19,32] and is explained by the hydrophobic 
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hydrocarbon structure of both the carotenoids and chlorophylls studied, which renders them mainly 

soluble in non-polar solvents. 

3. Materials and Methods  

3.1. Chemicals and Reagents 

The ABTS (2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid), Folin–Ciocalteu reagent, 

gallic acid, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and potassium 

persulfate (K2S2O8) were purchased from Sigma–Aldrich (Steinheim, Baden-Württemberg, 

Germany). Sodium carbonate (Na2CO3) and dimethyl sulfoxide (DMSO) were acquired from VWR 

(Saint-Prix, France). Ethanol (99.9%) and methanol (95%) were obtained from Baker (Deventer, 

Overijssel, The Netherlands). 

3.2. Samples 

T. chuii and P. tricornutum were produced in four 800 L GemTube (LGEM, Rotterdam, The 

Netherlands) photobioreactors at the National Algae pilot plant in Mongstad (NAM), Norway. The 

photobioreactors were located in a greenhouse exposed to natural light and additionally equipped 

with artificial illumination (EAX 170W LED lights, Evolys AS, Oslo, Norway) with an average 

incident artificial light of 200 μmol m−2·s−1. The P. tricornutum biomass used in this work’s studies was 

produced in May–June 2017, whereas the T. chuii biomass was produced in July–October 2017. The 

reactors were operated at pH 7.8 by on-demand CO2 addition, and culture temperatures were 

maintained between 15 and 35 °C by heating the greenhouse or spraying the reactors with water to 

cool them down. The reactors were operated in dual mode, so that mixing was provided by both a 

liquid pump and air pump, resulting in a liquid velocity of approximately 0.3 m·s−1. The microalgae 

were cultivated in modified WUR medium, which was based on natural seawater (Fensfjorden, 

Mongstad, salinity of 31 ppt) enriched with a nutrient stock solution. The seawater was chemically 

sterilized (sodium hypochlorite), and active chlorite was deactivated by filtration through active 

carbon, which was followed by filtration (1 μm). 

The microalgae biomass was produced in a fed-batch process: the reactors were harvested once 

per week (between 50–90% of the culture volume), after which seawater and nutrients were added to 

compensate for the volume taken. After harvesting, the biomass was dewatered using a spiral plate 

centrifuge (Evodos 25, Evodos b.v., Raamsdonksveer, The Netherlands), resulting in a paste of 

approx. 22% dry weight in the case of P. tricornutum and approx. 35% dry weight in the case of T. 

chuii. The paste was vacuum-packed and directly frozen at −20 °C before sending it to Nofima in 

Bergen, Norway and storing it at −20 °C until further use. 

3.3. Pulsed Electric Fields (PEF)-Assisted Extraction 

For the PEF treatment of the biomass (freeze-dried biomass of T. chuii and frozen paste of P. 

tricornutum), the PEF-Cellcrack III (German Institute of Food Technologies (DIL)) equipment (ELEA, 

Quakenbrück, Germany) was used. For the preparation of each sample, 198 g of tap water were 

added to 2 g of biomass to end up with a microalgae biomass solution of 1% DM, according to 

Parniakov et al. [15]. A chamber of 900 mL capacity was chosen, the gap between the electrodes was 

set at 10 cm, and the mass added in the cell was always 200 g. The specific energy input was 100 

kJ/kg; the number of pulses was 45 or 400 pulses, depending on the voltage applied (3 or 1 kV/cm, 

respectively). Before and after treatment, the temperature and conductivity were measured in the 

sample with a portable conductivity meter ProfiLine Cond 3310 (WTW, Xylem Analytics, Weilheim 

in Oberbayern, Germany).  

In both PEF pre-treatments that we applied, the specific energy input, pulse duration and 

frequency remained constant at 100 kJ/kg, 100 ms and 2 Hz, whereas the field strength and the 

number of pulses varied in the different treatments. The minimum electric field strength necessary 

to produce changes in cells is 1 kV/cm, and it has been found that with a pulse duration of 

milliseconds an electric field of 3–4 kV/cm is enough to create electroporation [31,33]. Based on these 
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data, we decided to compare a low electric field (1 kV/cm) with a moderate one (3 kV/cm). Therefore, 

the parameters of the first treatment consisted of 45 pulses with a field strength of 3 kV/cm, and the 

energy per pulse delivered to the treated suspension was 450 J. The second one consisted in 400 pulses 

at 1 kV/cm, and in this case the energy per pulse delivered to the treated suspension was just 50 J. 

Thus, a treatment of moderate intensity and short duration and another one of low intensity and long 

duration were compared in our study. Moreover, we decided to use 1 and 3 kV/cm because 3 kV/cm 

is the maximum electric field that can be applied by the PEF equipment used in this study. As 

discussed before, high field strengths are difficult to use in the industry. The PEF conditions chosen 

in our study had a relatively low specific energy (100 kJ/kg). The specific energy input influences the 

degree of membrane permeabilization [34,35]. Some authors have seen how specific energy values 

greater than 50–100 kJ/kg only slightly increased the intracellular content release when they applied 

treatments at field strengths of 27 or 35 kV/cm [36]. Moreover, in a study by Töpfl, a specific energy 

of 100 kJ/kg and a field strength of 15 kV/cm were enough to increase the extraction of carotenoids 

from the microalgae Chlorella vulgaris and Spirulina platensis [37].  

The strategy based on the design of experiments has not been used because the objective of the 

present study was not to optimize the extraction of compounds. The main objective of this work was 

to compare the effect of a very low (1 kV/cm) electric field with that of another moderate/low (3 

kV/cm) one. For this reason, experiments modifying the electric field strength were selected. The 

control sample (without pre-treatment with PEF) can be established as a solid-liquid extraction, a 

conventional extraction technique widely used in the industry. Therefore, comparing the results with 

the control means comparing the use of PEF technology with conventional extraction. 

3.4. Supplementary Solvent Extraction 

After the PEF treatment, solvents (Dimethyl Sulfoxide (DMSO) or distilled water (dH2O)) were 

added into the samples at 1:1 v/v with the scope to further enhance nutrient extraction. After the 

solvents were added, the samples were stirred with rotating magnets at 400 rpm for either 4 or 24 h 

at room temperature to test the effect of the stirring time on the compound extractability from the 

processed biomasses. After mixing, the samples were centrifuged for 10 min at 4000 rpm using a 

5810R centrifuge (Eppendorf AG). The supernatant was collected and kept frozen at −20 °C for further 

analysis. Each sample was processed in each setting in duplicate. 

3.5. Chemical Analyses 

3.5.1. Total Phenolic Compounds (TPC)  

For the determination of TPC (mg of gallic acid equivalent (GAE)/g DW), the Folin−Ciocalteu 

method, previously described by Parniakov et al. [17], was used. This technique is based on the 

colorimetric oxidation/reduction reaction of phenols [38] using gallic acid (Sigma−Aldrich, Steinheim, 

Germany) as standard. First, 50% v/v Folin-Ciocalteu reagent, 2% Na2CO3, as well as the diluted gallic 

acid standards were prepared. Then, 100 μL of sample extract was mixed with 3 mL of Na2CO3, and 

finally 100 μL of Folin-Ciocalteu reagent were added to this mixture. The samples were incubated for 

1 h at room temperature. The absorbance was measured at a wavelength of 750 nm using a 

spectrophotometer Perkin-Elmer UV/Vis Lambda 2 spectrophotometer (Perkin-Elmer, Rodgau-

Jügesheim, Germany). All analyses were performed in triplicate. If differences between parallels 

exceeded 5%, new duplicate analyses were carried out. 

3.5.2. Trolox Equivalent Antioxidant Capacity (TEAC) 

In order to determine the total antioxidant capacity (TAC), the Trolox Equivalent Antioxidant 

Capacity (TEAC) assay was used. The value of TEAC (millimolar Trolox equivalent, mM TE) 

measures the antioxidant capacity of a given substance, as compared to the standard, Trolox 

(Sigma-Aldrich, Steinheim, Germany). The TEAC was measured using the method previously 

reported by Re et al. [39], based on the use of the ABTS radical decolorization assay. 
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The ABTS radical cations (ABTS+) are produced by reacting ABTS 7 mM of a stock solution with 

140 mM potassium persulfate (K2S2O8). The mixture was kept in darkness at room temperature for 

12–16 h before use. The solution was then diluted with ethanol until an absorbance of 0.70 ± 0.02 was 

reached at 734 nm. Once the necessary absorbance was reached, 2 mL of ABTS·+ were mixed with 

100 μL of extract, and the sample was incubated for 20 min at 20 °C. The absorbance was measured 

at a wavelength of 734 nm in a Perkin-Elmer UV/Vis Lambda 2 spectrophotometer (Perkin-Elmer, 

Rodgau-Jügesheim, Germany). All analyses were performed in triplicate. If differences between 

parallels exceeded 5%, new duplicate analyses were carried out. 

3.6. Total Carotenoids, Chlorophyll a and b 

The carotenoid and chlorophyll contents were estimated spectrophotometrically according to 

the study of Parniakov et al. [16], which was based on the method previously reported by Arnon and 

by Lichtethaler and Wellburn [40,41]. This method is based on the determination of the carotenoid 

and chlorophyll contents based on the maximum absorbances of chlorophyll a (���
� ), chlorophyll b 

(���
� ) and total carotenoids (���), which are found at the wavelengths of  ≈ 665 nm, ≈ 653 nm and ≈ 

470 nm, respectively [42]. Aliquots of the extracts were diluted 15–300 times with 90% (v/v) methanol 

in water, and the absorbance (A) was measured at the 470, 653 and 665 nm wavelengths. The 

carotenoid, chlorophyll a and chlorophyll b contents were calculated according to the equations of 

Arnon, Lichtethaler and Wellburn [40,41] as follows: 

���
�  = 16.82���

�  − 9.28���
�  (1) 

���
�  = 36.92���

�   – 16.54���
�  (2) 

��� = (1000���  – 1.91���
�  – 95.15���

� )/225 (3) 

where ���
� , ���

�  and ��� are the concentrations (mg of pigment/g DW) of chlorophyll a, chlorophyll 

b, and total carotenoids, respectively.  

3.7. Statistical Analyses 

The data were analyzed using an analysis of variance (ANOVA), where the PEF pre-treatment, 

use of solvent and time of extraction were set as factors and the compound concentrations were set 

as variables. Data were expressed as mean ± standard deviation (SD) values. A probability value of p 

< 0.05 was considered significant. Furthermore, an LSD test was used to determine differences 

between treatment means. All statistical analyses were performed using the software GraphPad 

Prism 8.0.2 (GraphPad Software, San Diego, CA, USA). 

4. Conclusions 

This study highlights the potential of PEF pre-treatment to improve antioxidant compound 

extraction from untreated microalgae biomass. The PEF treatment, solvent type (polar vs. non-polar) 

and extraction time significantly affected the extraction of carotenoids and phenolic compounds, as 

well as the TAC, from T. chuii and P. tricornutum biomasses. Our study demonstrated that PEF may 

be a promising alternative for enhancing the selective extraction of antioxidant bioactive compounds 

from microalgae, which could be interesting for industrial upscaling. P. tricornutum showed the best 

pigment extraction, with a PEF pre-treatment and a subsequent extraction with a binary mixture of 

DMSO 50% in water. Both microalgae extracts possessed a similar and relatively high antioxidant 

capacity, especially after the non-polar extraction. 
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